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Perturbed states of the bacterial
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Spatial patterns of transcriptional activity in the living genome of Escherichia coli represent
one of the more peculiar aspects of the E. coli chromosome biology. Spatial transcrip-
tional correlations can be observed throughout the chromosome, and their formation
depends on the state of replication in the cell. The condition of thymine starvation
leading to thymineless death (TLD) is at the “cross-roads” of replication and transcription.
According to a current view, e.g., (Cagliero et al., 2014), one of the cellular objectives
is to segregate the processes of transcription and replication in time and space. An
ultimate segregation would take place when one process is inhibited and another is
not, as it happens during thymine starvation, which results in numerous molecular and
physiological abnormalities associated with TLD. One of such abnormalities is the loss of
spatial correlations in the vicinity of the origin of replication. We review the transcriptional
consequences of replication inhibition by thymine starvation in a context of the state of
DNA template in the starved cells and opine about a possible significance of normal
physiological coupling between the processes of replication and transcription.
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Introduction

Replication and transcription are intertwined in a number of ways, as molecular reactions and
biological processes. In the cell, the two polymerization reactions utilize, and compete for, the same
DNA template. Thatmay force local interactions betweenDNAandRNApolymerase complexes (Liu
and Alberts, 1995; Felipe-Abrio et al., 2014), which may be a part of the normal replication process
(French, 1992;Merrikh et al., 2011) or, under special circumstances, may be a source of chromosome
pathology (Merrikh et al., 2012). The reactions are also linked at a deep evolutionary level via the
activity of the enzyme ribonucleoside di(tri)phosphate reductase which converts ribonucleotides,
precursors of substrates (or substrates) for the reaction of transcription, into deoxyribonucleotides,
substrates for DNA polymerization reaction (Reichard, 2010).

The biological processes of replication and transcription are also coupled via a number of
regulatorymechanisms, some of which are still unexplained or/and whose physiological significance
is not yet understood. First, DNA replication determines intrinsic levels of gene expression by
establishing gene dosage gradients along the chromosome (Chandler and Pritchard, 1975; Schmid
and Roth, 1987; Couturier and Rocha, 2006; Slager et al., 2014). Second, transcription is required for
initiation of chromosomal DNA replication (Lark, 1972; Messer, 1972). Third, DNA replication is
required for establishing normal spatial patterns of chromosomal transcription (Jeong et al., 2006).
Fourth, interference with DNA replication results in a specialized DNA damage transcriptional
response (Simmons et al., 2008; Kreuzer, 2013). Fifth, the replication initiator protein DnaA
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(Kaguni, 2006) controls, as an activator and repressor, transcrip-
tion of the ribonucleotide reductase operon (Olliver et al., 2010).
Sixth, activity of both processes can be modulated by (p)ppGpp
(Chiaramello and Zyskind, 1990; Levine et al., 1991; Denapoli
et al., 2013) and by changes in DNA supercoiling (Kowalski and
Eddy, 1989; Crooke et al., 1991; von Freiesleben and Rasmussen,
1992; Peter et al., 2004; Rovinskiy et al., 2012), two molecular
sensors that can relay information about critical fluctuations in
the cell’s environment to the parts of the replication and transcrip-
tion machineries (Dorman, 2006; Jin et al., 2012; Sobetzko et al.,
2012). Last and perhaps more of a fortuitous link is a genetic one,
exemplified by the evolutionarily conserved arrangement of genes
encoding the DNA primase DnaG and the main sigma factor
RpoD in one operon (Burton et al., 1983; Versalovic et al., 1993).

All these interactions have been shaped and calibrated by the
evolutionary forces to accommodate species specific differences
in genome organization and physiology. Disruption of normal
temporal and spatial relationships between replication and tran-
scription may have detrimental consequences for the cell. And
nowhere such consequences are more pronounced than during
thymine starvation.

Thymine Starvation and Transcription

Thymine is one of the five common nucleobases and it is found
primarily in DNA where it makes a Watson-Crick pair with
Adenine. Active thymine compound in the cell is TTP: it is a
precursor of DNA as well as of thymidine nucleotide sugars that
serve as intermediates in O-antigen biosynthesis (Samuel and
Reeves, 2003). In most organisms, cells synthesize thymine on the
level of a nucleotide as thymidinemonophosphate from deoxyuri-
dine monophosphate (www.kegg.jp, www.ecocyc.org). Thymine
dependency, or auxotrophy, can be established bymutating a gene
encoding thymidylate synthase (Belfort et al., 1983). Thymine
requiring mutants can only grow in presence of the exogenous
base or nucleoside (Barner and Cohen, 1954). Starving cells for
thymine results in a rapid decay in colony counts (Barner and
Cohen, 1954). The decay is preceded by a near complete cessation
of DNA synthesis (Barner and Cohen, 1958; Kuong and Kuzmi-
nov, 2010) and it is paralleled by increase in the cell size (Barner
and Cohen, 1954), which is indicative of division arrest. However,
inhibition of RNA and protein synthesis across a population of
starved cells lags significantly behind the drop in colony formation
(Barner and Cohen, 1958; McFall and Magasanik, 1960). Thus,
cells deprived of thymine go through temporally ordered events:
1-inhibition of bulk DNA synthesis; 2-cell elongation and division
arrest; 3-decrease in colony formation; 4-inhibition of protein and
RNA synthesis. The overall phenomenon of thymine starvation
leading to an exponential decrease in colony counts is known
as thymineless death (Cohen and Barner, 1954), or TLD. It was
postulated that the cause of death is “inhibition of DNA synthesis
under conditions of continued cytoplasmic synthesis” (Barner
and Cohen, 1957), including RNA, protein and overall biomass.
Such uncoupling between biosynthetic processes was termed an
“unbalanced growth” (Cohen and Barner, 1954) and it was pro-
posed to be the underlying macro-mechanism of the bactericidal
effect of not only thymine starvation, but also of a number of

antibiotics (Barner and Cohen, 1956). However, the pathology
of TLD has been associated with the transcriptional activity of
the starved cells and not with other aspects of the unbalanced
growth (Gallant and Suskind, 1962; Hanawalt, 1963; Rolfe, 1967;
Morganroth and Hanawalt, 2006; Martin et al., 2014).

Transcriptional activity of a population of bacterial cells is a
sum of the activities of individual cells. Even when growth rate
of a population is kept constant, cells making up that population
may have different microenvironments, may come from different
stages of the cell cycle, and may be of different sizes and ages.
As a result, transcriptional activity across a population of cells
in a steady state can be viewed as a type of noise that must be
deconvoluted on the basis of physiological parameters in order
to make sense of the activity. In part because transcriptional
activity is noisy, even under controlled conditions, transcriptional
states of the cell have been traditionally characterized in terms of
dominant differences in transcript abundances, or in promoter
activities, which could be associated with physiological or/and
environmental changes. Activation of the DNA damage sensitive
promoter of the recA gene was originally shown to be one of such
dominant changes elicited by thymine deprivation (Casaregola
et al., 1982).

Introduction of whole-genomemicroarray technology (Schena
et al., 1995) made monitoring transcriptional activity less biased
and more quantitative. Genome-wide surveys of changes in tran-
script abundances elicited by thymine deprivation confirmed that
the condition induces the SOS regulon (Sangurdekar et al., 2010,
2011), a collection of genetically unlinked genes whose transcrip-
tion is primarily controlled by the LexA repressor and whose
activities allow the cell to repair or bypass DNA lesions in time
before the delayed cell division (Simmons et al., 2008). The surveys
also found that activity of the SOS regulon contrasts thymine
limitation and thymine deprivation: whereas both limitation and
starvation result in transcriptional upregulation of genes of the
deoxyribose salvage pathway and downregulation of genes whose
products are involved in pyrimidine biosynthesis, only the starva-
tion induces transcription of the SOS regulon (Sangurdekar et al.,
2010, 2011).

Relative transcript abundances measured for nearly every gene
in a genome can be used to correlate transcriptional activities
of genes over time or conditions (Eisen et al., 1998; Tamayo
et al., 1999).The resulting correlation patterns can be explained
in terms of underlying regulatory mechanisms, e.g., (van Helden
et al., 1998). Co-transcriptional patterns in prokaryotic genomes
result primarily from organization of genes in operons (Gutierrez-
Rios et al., 2003) and regulons (Khodursky et al., 2000a; Cour-
celle et al., 2001). However, an operonal organization can be
inferred not only from multidimensional comparative profiles of
transcriptional activity of genomes, but also from one dimen-
sional spatial series of transcript abundances, strongly suggesting
that transcriptional signals recorded across a population of cells,
despite being a product of multiple sources of biological varia-
tion, contain biologically relevant structural information (Jeong
et al., 2004). In fact, the spatial transcriptional signal can be used
to model geometric features of the chromosomal DNA super-
structure, assuming juxtaposition of co-regulated genes in 3-D
space (Xiao et al., 2011). Mapping of contacts between linearly
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non-adjacent DNA segments in the Caulobacter crescentus chro-
mosome using the high-resolution chromosome capture method-
ology (Lieberman-Aiden et al., 2009) revealed the general prop-
erties of physical organization of chromosomal DNA inside the
cell (Le et al., 2013). These properties, including the dimensions
of short- and medium-range features, were consistent with the
estimates obtained from the geometric model which was based
on expression data alone. This concordance bolsters the notion
that spatial transcriptional profiles contain information about
underlying structure of the chromosomal DNA inside the cell
(Jeong et al., 2004).

Phenomenologically, transcriptional activity of any two genes
can be up or down relative to some baseline level. If activities of
multiple pairs of genes vary in the same direction, and genes in the
pairs are situated the same or nearly the same distance apart, then
the transcriptional signal can be viewed as spatially regular with
a characteristic distance between genes with co-varying activity.
Such characteristic distance, or spatial frequency, can be evalu-
ated using conventional signal processing techniques, including
autocorrelation or the Fourier transform. Using these methods,
it was demonstrated that, independently of growth conditions,
transcriptional signal from the E. coli chromosome can be char-
acterized by several statistically significant spatial frequencies: 1
kbp, 4 ± 2 kbp, 16 ± 4 kbp, 32 ± 6 kbp, 128 ± 12 kbp, and
570 ± 50 kbp (Jeong et al., 2004). However, co-variations in
transcriptional activities do not have to be spatially regular or have
the same regularity across the entire chromosome. To account
for that the signal can be analyzed using the wavelet transform
which provides space-frequency representation of original spatial
series (Torrence and Compo, 1998). Moreover, it may be useful
to know what spectral components occur in which chromoso-
mal intervals, especially for the purposes of comparative analysis
(Allen et al., 2006). As expected, chromosome wide transcrip-
tional signals are not stationary; all spatial frequency components,
from short- (up to 16 kbp) to long-range are found in certain
regions of the chromosome but not in others (Jeong et al., 2004;
Allen et al., 2006). Furthermore, different parts of the chromo-
some may contain different amount of spectral information. For
example, nearly all spatial frequency components can be found in
a region of the chromosome proximal to the origin of replication
in the counter-clockwise replichore (Jeong et al., 2004). In fact, the
presence of multiple frequency components, up to 128 ± 12 kbp,
in this region is a characteristic feature of spatial transcriptional
profiles obtained under dozens of conditions, including growth
phase transitions, nutritional shifts, recoveries, antibiotic treat-
ments, etc. (Jeong et al., 2004, 2006; Sangurdekar et al., 2006;
Xiao et al., 2011). The exceptions were DNA damaging conditions
causing inhibition of DNA replication, including treatment with a
quinolone antibiotic, norfloxacin (Jeong et al., 2004, 2006), and
thymine starvation leading to TLD (Figure 1). A study by Jeong
et al. (2006) demonstrated, using mutants with conditionally
defective initiation of chromosomal DNA replication, that ongo-
ing replication is required for observing spatial patterns across
scales. Both the quinolone treatment (Goss et al., 1965; Benbrook
and Miller, 1986; Khodursky and Cozzarelli, 1998) and thymine
starvation (Barner and Cohen, 1958; Kuong and Kuzminov, 2010)
result in rapid inhibition of DNA replication, which in turn likely

FIGURE 1 | Spatial correlations in transcript abundances along the
E. coli chromosome. Significant wavelets with corresponding main
frequencies are shown for a genome-wide transcriptional signal recorded
prior to thymine starvation (A) and 30 min into starvation (B). The figure was
obtained using publicly available data as previously described (Jeong et al.,
2004).

brings about structural changes in the chromosome that disfavor
spatial pattern formation.

State of DNA in Thymine Starved Cells

Observations of the dissolution of spatial transcriptional patterns
may be confounded in part by the fact that the loss of the pat-
terns occurs under conditions that induce DNA damage. The
damaged DNA may serve as a poor template for transcription,
thereby providing an almost trivial reason for the loss of the spatial
correlations in transcriptional activity.

Indeed, several types of DNA damage have been observed in
cells starved for thymine, some of which may culminate in the
template destruction: single strand breaks in DNA (Freifelder,
1969; Hill and Fangman, 1973; Nakayama and Hanawalt,
1975); double strand breaks (Yoshinaga, 1973; Guarino et al.,
2007; Kuong and Kuzminov, 2010, 2012); geographically lim-
ited degradation of Bacillus subtilis chromosomal DNA behind
the replication fork (Ramareddy and Reiter, 1970; Reiter and
Ramareddy, 1970) and on one side of the origin of replication
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(Regamey et al., 2000); partial unstructuring of the E. coli chro-
mosome in a region around the origin of replication (Nakayama
et al., 1994). It was shown that DNA from thymine starved cells
is indeed susceptible to a single strand endonuclease activity in
vitro and that thymine starvation induces transcription of the ssb
gene, encoding the single strand DNA binding protein, which
is consistent with an increase in the fraction of single strand
DNA in vivo (Sangurdekar et al., 2010). Furthermore, investi-
gations of DNA metabolism indicated that the starvation not
only inhibits normal elongation of DNA replication (Maaloe and
Hanawalt, 1961) but also results in a residual DNA synthesis
(Kuong and Kuzminov, 2010) and small but quantifiable increase
in the amount of bulk DNA (Barner and Cohen, 1958; Breitman
et al., 1972; Kuong and Kuzminov, 2012), which is concomitant
with the loss of thymine from DNA (Breitman et al., 1972) and is
followed by contained DNA degradation (Kuong and Kuzminov,
2012).

Thus DNA degradation appears to be the main confounding
factor in interpreting the loss of spatial transcriptional patterns
in the vicinity of the origin of replication. In their attempt to
map single strand DNA regions and/or regions of unstructured
DNA, Sangurdekar et al. used the array comparative genomic
hybridization (aCGH) method (Sangurdekar et al., 2010), which
was earlier adapted (Khodursky et al., 2000b) for genetic marker
frequency analysis (Sueoka and Yoshikawa, 1965) with a sin-
gle gene resolution. Hybridization of labeled genomic DNA to
microarray probes representing nearly every single gene and
intergenic sequence in the E. coli genome (Khodursky et al.,
2003) results in a characteristic profile of average abundances
of sequences along the chromosome in a population of cells.
It was shown that thymine starvation triggers gradual loss of
DNA in the 500 kbp region surrounding the origin of replication
(Sangurdekar et al., 2010): in the course of starvation the average
dosage of DNA at and in the immediate vicinity of the origin of
replication is reduced to the dosage of the replication terminus,
the area of the chromosome present at the lowest frequency in an
exponentially growing bacterial population (Figure 2A). Compa-
rable localized variations in gene dosage have been observed by
Rosenberg and colleagues (Fonville et al., 2010) and by Kuong
and Kuzminov (2012). These results are consistent with a model
according to which DNA template collapses at the replication
origin and its neighborhood either as a result of degradation of
nascent leading and lagging DNA strands in both chromatids or
from a random, relatively short patch degradation of parental
and nascent DNA, also in both chromatids (Sangurdekar et al.,
2010). Both interpretations imply that DNA in the region may
be degenerated to a point where it can no longer be used as
a template in the reaction of transcription, explaining why any
transcriptional patterns in that region might also be degraded.
This view however, is complicated by an observation that thymine
deprived cells continue transcribing genes in the region of the
lesion well into starvation and even during the killing phase
of TLD (Sangurdekar et al., 2010): half-life of a representative
E. coli mRNA is about 60 times shorter than the timeline of a
typical thymine starvation experiment (Bernstein et al., 2002)
and there is no indication that mRNA stability is affected under
conditions of thymine starvation, and the average abundance of

FIGURE 2 | (A) DNA dosage profiles in chromosomes of cells synchronized
for replication initiation by using a temperature sensitive replication initiation
mutant (Hamann, 2013). (B) A model of DNA loss in thymine starved cells
synchronized for initiation of DNA replication.

transcripts from the region in question changes less than 50%
in the course of the starvation (Sangurdekar et al., 2010). Thus
an alternative model of the formation of the origin-centric lesion
must be entertained, in which at least one DNA template remains
intact.

Figure 2A depicts DNA dosage variations in a population of
the thymine starved cells synchronized for initiation of DNA
replication using a dnaCts mutant (Hamann, 2013); a similar
profile with analogous interpretation was independently obtained
by Kuong and Kuzminov (2012) in an asynchronous population
of starved cells. Three conclusions can be drawn from this obser-
vation. First, following thymine withdrawal from a population
of cells that can no longer initiate new rounds of replication,
replication continues at least in a fraction of cells for a short
period of time and then stops, resulting in a characteristic plateau
spanning the stretch of the chromosome that underwent residual
replication. Second, upon return to the permissive temperature,
starved cells can initiate new rounds of replication even though
the cells were deprived of thymine and could only support limited
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extension of the ongoing replication rounds. Third, new rounds
of replication are initiated only on one of two partially replicated
sister chromatids followed by complete destruction of the newly
established replication bubble. (Although the increase in DNA
dosage may be interpreted as a variation in a fraction of the
population, the decrease cannot be explained in fractional terms.).
Such sequence of events would result in one intact DNA template
(Figure 2B). Although this template is transcriptionally active, its
activity is spatially disorganized.

Concluding Remarks

Spatial regularity is one of the attributes of transcriptional activity
of living genomes. The nature of spatial correlations at linear
distances greater than the average size of an operon is poorly
understood. The patterns somewhat coincide with the purported
structural features of the chromosomal DNA and may in small
part be explained by co-regulation of genes that are spaced with
some periodicity on the chromosome (Kepes, 2004). The correla-
tions are particularly sensitive to the state ofDNA.Conditions that
interfere with either DNA supercoiling or DNA replication result
in diminishment or dissolution of the patterns, suggesting that the
correlations are set, or modulated, by the moving replication fork.

Thymine starvation is one of the conditions that inhibit spatial
pattern formation in the region of the chromosome adjacent to

the origin of replication. However, this condition not merely
inhibits DNA replication but also results in structural, copy num-
ber variations in the same region of the chromosome that loses
the spatial pattern and yet does not become transcriptionally
silent. It raises a formal possibility that, if spatial transcriptional
correlations are the result of chromosomal DNA folding behind
the replication fork, the normal folding of the chromosome in a
region may also depend on the regional gene dosage or ploidy
of the region. Moreover, the behind-the-fork organization of the
chromosomal DNA into supercoiled loops (Postow et al., 2004)
or rosettes of similar size loops (Kavenoff and Bowen, 1976) may
result in a coordinated, basal transcriptional activity along the
newly replicated stretch of DNA. This activity may facilitate fur-
ther chromosomal folding which in turn may be required for the
following round of replication initiation and nucleoid segregation.
Consistent with this view are observations that global inhibition of
transcription results in chromosome decondensation (Pettijohn
and Hecht, 1974) and precludes initiation of DNA replication
without a need for locus-specific transcription (Bates et al., 1997).
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