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ABSTRACT

Objective Although trait-associated genes identified as
complex versus single-gene inheritance differ
substantially in odds ratio, the authors nonetheless posit
that their mechanistic concordance can reveal
fundamental properties of the genetic architecture,
allowing the automated interpretation of unique
polymorphisms within a personal genome.

Materials and methods An analytical method, SPADE-
gen, spanning three biological scales was developed to
demonstrate the mechanistic concordance between
Mendelian and complex inheritance of Alzheimer’s
disease (AD) genes: biological functions (BP), protein
interaction modeling, and protein domain implicated in
the disease-associated polymorphism.

Results Among Gene Ontology (GO) biological
processes (BP) enriched at a false detection rate <5% in
15 AD genes of Mendelian inheritance (Online Mendelian
Inheritance in Man) and independently in those of
complex inheritance (25 host genes of intragenic AD
single-nucleotide polymarphisms confirmed in genome-
wide association studies), 16 overlapped (empirical
p=0.007) and 45 were similar (empirical p<0.009;
information theory). SPAN network modeling extended
the canonical pathway of AD (KEGG) with 26 new
protein interactions (empirical p<0.0001).

Discussion The study prioritized new AD-assaciated
biological mechanisms and focused the analysis on
previously unreported interactions associated with the
biological processes of polymorphisms that affect
specific protein domains within characterized AD genes
and their direct interactors using (1) concordant GO-BP
and (2) domain interactions within STRING
protein—protein interactions corresponding to the
genomic location of the AD polymorphism (eg, EPHAT1,
APOE, and CD2AP).

Conclusion These results are in line with unique-event
polymorphism theory, indicating how disease-associated
polymorphisms of Mendelian or complex inheritance
relate genetically to those observed as ‘unique personal
variants’. They also provide insight for identifying novel
targets, for repositioning drugs, and for personal
therapeutics.

BACKGROUND AND SIGNIFICANCE

Alzheimer’s disease (AD) is the most common type
of dementia, characterized by a severe form of
memory loss and deterioration of other cognitive
functions. It currently affects 30 million people
worldwide, and this number is expected to
quadruple by 2050." Great strides have been made

1,2,3,4,%
1.2,3,4,5,%

in AD research to unveil genetic underpinnings and
provide a foundation for a personal genomics
solution to treat the disease. Preceding the findings
of common variants in ABCA7, MS4A6A/MS4A4E,
EPHA1, CD33 and CD2AP by Hollingworth et al in
their recent genome-wide association study
(GWAS, GERAD+) involving over 50 000 patients,
other GWAS have identified a total of 19 genes
encompassing single-nucleotide  polymorphisms
(SNPs) associated with an increased risk of devel-
oping AD.? Additionally, 15 Online Mendelian
Inheritance in Man (OMIM) genes showing single-
gene inheritance associated with AD have been
annotated (http://www.ncbi.nlm.nih.gov/omim).
Polymorphisms in the APOE gene are the most well
documented genetic risk factors for developing
early-onset AD.® * In particular, APOE4 accounts
for 50% of cases and has been found to increase the
relative risk for early-onset AD in line with
its allelic prevalence—E4/E4 (14.9), E3/E4 (3.2),
E2/E4 (2.6), and E2/E2 (0.6); conversely, APOE2
appears to have a protective effect against AD.° °
With the accumulation of new genetic insights into
AD, systems biology and systems medicine
approaches are poised to derive new meanings from
interactions among genetic variants.

Following these recent developments in AD
GWAS, we identified a large void in the interpre-
tation and integrative capability of higher scales of
biology within these susceptibility loci. Namely,
previous reductionist genetic approaches have not
been able to sufficiently indicate AD as a complex
disease. Indeed, the pathogenesis of sporadic AD
has been widely attributed to both genetic and
environmental factors, while pure autosomal
dominant Mendelian transmittance accounts for
a smaller proportion of cases (10%).” ® While APOE,
APP, PSEN1 and PSEN2 have been characterized as
true deterministic genes, other genetic loci increase
the risk of developing AD. Thus, being able to
characterize the connectivity and directionality of
the relationships between the underlying genetics
and corresponding functions in high-throughput
data may break boundaries between specialized
silos of knowledge of gene functions and greatly
enhance a holistic approach to understanding the
disease. Furthermore, substantive efforts have yet
to be made to investigate the functional overlap—
of relevance to a personal genome—between AD
genes showing classical Mendelian and complex
modes of inheritance.

The presentation of the seminal evaluation of
incorporating personal genome information into
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a modern clinical assessment by Ashley et al demonstrated the
powerful utility of integrating common polymorphisms to
determine risk of disease within a single patient.” However, the
clinical relevance of the majority of ‘unique personal genetic
variants’ remains unrecognized.” Furthermore, aggregating the
significance of these unique personal variants within a patient
along with polymorphisms known through disparate modes of
inheritance and non-genetic factors may provide key knowledge
about an individual’s risk and pathology of disease. For instance,
despite the increased risk and higher OR of AD attributed to
APOE4, many E4/E4 homozygotes live to old age with no
indication for AD, and up to 50—75% of heterozygotes carrying
one E3 allele never develop AD.® However, numerous studies
have established that AP deposition in the brain and poorer
outcome in terms of neurodegenerative disease after head injury
occur more commonly in individuals possessing an APOE4
allele.® ' Therefore, the APOE4 variant represents a paradig-
matic example of complex inheritance of AD in its intersection
between genetic predisposition and a plausible environmental
factor associated with the disease.

In traditional GWAS, biological function is inferred from
a small set of sequence elements within loci, and they require
multiple patients to establish a prediction. To date, no predictive
methods have been applied to establish the association between
a trait and unique personal variants in an uncharacterized gene
or in uncharacterized polymorphisms of a gene harboring
disease-associated polymorphisms. In the past, reverse genetic
methods have predicted gene function from molecular similarity
of sequence or structure, and could in theory be applied to
prediction of unique personal genomic variants. Conversely,
forward genomics examine higher systems properties of high-
throughput data and subsequently zoom in on causal genetic
roots. Such forward genomics techniques have also proven
successful for arriving at new phenotype-associated variants in
a variety of contexts.’ ' For instance, we have shown that the
same systems properties of biological processes and molecular
functions are consistently enriched among the top 1000 genes of
independent adult-onset diabetes mellitus.’® Previously, our
group has also shown that properties at the protein-interaction
level are able to establish overlap between diseases and
predict novel candidates involved in molecular mechanisms of
disease.' '° Additionally, Zhong et al demonstrated that
specific edgetic alleles (mutations responsible for specific protein-
interaction patterns) are associated with certain Mendelian
diseases, as compared with other edgetic or null alleles (muta-
tions responsible for structural alteration and complete loss of
protein interactions).'® Further, it has been shown by our group
and others that disease trait similarity of complex diseases can
be imputed from genetic variants.'” '® Here we demonstrate the
relevance of edgetic properties of Mendelian and complex disease
inheritance genes in AD, as well as integrate a forward genomics
approach to arrive at new hypotheses for risk inheritance.
Analyzing SNPs at the mechanism level of the gene also
addresses the current limitation of GWAS described by Gold-
stein’s group—SNPs may be markers of rare or unique personal
variants, as opposed to the prevailing belief that they measure
a nearby common variant with minor allele frequency >5%
(consensus definition of a SNP).!?

We thus hypothesized that the clinical significance of unique
personal variants could be imputed with increased accuracy by
triangulating three established approaches: forward genomics,
reverse genetics, and computational biology modeling of systems
and networks (online supplementary figure S1). Lee et al and
other groups have established the proof of concept for using Gene
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Ontology (GO) similarity and protein interactions to prioritize
genes associated with a disease.’*"*? Yet, none of these studies
have investigated similarity between disease traits or similarity
between polymorphisms according to their mode of inheritance
(single gene vs complex). Here we analyze 40 genes shown to be
associated with AD, using text-mining techniques to characterize
mechanistic commonalities and inter-relationships between GO
biological processes (GO-BP) enriched within SNPs from OMIM
and confirmed in GWAS (online supplementary tables S1 and S2).
We have previously demonstrated the feasibility and utility of
a novel information theory-based method for predicting protein
functions and building disease—disease networks by exploiting
the semantic similarity of GO terms among host genes of vali-
dated trait-associated SNPs."®> We apply this forward genomic
method of GO term enrichment and scoring of AD SNPs based
on information theory semantic similarity (ITSS) scores which
we developed®® in order to construct the functional space of AD
polymorphism host genes. We further constrain our predictive
space by examining the node and edgetic significances within
protein-interaction networks (PINs) and domain—domain inter-
actions of AD genes and canonical pathways. Taken together, our
mechanism-guided approach to integrating intermediate pheno-
types derived from forward genomics lays a foundation for
translating unique personal variants into other established
networks used for drug repositioning (figure 1).

MATERIALS AND METHODS

Data

A set of eight somatic SNPs discovered in two recent AD GWAS
meta-analyses, ADGC** and GERAD+,? were included in our
study. Another 17 AD-associated SNPs were identified from the
GWAS catalog of association loci for human diseases and traits
downloaded from the National Human Genome Research
Institute (NHGRI) website (http://www.genome.gov/gwas-
tudies/ Apr 2011) (NHGRI GWAS Catalog). KEGG AD and
Parkinson’s disease pathways were obtained from the KEGG
website (http://www.genome.jp/kegg/pathway/hsa/hsa05010.
html). The KEGG database was downloaded through R package
‘KEGG'. The GO terms enrichment package, GOstats, was
download from the Bioconductor website (http://www.biocon-
ductor.org/packages/2.8/bioc/html/GOstats.html). To identify
true findings from GO enrichment, we used a web-accessible
tool, GO-module  (http://www.lussierlab.org/GO-Module).
OMIM genes’ background used in permutations was down-
loaded from the Human Genome Organizations (HUGO)’s Gene
Nomenclature Committee (http://www.genenames.org/cgi-bin/
hgnc_downloads.cgi June 23, 2011). All information on single
inheritance genes associated with AD was obtained from
the OMIM website (http://www.ncbi.nlm.nih.gov/omim). The
gene to GO terms relational database was downloaded from the
NCBI  website (http://www.ncbi.nlm.nih.gov/entrez/query/
static/help/LL2G.html#files) via FTP. The protein interactions
were downloaded from the search tool for the retrieval of
interacting genes (STRING) version 8.0 on December 19, 2008
(http://string.embl.de).25

AD GWAS SNP's host genes and OMIM genes

In this study, we used two recently published GWAS: The
Alzheimer’s Disease Genetics Consortium?® and GERAD+
consortia (including data from the GERAD,” EADL?® Trans-
lational Genomics Research Institute (TGEN1)* and the
Alzheimer’s Disease Neuroimaging Initiative)® and all SNPs
found in previous AD GWAS. We included a total of 25 AD genes
of complex inheritance annotated to the reported SNPs in both
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Figure 1 Scalar protein analysis of
domains enriched in genetics (SPADE-
gen): changing the paradigm of drug
repositioning for complex diseases with
genetically anchored biological
mechanisms. The diagram shows the
stepwise process by which the
proposed SPADE-gen method identifies
concordance between Mendelian and
complex disease genetics and
represents it as nested mechanisms
which recapitulate their genetic biology
at multiple scales: (1) biological
processes associated with Alzheimer's
disease (AD); (2) protein interactions
involved in these biological processes;
(3) their associated interacting protein
domains which may explain the altered
function of inheritable AD genes.
Finally, this multiscale knowledge is
applied to implicate new, rare, or
‘unique and personal’ polymorphisms
within these AD-associated protein
domains. In summary, this method
translates genetic signals into the
protein domain language required for
use in biological and computational
drug repositioning pipelines which
cannot, by design, directly incorporate
complex disease genetics. Datasets
used by this method are listed in the
right column of the figure. The problem
statement is outlined at the top of the
figure and is as follows: while
Mendelian AD genes are well
understood in established AD molecular
pathways (eg, KEGG), the host genes of
over 20 newly discovered intragenic AD
single-nucleotide polymorphisms are
surprisingly neither part of the AD
pathways nor direct interactors with
these proteins. The base of the figure
illustrates the intended utilization:

a therapeutic compound repositioned or f
developed specifically to interact within {

an AD-associated protein domain. Protein doman
of AD gene A

“Mendelian”

Problem

10° m

(organism)

105 m

10" m
(protein
complexes)

10%m
(protein)

10°m
(protein
domain)

Scales of biological mechanisms

papers (closest to the SNPs) and the NHGRI GWAS catalog.
Sixteen Mendelian inheritance AD genes were identified in the
OMIM using text mining, which we previously published.?! One
overlapping gene (APOE) was found in both GWAS and OMIM
lists. In other words, distinct polymorphisms of APOE are
responsible for the high OR and penetrance of the Mendelian
inheritance alleles reported in OMIM and for the low OR and
penetrance of the GWAS SNP associated with complex inheri-
tance. To best illustrate the power of our system’s concordance
analysis, we applied a rather conservative method and removed
APOE from the OMIM gene list in order to generate distinct and
independent gene lists for GWAS and OMIM.

Functional annotation of GWAS and OMIM genes to GO
To find significant genes in both of our gene lists, we first

conducted KEGG canonical pathway enrichments between
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GWAS genes and between OMIM genes using four KEGG
pathways associated with AD: AD (hsa05010), apoptosis
(hsa04210), calcium-signaling pathway (hsa04020), and oxida-
tive phosphorylation (hsa00190). We also conducted a GO
enrichment study to prioritize biomolecular systems related to
AD using genes annotated to GWAS SNPs and those identified in
the OMIM dataset. The unadjusted p value of the GO enrich-
ment was calculated using the cumulative hypergeometric
distribution provided by an open source R package (GOstats,
Bioconductor),?® with the parameter ‘conditional on the GO
structure’. Benjamini—Hochberg correction® was applied to
control for multiple comparisons. To prioritize and refine the
enrichment, we filtered the enriched GO terms using a web-
accessible tool that we developed, GO-module,* which reduces
the GO complexity by constructing biomodules from significant
GO terms based on hierarchical knowledge.
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ITSS between GO terms enriched from the gene list of complex
inheritance (GWAS) and those from Mendelian disorders
(OMIM)
To pinpoint the common systems emerging from complex
(GWAS) and single-gene (OMIM) inheritance of AD, we used
a previously implemented algorithm to calculate ITSS (range
0—1) between GO terms and only included ITSS score =0.7
(which we have previously shown to be significant in opti-
mizing systems prediction).?® GO terms enriched in each GWAS
were systematically compared with one another using (1) simple
overlap (eg, same GO terms or ITSS=1), and (2) with GO terms
with ITSS =0.7 (see equations 1 and 2). One thousand boot-
straps were conducted for the 15 OMIM genes and subjected to
the same analyses (GO enrichment, GO-module refinements,
and ITSS between GO terms from the OMIM bootstrap and
those from the GWAS enrichment). GWAS and OMIM enrich-
ment recalls were conducted by the same GO enrichment
methods. Subsequent ‘leave one gene out’ analyses using the
same methods were conducted to verify the robustness of the
GO terms enriched in either the GWAS or OMIM gene list.
With the use of ITSS, the similarity between GO terms is
calculated (equations 1 and 2):

2)(1'C(ﬂ15(l‘1,t2))
iC(l‘1) + iC(l‘z)

0 = -1os((ci7y)

where ic represents information content, ic(t) is the information
content of a GO term ¢, T is the root term (ie, ‘biological
processes’), ms(a,b) (minimal ancestor) represents the common
ancestor GO term (between GO terms 4 and /) with maximal
information content, and G(z) represents the count of GO terms
subsumed in the subgraph rooted at term . The information
content of any GO term is a non-negative value ranging from
0 to 1,%° where 0 represents no common descendants in the
subgraph rooted at the common ancestor, and 1 represents
an identical list of descendants for the two GO terms being
compared. ITSS between two genes based on GO-BP
(Gene-ITSS) can be found in online supplementary method S1.

ITSS(t1,12) = (equation 1)

(equation 2)

Genome sequence of individuals with AD
Queries were made across all PubMed databases, http://
alzforum.org/, and Google-powered searches.

Protein family motif (Pfam) annotations

Non-synonymous SNPs in our case study network containing
two overlapping GO terms (false discovery rate (EDR) <5%)
were manually analyzed for associated protein family domains
(Pfam). We queried the Ensembl Genome Browser (http://www.
ensembl.org/) for transcript and gene level information for all
missense SNPs in our dataset, and then confirmed existing Pfam
domains encompassing each SNP from Ensembl protein IDs.
Intronic SNPs were analyzed by searching for an associated exon
coding sequence encompassing each intronic SNP within the
UCSC Genome Browser (http://genome.ucsc.edu/) to obtain
a protein sequence, and subsequently determined Pfam domains
from Ensembl protein IDs.

Linking protein domains to OMIN, GWAS, and Parkinson’s
disease genes

We mapped all Pfam®® domains linked to the corresponding
gene in GWAS, OMIM, and Parkinson’s disease datasets. In
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order to map domains to proteins, HMMer’s semi-global
implementation” was used to search for complete domains in
human proteins as shown in previous work for the Domain
Mapping of Disease Mutations database.*

Construction of domain—domain interaction networks

In order to create domain—domain interaction networks, we
retrieved theoretical predictions for GWAS, OMIM, and
Parkinson’s disease genes from the DOMINE database (version
2.0 released September 2010). GWAS and OMIM genes were
then analyzed for shared domain—domain interactions in their
first- and second-degree domain—domain interaction networks.
To find the first- and second-degree interaction networks for the
GWAS and OMIM genes, we used protein—protein interactions
from the STRING database with a combined score greater than
or equal to 900 for each of the GWAS and OMIM genes.
Predictions of domain—domain interactions were based on
experimental data on protein interaction and used the relative
frequency of interacting domains,*® maximum likelihood esti-
mation of domain interaction probability,*" ** or network
properties to predict protein—domain interactions.*® ** We
compiled domain—domain interaction predictions from all these
methods from the DOMINE database. Using these predictions,
we found theoretical domain—domain interactions between all
pairs of proteins in first- and second-degree networks for the
GWAS and OMIM genes. The first-degree theoretical
domain—domain interactions for GWAS genes were compared
against the first-degree interactions for OMIM genes to find
overlapping Pfam domains. We created a network using
domain—domain interaction data for GWAS and OMIM AD
genes and the maximum biological process ITSS score using
Cytoscape.*

Construction of protein—protein interaction networks and
network topology for AD and Parkinson’s disease

We used a similar method to extract interactions from STRING
as previously introduced by Chen e al.*° Distinct interactions
between 40 AD proteins and all proteins from four AD KEGG
pathways were retained. Negative control tests were conducted
between the proteins from Crohn’s disease, epithelial cancers, or
breast cancers and those from the four AD KEGG pathways.
Interaction significances (p values) were calculated at edgetic
level using the Fisher exact test. We calculated the total potential
edges from the available proteins in the PIN. Expected edges
were calculated between proteins from AD or Parkinson’s disease
and those from each pathway we used. In the networks, nodes
represent proteins, and edges represent interactions between
proteins. Node hubness and bottleneckness, as well as edgetic
significances, were used to prioritize the protein interactions
(SPAN®Y). Hubness was calculated as the highest 20% ranked
genes according to the node degree calculated from the filtered
STRING PIN. Bottleneckness was calculated using Gerstein’s
laboratory software, and a rank <20% corresponds to high
betweenness.”” Comparisons of genes’ hub and bottleneck ranks
were conducted using the non-parametric Mann—Whitney test
(two-group comparison) and Wilcoxon signed rank test
(comparison with theoretical median of 50%).

RESULTS

Intermediate phenotypes predicted by exact overlaps and ITSS
of GO enrichment

We obtained 25 complex trait inheritance SNPs from previous
GWAS (25 genes) and 183 allelic variants from single-gene
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inheritance (15 genes) from OMIM. We note that, although
APOE is annotated in both AD GWAS and OMIM genesets, we
prioritize it as an OMIM gene in this study for its greater OR as
a Mendelian gene in this study. As a preliminary study, we
incorporated the GWAS variants with the OMIM variants and
compared them with known AD pathways (KEGG). Using
canonical pathways from the manually curated KEGG database,
we found no more than five overlaps between the OMIM genes
and any of the four pathway genesets associated with AD.
Moreover, the overlap of this straightforward approach is not

Figure 2 Overlap and similarity
networks between Gene Ontology (GO)
biological processes enriched in single-
gene (Online Mendelian Inheritance in
Man (OMIM)) and complex (genome-
wide association studies (GWAS))
inheritance Alzheimer's disease (AD)
genes. Empirical distributions were
conducted by bootstrap (Materials and
methods) to derive the p value of the
observed exact overlap of GO terms
enriched between the OMIM genes and
those of the GWAS at a false detection
rate (FDR) <5% cut-off of enrichments
(A). Using information theoretic
semantic similarity (ITSS, Materials and
methods), a similar empirical
calculation was conducted to identify
similar GO terms enriched between the
studies at the same cut-off of
enrichments (B). Each bar presents the
empirical distributions (arrows point to
the observed results). This study
confirms that specific biological
processes underpin the
pathophysiology of AD regardless of the
mode of inheritance. GO terms were
found to be enriched for 15 OMIM and
25 GWAS genes using stringent
similarity and FDR criteria of (A) and
(B), and, of 45 pairs found to be similar,
(C), four biomodules were identified:
localization and membrane regulation
(eight GO terms); neuronal process (10
GO terms); lipid process (12 GO terms);
immune system response (27 GO
terms).
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associated with the 40 identified AD genes and 2281 other genes
annotated to these GO terms.

By calculating the empirical probabilities of (1) the exact
overlaps (figure 2A, online supplementary figure S2A) and (2)
similarities (figure 2B, online supplementary figure S2B) between
GO-BPs enriched in the complex inheritance (GWAS) and those
enriched in single-gene inheritance (OMIM), we are able to
prioritize known molecular mechanisms of AD and potentially
identify new ones. Figure 2A provides the number (two matches
of 22 enriched GWAS GO terms and 37 enriched OMIM GO
terms) and observed p value (0.003) of overlapping GO-BPs
enriched between GWAS and OMIM genes after adjustment for
the GO enrichment p values for multiple testing and with a cut-
off at an FDR of 5%. In addition to exact overlapping GO terms,
we also used GO annotations to identify similar intermediate
phenotypes, which were then calculated by ITSS metrics
(Materials and methods). Between 22 GO terms enriched in
GWAS and 37 enriched in OMIM (online supplementary tables
S3 and S4), we identified 45 ‘similar pairs of GO-BPs’ among 814
potential pairs using a stringent criterion (ITSS >0.7; Materials
and methods) that we have previously shown to be optimal for
the precision and recall of this similarity approach.?® The
observed p value for the average ITSS score among 814 pairs
(0.119) is 0.009. Figure 2C provides the network of similarity-
predicted GO terms enriched between the two studies according
to the same parameters as figure 2A,B. We also calculated the
observed p value for exact matches and ITSS score using unad-
justed p values <0.05. We found 16 exact matches with observed
p value 0.007 and an average ITSS score of 0.32 with observed

Figure 3 Protein-interaction network
(PIN) between 40 Alzheimer's disease
(AD) genes of complex and Mendelian
inheritance and KEGG AD pathway
genes. Of the 40 AD inheritance genes,
28 are connected through
protein—protein interactions in the
network using a threshold cut-off of 900
within the STRING database and
stringent network modeling using SPAN
(Materials and methods). Node and
edgetic significances, representing
individual proteins and their
interactions, respectively, are visualized
according to their respective false
detection rate (FDR) p value. Node
shape and color indicate the source of
genes: circle (contained by KEGG),
square (not contained by KEGG), gray
color (KEGG only), green (genome-wide
association studies (GWAS)), purple
(Online Mendelian Inheritance in Man
(OMIM)), and orange (OMIM and
GWAS).
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p value <0.001 (online supplementary figure S2AB). These
results confirmed our finding at a more relaxed cut-off level,
indicating the scalability of our approach. We also confirmed the
robustness of these results by systematically leaving each AD
gene out of the enrichment one at a time (Materials and
methods; data not shown).

Network of similar GO-BPs enriched in both Mendelian and
complex AD inheritance

It has been shown that ITSS scores can predict biomolecular
systems properties."® 2* A total of 45 pairs of GO terms were
identified as significantly similar pairs (ITSS >0.7) from GWAS
and OMIM enrichment with an FDR <5%. From these 45 pairs,
a network of intermediate phenotypes with significant
substructures emerged. By connecting similar pairs with
weighted lines indicating the level of similarity, clusters of
significant GO terms were identified representing intermediate
phenotypes (figure 2C). Among the connections between similar
pairs of GO terms, we identified four significant biomodules of
GO-BPs describing established functional aspects of AD
according to our review of the literature (online supplementary
table S5). In principle, each of these biomodules could organize
unique combinations of single-gene and complex-gene inheri-
tance of AD within an individual.

PIN of known AD KEGG pathway genes with GWAS and OMIM
AD genes

Owing to the significant similarity observed at the intermediate
(GO-BP) phenotype level of the OMIM and GWAS genes, we

K3CA

o
PIK3R1

CASPT

r. APHIA
PSENEN

2l Size of circle is proportional to the
() FDR of PPIN node p value of
KEGG pathway gene

Prioritize KEGG pathway, OMIM
and GWAS gene

Prioritize KEGG pathway and
OMIM gene

O
O

311



Research and applications

were able to combine the two sets of genes and prioritize them
according to known PINs (STRING v8.0), although the small
number of overlapping GO terms limited our power to predict
future variants. In order to impute the significance and functions
of future variants, we first constructed the PIN between the
proteins of the 40 AD genes and the proteins from the known
KEGG AD pathway (hsa05010) (figure 3). Based on our empirical
distributions, we prioritized edges in the PIN based on both the
nodes’ connectivity and their edgetic significances using the
SPAN network model that we developed® (Materials and
methods). As shown in figure 3, we identified one significant
connection between a GWAS and KEGG gene, CLU and APF,
respectively. We also found three significant proteins from
GWAS (PICALM, CLU, and BIN1), seven proteins from OMIM
(A2M, APP, PSEN1, PSEN2, PRNP, SNCA, and NOS33), and the
overlapping APOE gene after adjustment of p values with
controlled empirical simulations. Twelve proteins identified in
GWAS were not found to be in the network because of a lack of
protein function data. While no AD gene of complex inheritance
discovered by GWAS was represented in KEGG, this study
shows that conservative network models can identify these
genes as statistically significant first interactors with known AD
proteins from KEGG; in other words, molecular mechanisms can
be imputed for newly discovered GWAS genes with known
biology of the disease.

Previous studies investigating the biological role of network
topology of PINs have shown that network hubs are associated
with disease genes, and bottlenecks often correspond to dynamic
functional components.*® We observed that bottleneckness and
hubness of Mendelian (OMIM) AD genes are significantly
increased compared with those of a random selection of genes
from the network (figure 3; lower rank of betweenness and node
degree correspond to increased bottleneckness and hubness,
respectively; p<0.0001 in comparison with the random selec-
tion; Wilcoxon signed ranked test in comparison with the
median rank of network genes). In addition, AD genes with

Figure 4 Triangulating at the
nanoscale for prediction of unique
personal variants: biological process
similarity of Alzheimer's disease (AD)

>

p<0.0001
(Spearman R=0.45, n=141)

Mendelian inheritance showed more bottleneckness and
hubness than those of complex inheritance discovered by GWAS
(figure 3; p=0.0007 and p=0.088 respectively, Mann—Whitney
test). According to the network topology, APP, PSEN1, PSEN2,
and SNCA were identified as hubs as well as bottlenecks from
the interaction network between KEGG AD pathway and
candidate genes. As shown in figure 3, for example, two
GWAS genes (BIN1 and PICALM) are connected through three
KEGG pathway proteins (PPP3CA, PPP3CB, PPP3CC), and BIN1
is among the top nodes in terms of bottleneckness and hubness.
Further PIN analysis between our candidate genes, with the
KEGG AD (hsa05010) and KEGG apoptosis (hsa04120) pathway,
also confirmed the priority of BIN1 and PICALM (data not
shown). In addition, PLAU was also prioritized with significant
bottleneckness in the interaction network with the KEGG AD
pathway. Similarly, through interactions with the KEGG
calcium-signaling pathway, VEGFA and NOS3 were identified as
significant hubs and bottlenecks. Thus, with network topology
analysis, we can further suggest the significance of AD GWAS
playing a role in established pathological pathways of AD.

DISCUSSION

Comprehensive approaches to analyzing personal genomes in
concert with rare variants of disease remains a major challenge
for systems and computational biology.” Being able to charac-
terize the mechanistic overlap between single and complex gene
inheritance may allow improved assessment of an individual’s
risk of disease, as unique personal or rare variants contributing to
the phenotype are likely to occur within those mechanisms
as well. In our combined top-down forward genomics and
bottom-up network modeling approach, we use four sources of
knowledge (KEGG pathways, GO enrichment, protein—protein
interaction networks, and protein—domain interactions) with
AD genes obtained from OMIM and recent GWAS in order to
impute genomic regions in new risk variants within personal
genomes.
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mechanisms underpinning AD imputed. Of note, only the protein interactions for which the imputed interacting protein domains are located in the
GWAS or OMIM polymorphism are shown; in other words, protein interactions for which the protein domain could not be associated with an AD
polymorphism located in the related genomic regions were filtered out. Large circles indicate AD genes (GWAS and OMIM), and small circles indicate
first-degree interaction partners in STRING. Edge thickness is proportional to the ITSS between GO biological processes associated with these AD
genes and their interactors (1=ITSS=0.193757; Materials and methods). The dotted circle highlights interconnected proteins and specific domains
(Pfams) imputed as responsible for their interactions for two GWAS genes (EPHA1 and CD2AP) and two first-degree interactors (FYN, and CBL).
Confidence levels: high confidence (HC); medium confidence (MC). ITSS scores (0—1) are listed for each gene pair, as well as confidence level ranges
for domain interactions.
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Figure 5 Extending known Alzheimer's disease (AD) pathways with genetic mechanisms (colored lines): indirect connections between single and
complex inheritance AD genes and canonical KEGG AD pathway genes (hsa05010) constrained by AD-associated Gene Ontology (GO)-biological
process (BP) mechanisms. AD polymorphisms of complex inheritance observed in genome-wide association studies (GWAS) are surprisingly
genetically non-overlapping with the known pathway of AD and are established here as significantly interacting with the AD pathway (KEGG) via
protein interactions that are themselves confined within established pathophysiological processes of AD (AD-associated GO-BP). (A) Outline of the
process of discovering new AD mechanisms by extending known biological pathways of AD (genes of KEGG AD as circles) using first-degree protein-
interaction partners (triangles, STRING network) selected according to their connectivity to the confirmed inheritable AD genes (squares, Mendelian
gene in mauve (Online Mendelian Inheritance in Man (OMIM)) and complex (GWAS) in green), while simultaneously constraining at the biological
process of these interactors to the same mechanism as that of the inheritable genetics (color of the interaction, shared GO-BP between interacting
genes). In (B), we show that SPAN-prioritized protein interactions between the first interactor protein of the AD KEGG pathway and an AD gene
(Mendelian or complex) are more likely to be observed between proteins that share an association with protein interaction to AD GO-BP mechanisms.
Pairs of interacting proteins derived from the 40 AD genes and KEGG AD pathway (hsa05010) genes (STRING) that were not contained in AD GO terms
(left bar), contained within the same shared AD GO term (middle bar), or subsumed by an AD GO class as defined in fig 2 (right bar) presented a more
significant edgetic p value between their SPAN-modeled interactions than pairs not within AD GO (Kruskall—Wallis non-parametric analysis of variance
p<0.0001; individual comparisons by Bonferroni-corrected Mann—Whitney test). Genes with interaction pairs sharing the same AD GO were found to
be more significant than expected by chance (p<0.0001; 10 000 permutation resamplings of interactions between AD inheritance genes and AD KEGG
first interactors). Conversely, a significant difference between interactor pairs containing the same shared AD GO and interactor pairs subsumed by an
AD GO class was not observed. In (C), we show the protein-interaction network connecting KEGG AD pathway genes and their first interaction partners
to AD GWAS and OMIM inheritance genes. Prioritized edges with p<0.05 (unadjusted p value of gene pair using empirical distribution from 10000
permutation resamplings) within the protein—protein interaction network connecting AD GWAS and OMIM genes to genes and first interactors
(STRING) from the KEGG AD pathway (hsa05010) are also constrained within four biomodules of GO-BPs found to be enriched in AD genes (see right
bar of (B); online supplementary table S7 for interactor pairs mapped to AD GO-BP biomodules; online supplementary table S8 for interactor pairs
mapped to shared AD GO-BPs). Node colors and shapes correspond to sources of genetic association (KEGG, OMIM, GWAS) and combinations
thereof. Node shapes are hierarchical classes as follows: circle, canonical AD KEGG pathway gene; square, OMIM or GWAS AD inheritance gene;
triangle, AD KEGG pathway first interactor. Node colors represent additional features following node shape: green, GWAS; purple, OMIM; gray, KEGG,
first interactor to KEGG; yellow, KEGG, OMIM and GWAS. Each biomodule is color-coded according to each prioritized edge between KEGG AD first-
degree interactor genes and AD inheritance genes. Of 103 interactions subsumed under AD-associated GO-BP, 750 met a SPAN network model of
p<0.05 presented here, among 856 overall interactions identified between the AD KEGG pathways and the inheritable genes (single or complex). A
larger network comprising first interactors from AD KEGG pathway genes connected to AD inheritance genes (428 interaction pairs) not constrained
with respect to connections through AD KEGG pathway genes nor with an unadjusted p<0.05 cut-off was reduced to the network above using network
modeling techniques. As expected, we find that GO-BPs common to both OMIM and GWAS connect to both forms of inheritance genes in the network.
In this network, we found for the intersectional AD gene, APOE, among GWAS, OMIM and KEGG sources that three interactions with APOA1, APOA2,
and APOAA4 contain corresponding high-confidence domain—domain interactions mediated from a single protein domain of APOE, which also harbors
15 distinct AD-associated single-nucleotide polymorphisms (SNPs). APOE is mapped to the GO-BP protein—lipid complex remodeling (online
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Geneset enrichment using canonical KEGG AD pathways versus
unbiased GO classes

The failure to enrich the complex disease AD genes derived from
GWAS or well-established Mendelian inheritance AD genes
derived from OMIM in any one of the four known KEGG
pathways associated with AD was expected because of: the
small number of genes in each set; the inclusion of deregulated
AD genes discovered in cell signaling and biological experiments,
rather than through genetic evidence, in the KEGG database;
and, significantly, the fact that new discoveries from GWAS may
comprise uncharacterized biological mechanisms not yet asso-
ciated with the ‘canonical’ pathways agreed to be associated
with AD pathogenesis. These results provided the rationale for
a broader unbiased assessment of all genesets annotated in GO.
Indeed, it has been shown in complex inheritance signals from
GWAS that (1) multiple intragenic SNPs prioritized in GWAS
can yield a statistically significant joint mechanism defined as
a GO geneset®  and (2) a GO overlap signal can be identified
among different GWAS that otherwise have no gene overlap.*
Unsurprisingly, we report shared and similar GO terms enriched
between host genes of intragenic SNPs reported in GWAS with
monogenic AD trait genes, as well as those with high OR
annotated in OMIM. However, different from these previous
studies which were conducted over hundreds of signals from
single GWAS, here the intragenic SNPs and OMIM genes had all
been confirmed in repeated studies, and thus we postulate that
they represent a focused system of intermediate phenotypes
that define commonalities between otherwise heterogeneous
molecular presentations of AD. These unbiased GO mechanisms
that we report to be associated with both complex and mono-
genic inheritance of AD are further constrained by another
biological scale: PINs.

Protein-interaction modeling

Despite constraining our network down to top-most interac-
tions, we could still find several interesting patterns. Seven
genes not included in the KEGG pathway were prioritized using
PINs. Among them, three were GWAS genes with significant
bottleneckness and hubness. In addition to significant genes
identified from the PINs, we also found significant edges that
connect AD GWAS or OMIM proteins and KEGG pathway
proteins. Therefore, by constructing PINs, we were able to
impute the function and significance of several variants by their
node and edgetic properties. One constraint on the predictive
power of the PIN is that only very high quality protein inter-
actions from the STRING database were included. We can
expand our model and impute more variants with larger
amounts of information by including interactions from
a broader range of quality-control cut-offs. Further, when
combining protein—protein interaction information, as well as
structural information (ie, splice sites, promoters, or Pfams),
with GO terms associated with a new variant, we can even
pinpoint the possible function of the new variants. Because of
the edgetic significance obtained from PINs, we can also impute
significant variants from the first interaction partners of the
protein. An additional analysis of Parkinson’s disease overlap

through protein—protein interactions can be found in online
supplementary table S6.

Shared Pfam analysis

SNPs identified from OMIM AD genes were also found to be
connected to a number of other diseases, including Parkinson’s,
hyperlipoproteinemia, lipoprotein glomerulopathy, and myelo-
peroxidase deficiency (online supplementary table S2). Interest-
ingly, we found that heterogeneous disease associations for
SNPs within each gene converged on the same Pfam when we
mapped SNPs to known Pfams from the Ensembl database
(data not shown). These findings suggest that our forward
phenomics approach may be more insightful than a reverse
genetics approach for predicting new rare variants, as a reduc-
tionist approach initially constrained at the Pfam level may be
biased to predicting incorrect disease associations. Further, as
Goldstein’s group has demonstrated, many SNPs discovered in
GWAS may be markers of rare or personal variants rather than
the prevailing belief that a local frequent allele is responsible for
the statistical signal.'” Notably, intragenic SNPs of a particular
gene were only associated with AD in a few cases, which could
increase the chance that additional novel variants may associate
with incorrect disease traits. Taken together, these results
suggest that (1) a forward genomics approach triangulating on
mechanisms responsible for the disease using single- and
complex-gene inheritance should be conducted initially, (2) only
the biologically validated Pfam or SNPs be used to guide PINs,
and (3) bioinformatics modeling of the rare variants associated
with the GWAS SNPs need to be incorporated in addition to
deep sequencing of these regions.

Integrating intermediate phenotype similarity with
domain—domain interactions

Progress has been made in recent efforts to integrate intermediate
phenotypes with clinical and molecular phenotypes in many
disease contexts.”* We show in figure 4 that, indeed, constraining
analysis of AD-associated GWAS and OMIM genes and their
first-degree interaction partners using forward genomics (GO-BP
ITSS) may inform us about the relevance of protein—protein
interactions, and corresponding domain—domain interactions. In
figure 4B, we note that two AD genes (EPHA1 and CD2AP)
interconnected through domain—domain interactions to two
first-degree interactors (CBL and FYN) have potential biological
roles in AD pathogenesis. EPHA1 (rs11767557; ephrin receptor
Al) belongs to a subfamily of the protein tyrosine kinase family,
and EPH receptors have been implicated in mediating develop-
mental events, particularly in the nervous system. CD2AP
(rs9349407; CD2-associated protein) encodes a scaffolding mole-
cule that regulates the actin cytoskeleton. FYN is a member of
the protein tyrosine kinase oncogene family and has been
implicated in the control of cell growth. CBL is an oncogene that
positively regulates receptor protein tyrosine kinase ubiquitina-
tion. CD2AP belongs to the cell projection organization biological
process (figure 2) along with PVRL2 and PICALM (online
supplementary table S3). In figure 4B, a candidate subnetwork of
AD satisfies our three criteria of network modeling: (1) protein

[Continued]

supplementary table S4), whereby both high-density and low-density lipoprotein particle remodeling GO-BPs have plausible roles in the pathogenesis of
AD (online supplementary table S5). Accordingly, APOA1, APOA2, and APOA4 all have roles in lipid metabolism, while APO1 and APO2 are the major
components of high-density lipoproteins in the plasma. These protein and domain interactions may suggest how genetic aberrations among interaction
partners can alter brain cholesterol metabolism and subsequently increase the risk of developing AD. Four other domain—domain interaction pairs not
mapped to current AD-associated SNPs were also prioritized in this network (LRP1 with APP and APBB1; DNM1 with CDK5 and MAPKT).
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interactions between AD genes, (2) protein domains comprising
the SNP, and (3) genetic association with AD. Consequently, the
protein domains potentially associated with AD through known
AD genes have been identified, and uncharacterized unique
personal variants occurring in these regions are possibly more
likely to be associated with AD than in other protein domains of
these genes. Further, specific protein domains in a new gene are
also imputed at higher probability of being associated with AD
because they could affect the second-degree protein interaction
between two AD genes.

Limitations

We recognize several limitations in our work. First, we found that
multiple subtypes of AD (eg, early- and late-onset, apraxia,
familial types) may differ molecularly, although these disease
traits share some clinical overlap. It is not clear whether there
may be a bias in the autosomal form of AD, which may be very
different from the complex inheritance forms, and therefore
should not be mined as a cluster. Second, the intragenic SNPs
may in fact correspond to genetic loci other than those currently
annotated, and other, poorly understood, mechanisms may be at
play. Third, we realize that the low yield for KEGG enrichment of
AD genes may be due to low statistical power in terms of AD
genes, KEGG pathway genes differentially expressed in AD rather
than mutated, and/or because AD KEGG annotations are
distributed across four distinct KEGG pathways, which may have
compromised specificity in our analysis. Similarly, GO similarity
and overlap analysis between OMIM and GWAS genes may have
been limited by the quality and/or quantity of annotations
within GO. Fourth, as noted in the Materials and methods
section, because of the complex background of the GWAS SNPs,
the enrichment studies of our 15 OMIM genes and 25 host genes
of GWAS SNPs are below the conservative minimum number of
genes for enrichment studies using theoretical statistics. Thus,
we used empirical bootstrap statistics for our analysis, and
further evaluated the robustness of the results by systematically
removing one gene at a time from the enrichment study. None-
theless, the observed results include high-level GO terms
comprising thousands of less informative genes, which should be
filtered out in future studies. Fifth, limitations in our protein-
interaction modeling include the bias in the STRING database to
annotate well-funded areas of research and the sensitivity to
SPRING network quality cut-offs. Thus, we focused on
a conservative cut-off, which yields fewer results. Also, cut-offs
for the genes and relationships of interest are based on a scale-free
model, which controls for hubs, but not for bottlenecks. There
are many other ways to generate scale-free controls, and perhaps
a model more balanced between hub and bottleneckness would
be more insightful. Additionally, p values calculated on node
degree and direct interaction may miss more subtle patterns.
Related approaches for analyzing connections in more depth may
be more biologically relevant. Finally, our Pfam analysis may have
been limited by the fact that not all interactions or binding
between proteins occur in Pfam domains. Future structural and
biochemical work will largely inform future studies.

CONCLUSION

Implications for personal genomes

Here we have utilized forward phenomics methods and network
models to automate predictions for biological mechanisms of
AD inheritance at two different scales (protein interaction, GO
terms); we thus imputed the ‘domain’ of intermediate systems
(intermediate phenotypes) mediating the disease between
molecular genetic levels and disease trait levels. We show that

J Am Med Inform Assoc 2012;19:306—316. doi:10.1136/amiajnl-2011-000656

a significant amount of pathophysiologic connections are made
between single and complex inheritance genes of AD at the GO
level, although these biological constraints result in fewer rele-
vant connections being made at the protein-interaction level.
Importantly, we observe significant concordance between AD
gene—domain interactions and protein interactions with AD
GO-BP, which further constrain the potential disease-associated
polymorphisms to a nanoscale subset of the protein region
(figure 4). We propose that these AD-associated protein domains
are thus predictive of complex or Mendelian disease inheritance
as well as of new unique personal variants. Furthermore, these
protein domains are associated in a functional genetic architec-
ture which associates them with known disease-associated
pathways. How we can further relate disparate connections
between single and complex inheritance genes will be important
in future studies for predicting personal variants and will likely
require high-throughput predictions of protein structures of
known or new polymorphisms occurring in these protein
domains. Our proof-of-concept study holds promise for veri-
fying and predicting unique personal variants in conjunction
with known risk loci for AD, and may guide the interpretation
of the forthcoming sets of deep-sequencing data for patients
with AD, providing ‘prior hypotheses’ to reduce dimensionality
in methods designed to analyze function in sequenced data.”?
Significantly, by constraining at the mechanism level
(protein—domain interaction, GO-BP), we are also able to extend
inheritance information back to canonical knowledge of AD
from KEGG (figure 5). Furthermore, our method is positioned to
guide future studies identifying novel drug targets and drug
repositioning methods in translating genetic findings into
actionable targets of drug discovery, including protein domain
networks confined within biological processes that extend
known canonical pathways of AD. It is established that AD
therapeutics will eventually require drugs targeted to the
genomic aberrations underlying the disease.”® It has been shown
that drug targets and disease genes coincide within PINs,>* and
further methodology has been developed and independently
validated to reposition drugs in this context, in addition to
similarity measures of chemical components of drugs and
molecular mechanisms.”°® Such methods are well suited to
integration of other high-throughput data utilized in our
approach, including GO-BP and domain—domain interactions.
Simultaneously, our method also effectively reduces dimen-
sionality of biological mechanisms for this purpose (online
supplementary table S9). Moreover, the greater weight of
evidence of biological mechanisms compared with the original
set of elementary SNPs for disease association queries would
enhance the translation of these SNP—disease or personal
variant—disease associations into existing drug networks using
specific domain targets in the protein—protein interaction plane.
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