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Multispectral terrestrial laser scanning (TLS) is an emerging technology. Several

manufacturers already offer commercial dual or three wavelength airborne

laser scanners, while multispectral TLS is still carried out mainly with research

instruments. Many of these research efforts have focused on the study of

vegetation. The aim of this paper is to study the uncertainty of the measurement

of spectral indices of vegetation with multispectral lidar. Using two spectral

indices as examples, we find that the uncertainty is due to systematic errors

caused by the wavelength dependency of laser incidence angle effects. This

finding is empirical, and the error cannot be removed by modelling or instru-

ment modification. The discovery and study of these effects has been enabled

by hyperspectral and multispectral TLS, and it has become a subject of active

research within the past few years. We summarize the most recent studies

on multi-wavelength incidence angle effects and present new results on the

effect of specular reflection from the leaf surface, and the surface structure,

which have been suggested to play a key role. We also discuss the consequences

to the measurement of spectral indices with multispectral TLS, and a possible

correction scheme using a synthetic laser footprint.
1. Introduction
Multispectral terrestrial laser scanning (TLS) enables the study of target

identification and analysis from their physical and biochemical properties in

three dimensions. This is carried out by using the spectral indices retrieved for

each point in the laser scanner point cloud from calibrated intensities of the

laser returns [1–3]. The recent advances in multispectral laser scanning and its

applications in different fields of remote sensing, including the most recent appli-

cations to vegetation, have been extensively reviewed in [4,5]. While the scope of

this paper is in the wavelength dependency of lidar incidence angle effects and

their consequences in the measurement of vegetation spectral indices, we provide

in this section a summary on what has so far been observed on leaf angle effects

on laser backscatter intensity from leaf surfaces.

Vegetation spectral indices are widely studied in passive optical reflectance

spectroscopy to monitor, e.g. leaf pigments and other crucial vegetation proper-

ties, as well as to model leaf optical properties (e.g. [6,7] and references therein).

These properties are related to vegetation status and environmental conditions

in general. This information is important in understanding the dynamics of cli-

mate change and the global carbon cycle [1,3]. The angular dependence of

spectral indices on wavelength is not yet known in enough detail to be able to cali-

brate the spectral indices measured with multi-wavelength terrestrial laser

scanning. This is partially because the role of measurement geometry has only

become more important with the introduction of multi-wavelength lidars to the

vegetation spectroscopy scheme. With passive remote sensing, the measurement
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Table 1. Summary of leaf angle effects at different laser wavelengths.

wavelengths leaves results ref.

532 and 658 nm (Green

Economic Chlorophyll

Observation GECO)

Winter wheat (Triticum aestivum) and Tobacco plant

(Nicotiana benthamiana)

Specular reflection observed for both leaves.

Stronger in red for the (shinier) wheat

leaf.

[11]

556, 670, 700 and 780 nm

(multi-wavelength canopy

lidar MWCL)

Oriental plane (Platanus orientalis) No signs of specular reflection. [15]

785 nm (FARO LS880) Conference pear (Pyrus Commmunis) No signs of specular reflection. [16]

555, 624, 691, 726, 760, 795,

899 and 1000 nm (the

FGI HSL)

Chinese hibiscus (Hibiscus rosa-sinensis), Zanzibar Gem

(Zamioculcas zamiifolia), Rose (Rosa spp.)

Specular reflections at visible wavelengths

caused differences in vegetation indices.

[13]

690 nm and 1550 nm (Leica

HDS6100 and FARO X330)

Small-leaved Lime (Tilia cordata L.), Silver birch (Betula

pendula L.), Norway maple (Acer platanoides L.),

Norway spruce (Picea abies L.) and Scots pine (Pinus

sylvestris L.)

Correction of specular backscatter did not

improve equivalent water thickness

estimation. (The angular range was small.)

[14]

1545 nm and 1063 nm

(Salford Advanced Laser

Canopy Analyser SALCA)

Eucalyptus (species unknown), Lily (Spathiphyllum), and

Laurel (Laurus nobilis)

Greater effect at 1063 nm than at 1545 nm,

still negligible for normalized difference

index. Specular peak for dry eucalyptus.

[5]

1550 nm (RIEGL VZ-400) Piggyback Plant (Tolmiea menziesii), Smooth Hydrangea

(Hydrangea arborescens), Rhododendron (Rhododendron

sp.), Garden Croton (Codiaeum variegatum), Red Robin

(Photinia fraseri), Dwarf Umbrella Tree (Schefflera

arboricola), Ficus Tree (Ficus benjamina) and Zanzibar

Gem (Zamioculcas zamiifolia)

Strong specular reflection for shiny leaves,

high diffuse fraction for rough leaves.

[12]
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usually spans a larger area and the leaf angle effects are aver-

aged. The capability of TLS to capture the surface properties

in three dimensions enables one-shot intensity and structural

information, e.g. for identifying dry parts in tree canopy [3].

The advance this facilitates for ecological studies [4] is likely

to drive the development of new instruments, including

multi-wavelength ones, in the near future.

Incidence angle effect on lidar backscatter intensity has

been studied for about a decade with commercial monochro-

matic terrestrial laser scanners [8,9], although its role in the

laser scanner intensity correction has been discussed much ear-

lier (see [10] and references therein). The possible wavelength

effects of incidence angle were recently discussed by [3] in

the case of multispectral laser scanning. It was suggested that

the differences in incidence angles were similar at different

near-infrared (NIR) wavelengths. Leaves have been assumed

to be Lambertian scatterers (see [11] and references therein),

but some of the recent findings have suggested that in some

cases, specular reflections might complicate the incidence

angle behaviour at different wavelengths, and hence the

measurements of spectral indices at different leaf angles

[11–14]. Table 1 presents a summary of the studies on leaf (inci-

dence) angle effects at different laser wavelengths and

sampling schemes. The results have varied for different types

of leaves.

In their analysis of crop foliar nitrogen with a dual wave-

length laser system (green and red), [11] observed effects of

leaf angle variation, which were explained to be related to
specular reflections, especially from shiny leaf surfaces

and near 680 nm, i.e. the chlorophyll absorption maximum.

They suggested that choosing laser wavelengths with more

similar leaf bidirectional reflectance distribution functions

and having a higher isotropic reflectance component might

be able to reduce the leaf angle effect. A strong specular back-

scatter at zero (perpendicular) incidence was also observed in

[12] at 1550 nm for eight broadleaf samples, their surface prop-

erties varying from shiny to hairy matte. Strong specular

reflection was found for the shiniest species, whereas the

specular fraction was lower for the most matte ones. The results

also suggested that rough leaves might have higher diffuse

fractions. Overall, the results suggest that the backscattering

specular reflection is related to leaf surface structure. Our pre-

vious study with the hyperspectral lidar [13] showed similar

results to [11], i.e. strong specular reflections near the normal

incidence at visible wavelengths. Summarizing all the results

so far (table 1), it appears that the specular effect (and hence

the difference in the incidence angle behaviour) is different at

different wavelengths, especially between visible and NIR,

and is greater for waxy or shiny leaves in the visible region.

For rough and matte leaves the specular effects were smaller

or completely negligible, and the difference between visible

and NIR was not so substantial.

The aim of this paper is to quantify the wavelength effects

on the incidence angle behaviour for different leaf surfaces

and to discuss their consequences in the retrieval of vegetation

spectral indices with multispectral lidar. In our previous study
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Figure 1. The measurement set-up of the hyperspectral lidar (HSL). (Online version in colour.)

Table 2. The FGI HSL instrument specifications. See also [13]. More details
on the channel selection are available in [2].

centre wavelengths

of channels (1 – 8)

564.3, 610.8, 659.9, 720.3, 764.8, 818.0,

878.6 and 979.2 nm

optical bandpass 20 nm Full Width at Half Maximum (FWHM)

pulse rate 5.3 kHz

pulse length 1 ns

average output power 41 mW (LEUKOS-SM)
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[13] we studied the role of specular reflections and found them

to be stronger in visible for waxed leaves. To study further the

role of leaf surface roughness, we present results for a larger

number of samples, also including non-waxy deciduous

leaves as well as conifer needles and shoots. We use a simple

model to get some idea on the possible role of leaf properties

in the incidence angle behaviour. Even if the leaf surface struc-

ture explained the incidence angle effects, it would not provide

a means for removing them. Instead, our study provides an esti-

mate of the resulting measurement errors and how they should

be taken into account in the measurements.
beam diameter 4 mm at exit, 5 mm at 4 m for 543 nm

beam divergence �0.028 at 543 nm

range resolution 15 cm

scan speed Max 608/s (vertical)

2. Material and methods
The lidar measurements of leaves and shoots were carried out with

the Finnish Geospatial Research Institute Hyperspectral Lidar (FGI

HSL) [2], which is an eight-channel full waveform digitizing laser

scanner prototype based on supercontinuum laser technology

(figure 1 and table 2 for more details). The operation principle is

the same as in a monochromatic pulse-based terrestrial lidar:

the range measurement is based on the time-of-flight of the

returned laser pulse. The output point cloud (x,y,z,I) contains

the intensity I as a function of wavelength, in this case, an eight-

channel spectrum (500–1000 nm) is associated with each point

(x,y,z). As only eight channels are currently digitized, the detector

system is multispectral, but the wavelength channels can be

selected by adjusting the spectrograph position, i.e. the dispersion,

with respect to the avalanche photodiode array to detect different

wavelengths. This also explains the slight changes in the centre

wavelengths of different channels between measurements. In our

calibration studies, we have observed a 6% approximate error

level (a standard deviation of the peak height measurement) in

the reflectance measurement of the HSL detector. The error is

consistent for all wavelengths at the range measured.

The leaf and needle samples measured were leaf samples from

Silver birch (Betula pendula) and Norway maple (Acer platanoides), a

shoot sample from Norway spruce (Picea abies L.) and needles and

a shoot from Scots pine (Pinus sylvestris L.), for which the needles

were sampled by attaching them side by side on a fabric, with

either adaxial or abaxial sides facing the scanner. The fabric was

black with a low reflectance, to minimize the effects of partial laser
returns from the fabric through some gaps between the needles.

The measurements were carried out in laboratory conditions.

The samples were placed on a motorized rotating platform at

about 4 m distance from the scanner. The beam diameter at 4 m

distance is 5 mm at 543 nm (table 1). The beam size calculation is

based on the figures provided by the laser manufacturer, but

the beam divergence is known to increase with increasing wave-

length. This will affect the spot size at near-infrared wavelengths.

To reduce the effect of spot size on the intensity, the distance

calibration is done separately for each channel.

The incidence angle was changed in 58 increments, and a

two-dimensional scan over the sample was performed to pro-

duce a point cloud at each incidence angle. The resulting HSL

point clouds were processed using Matlab 2013a software (The

MathWorksw, Inc). Laser echoes from outside the leaf or needle

sample were manually cropped from the point clouds. The

point spacing could be manually specified for each measure-

ment, but a typical sampling was about 7 vertical and 20

horizontal points per cm, resulting in a few hundred points

(averaged from 10 pulses) per sample. The mean intensity of

all the echoes from the sample was used to calculate the backscat-

tered reflectance at each incidence angle. The intensity calibration

was carried out with a 99% Spectralonw reference target, scanned
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Figure 2. The plotted incidence angle versus laser backscatter intensity for the Zanzibar gem sample (Z Gem). The second-order Fourier series approximation fitted
to the data is also shown for all wavelengths. (Online version in colour.)
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Figure 3. The plotted incidence angle versus laser backscatter intensity for the Chinese hibiscus sample (China rose). The second-order Fourier series approximation
fitted to the data is also shown for all wavelengths. (Online version in colour.)
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Figure 4. The plotted incidence angle versus laser backscatter intensity for the birch leaf. The second-order Fourier series approximation fitted to the data is also
shown for all wavelengths. (Online version in colour.)
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at the same distance as the targets. We also included the samples

measured in [13] into the analysis. Those were Chinese hibiscus

(Hibiscus rosa-sinensis), Zamioculcas (common name ‘Zanzibar

Gem’) (Zamioculcas zamiifolia) and a Rose (Rosa spp.) commonly

available in florist shops (see also table 1).

An analysis similar to [12] was carried out to study whether the

specular component is wavelength dependent and to explore the

relationship between surface roughness and the specular reflec-

tion. A linear combination of Lambertian law and the Beckmann

model, which introduces a specular component [12], is also related

to the surface roughness of the target:

IðaÞ ¼ f0 � kd cosaþ ð1� kdÞ �
e�tan2a=m2

cos5a

 ! !
, ð2:1Þ

where I(a) is the backscatter intensity at incidence angle a, f0 is the

intensity at normal incidence angle, kd is the fraction of the diffuse

component, and m is the surface roughness. The values of the kd
and m parameters are between 0 and 1. In [12], m ¼ 0 would rep-

resent a smooth surface, whereas values near 0.6 would indicate

a rough surface.

Some of the samples did not follow the model of equation (2.1)

even approximately. Therefore, we also fitted a second-order

Fourier series to the observed I. This serves as an interpolating

approximation for the data only, without any physical modelling.

The interpolated function I helps in assessing the vegetation index

as a smooth function of the incidence angle so that its variation

reported below is not greatly affected by noise or outliers.
3. Results and discussion
The plotted incidence angle versus laser backscatter intensity

curves are shown in figures 2–11. The laser backscatter is

plotted as the mean of the intensity values of the points on
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Figure 5. The plotted incidence angle versus laser backscatter intensity for the pine needles, abaxial side. The second-order Fourier series approximation fitted to
the data is also shown for all wavelengths. (Online version in colour.)
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Figure 6. The plotted incidence angle versus laser backscatter intensity for the pine needles, adaxial side. The second-order Fourier series approximation fitted to
the data is also shown for all wavelengths. (Online version in colour.)
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Figure 7. The plotted incidence angle versus laser backscatter intensity for the rose leaf. The second-order Fourier series approximation fitted to the data is also
shown for all wavelengths. (Online version in colour.)
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an entire leaf or needle sample (or most of the sample) cropped

from the point cloud. The whole area covered by the cropped

point set thus represents the effective instrument footprint in

this experiment. The standard deviations of the values of the

point set varied from typically 20% to 50% in the visible (the

errors being largest below 600 nm, which might result from

laser and detector effects) towards 5–10% in the NIR

wavelengths. Since the instrument error is about 6%, these

deviations show that each point value is also dependent on

the local structure of the sample (biological properties and sur-

face features). On the other hand, the individual errors cancel

out in the mean over hundreds of points as demonstrated by

the smooth shapes of the curves of figures 2–11. In other
words, the averaging over the effective instrument footprint

(that is much larger than an individual laser spot) removes

the effect of local variations at size scales smaller than the foot-

print but larger than the laser spot. The measurement can thus

be expected to be the same for any part of a much larger sample

of same target material as long as the incidence angle is kept the

same. The nominal error of the intensity value of the footprint

decreases rapidly as the number of laser spots in the footprint

increases, regardless of the individual errors of the spot values,

becoming lower than the instrument error of 6%. This statistical

‘wisdom-of-the-crowd’ phenomenon of the vanishing error of

the mean of many measurements of arbitrarily large errors is

described in, e.g. [17]. The averaging effect may already be a
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Figure 8. The plotted incidence angle versus laser backscatter intensity for the maple leaf. The second-order Fourier series approximation fitted to the data is also
shown for all wavelengths. (Online version in colour.)
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Figure 9. The plotted incidence angle versus laser backscatter intensity for the pine shoot measured with side towards the lidar. The second-order Fourier series
approximation fitted to the data is also shown for all wavelengths. (Online version in colour.)
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approximation fitted to the data is also shown for all wavelengths. (Online version in colour.)
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Table 3. Values of the optimized diffusion component parameter kd for the different samples and channels (see table 2 for wavelength channels).

sample

channel

1 2 3 4 5 6 7 8

ZGem 0.37 0.22 0.42 0.84 0.89 0.88 0.88 0.87

China rose 0.34 0.31 0.37 0.73 0.77 0.76 0.77 0.77

birch 0.45 0.50 0.45 0.50 0.89 0.88 0.88 0.85

pine abaxial 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00

pine adaxial 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00

rose 0.66 0.50 0.54 0.84 0.87 0.86 0.86 0.85

maple 0.58 0.56 0.50 0.76 0.92 0.93 0.94 0.93

Table 4. Values of the optimized surface roughness parameter m for the different samples and channels.

sample

channel

1 2 3 4 5 6 7 8

ZGem 0.29 0.34 0.29 0.20 0.19 0.18 0.19 0.19

China rose 0.38 0.40 0.37 0.33 0.30 0.31 0.30 0.31

birch 0.32 0.30 0.32 0.30 0.19 0.21 0.22 0.27

pine abaxial 0.19 0.31 0.31 0.28 0.24 0.24 0.25 0.25

pine adaxial 0.44 0.44 0.37 0.38 0.32 0.32 0.32 0.32

rose 0.33 0.30 0.32 0.22 0.18 0.19 0.19 0.19

maple 0.27 0.27 0.30 0.22 0.18 0.18 0.18 0.19
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factor in the individual spots. As the laser spot size is known to

increase towards NIR wavelengths, this may explain the

decrease in the spot standard deviations towards larger wave-

lengths. Another factor is the strong absorption that results in a

weaker signal in the visible than in the NIR.

The measured angle–intensity data were fitted with a

Lambertian–Beckmann curve from equation (2.1). The non-

linear curve fitting was performed in Matlab using the

Trust Region Reflective algorithm to optimize the values of

the kd and m parameters, whose values were limited between

0 and 1. The fitting was performed for each channel separ-

ately. Resulting values for the diffuse fraction parameter kd

are listed in table 3 and those for the surface roughness

parameter m in table 4. When the parameter kd value

equals one, the surface has no specular component. Addition-

ally, the measurements were fitted with a second-order

Fourier series approximation. Both fitted curves for each

sample and channel are visualized in figures 2–11. For leaf

samples, kd, i.e. the diffuse component, appears to grow

towards NIR wavelengths, which indicates stronger

specular reflections in the visible wavelength range. The

surface roughness parameter m appears to diminish

towards NIR, which is more difficult to interpret, but might

indicate a different scattering behaviour at NIR laser wave-

lengths. For needle samples and shoots, the interpretation

of kd and m would not make sense as the Lambert–Beck-

mann function did not fit the data. Examples of the

Lambert–Beckmann fits for one leaf and needle sample are

given in figure 12.
In some cases such as in figure 10, the angle depen-

dence of the curve is not monotonic as one would expect

physically. This is probably caused by systematic effects in

the measurement such as the more pronounced effect of the

stochastic geometry of the shoot at high angles. The targets

with more ordered surfaces show essentially monotonous

dependence.

As an example of variation in spectral vegetation indices,

table 5 lists the normalized difference vegetation index

(NDVI) and water index (WI) values for each sample. The

NDVI is calculated using reflectance values (R) at two wave-

lengths in NIR and visible, i.e. both sides of the spectral red

edge (e.g. [1]). In this study, we used 691 nm in the red and

795 nm in NIR for Zanzibar Gem and China rose, and 666

and 818 nm for pine and spruce samples:

NDVI ¼ R795 � R691

R795 þ R691
: ð3:1Þ

We also compared the water concentration index (WI) used

in, e.g., [18]:

WI ¼ R900

R970
: ð3:2Þ

As 900 and 970 nm were not available in this measurement,

we used the wavelengths closest to these values for each

sample. Table 5 shows large variations in the spectral indices,

some of which, however, may result from, e.g., the intensity

dropping fast towards large angle of incidence (as for the

Birch NDVI 0.05 at 808, also cf. figure 12). However, this will
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Figure 12. Lambert – Beckmann and Fourier fits for the birch sample (left) and the pine needles abaxial side (right). The fit is not so good at NIR wavelengths for
the needle sample, which must also be taken into account in the interpretation of the parameter values in tables 3 and 4. (Online version in colour.)

Table 5. Minimum and maximum values of the NDVI and WI for each
sample.

sample
NDVI
min

NDVI
max

WI
min

WI
max

Z Gem 0,49 0,74 0,95 0,96

China rose 0,35 0,74 0,96 0,98

birch 0,50 0,78 0,86 0,91

pine abaxial 0,22 0,66 1,15 1,23

pine adaxial 0,58 0,67 1,22 1,26

rose 0,62 0,85 1,24 1,27

maple 0,76 0,93 0,90 0,96

P shoot side 0,53 0,54 1,22 1,27

P shoot top 0,47 0,57 1,18 1,29

S shoot 0,58 0,65 1,27 1,32
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also be the case in field experiments for entire trees, as the laser

beam hits the tree parts at all possible angles.

The sample results for NDVI and WI show that the

vegetation indices change with the laser incidence angle. If
these indices change, then any wavelength-dependent index

will. We used the Lambert–Beckmann model to obtain clues

for the incidence angle effect rather than to model it accurately

in a quantitative sense. We discovered some systematic, mono-

tonic trends. As the error is geometric, and not instrumental,

it cannot be corrected with any modelling, because the leaf

angle is usually difficult to retrieve in the measurement of

large targets, such as tree canopies.
4. Conclusion
The main focus of this paper was to study the measurement

of vegetation spectral indices with multi-wavelength terres-

trial lidars, and provide a practical assessment on how the

leaf surface material and structure affects the incidence angle

behaviour. The main result of our study is that there is a pre-

viously unknown systematic error, which has to be taken into

account. This is not an instrumental error but results from

changes in the incidence angle. The objective of our study

was to find and report a lower limit to this error. Even if we

were able to model the signal and leaf behaviour perfectly, it

is not enough to correct for the incidence angle effect as we

do not know the incidence angle.



rsfs.royalsocietypublishing.org
Interface

Focus
8:20170033

9
The results show that in many cases, typically with waxy

leaves (target surfaces apparently smooth under the footprint),

the quantitative change in a vegetation index is several tens of

per cent between the broadside-on (08) and edge-on (908) orien-

tations. Therefore, the leaf-orientation effect plays a significant

part in the interpretation of measurements. The Lambert–

Beckmann model appears to offer a consistent explanation

for the angle effect in the waxy leaf case. The different wave-

lengths ‘see’ the leaf structure differently; for instance, the

material appears to be more specular for visible wavelengths.

In this case, either the incidence angle effect should be cor-

rected, or, if the leaf angle is not known, its effect on the

results (e.g. retrieval of tree properties such as water content

from spectral indices) must be quantified as a systematic

error. This error would result in noise of tens of per cent

between nearby sample points in a tree. The error is inevitable

regardless of the accuracy of the data and cannot be corrected

with any physical modelling for an individual point.

On the other hand, for targets that are rougher (stochastic)

under the footprint of the instrument, such as the pine shoot,

the index variation appears to be small. Therefore, the key

issue is the averaging of the geometric effects over the laser

footprint large enough for the geometry to be stochastic at

the footprint scale. This suggests error reduction by a synthetic

laser footprint, i.e. the average value of several nearby samples

that includes the stochastic structure in the same way that

the pine shoot already does for the footprint used in this

experiment. For leaves, this means averaging over a number

of nearby leaves at various incidence angles. Naturally this

decreases the spatial resolution somewhat, but it should essen-

tially remove the angle-dependence error when the sampling

size of the synthetic footprint is large enough. In any case,

the index value from a single laser spot is likely to have a

large essentially random error and averaging over several

spots is necessary in the first place as discussed above.
As an example of a large footprint, strong correlation was

found in [19] between foliar nitrogen concentration and aver-

aged laser return intensity at 532 nm for wheat leaves. In a

future paper, we plan to use a leaf-augmented quantitative

structure model ([20] and Åkerblom [21]) to model the

stochasticity of the leaf orientation. This helps to quantify

the systematic effects between various parts of the tree (for

example, potential ‘limb darkening’ effects as the central

parts of the tree, as seen from the instrument, may contain

more broadside-oriented leaves than the limb parts). We

can also determine the resolution scales in which the spectral

indices are measurable as the best compromise between sys-

tematic errors and spatial resolution.
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18. Peñuelas J, Filella I, Biel C, Serrano L, Savé R. 1993
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