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ABSTRACT Exact computational methods for inference in population genetics are intuitively preferable to approximate analyses. We
reconcile two starkly different estimates of the reproductive number of tuberculosis from previous studies that used the same
genotyping data and underlying model. This demonstrates the value of approximate analyses in validating exact methods.

TWO previous methods for analyzing Mycobacterium tu-
berculosis infection and evolution produced conflicting

estimates of the effective reproductive number, R. Tanaka
et al. (2006) used approximate Bayesian computation (ABC)
(Beaumont 2010; Csilléry et al. 2010) with two summary
statistics to estimate this parameter using data from San
Francisco (Small et al. 1994), yielding R = 3.4 (95% C.I.
1.4, 79.7). Stadler (2011) derived an exact likelihood to
analyze the same data within a Bayesian framework, giving
the estimate R = 1.02 (95% C.I. 1.01,1.04). If this discrep-
ancy is due to the approximation in ABC methods, it would
call into question the reliability of ABC in other studies using
similar summary statistics and models. We therefore inves-
tigate and resolve this discrepancy here.

In both methods, the underlying process is a continuous
time birth–death process with mutations occurring (at rate u
per infection per year) according to the assumption of infin-
ite alleles. A birth event corresponds to a transmission event
(with rate l per infection per year) of tuberculosis while
a death event represents death or recovery (with rate m

per infection per year). Under the method of Tanaka et al.
(2006) (henceforth “ABC06 method”), inference is performed
using ABC and implemented with Markov chain Monte Carlo
(MCMC) (Marjoram et al. 2003; Sisson and Fan 2011). The
process is simulated from a single infectious individual until
either extinction occurs or the infectious population reaches
a size N, at which point a sample of size n is taken. Two
summary statistics are computed: the number of distinct geno-
types in the sample and the virtual heterozygosity or gene di-
versity. A distance between observed and simulated statistics is
computed to assess whether a parameter set should be accepted,
leading to an approximate posterior parameter distribution.

The method of Stadler (2011) (henceforth “Tree11
method”) derives an expression for the likelihood of a trans-
mission tree with associated mutations, giving rise to a sam-
ple of genotypes (Equation 3 in Stadler (2011)). It is
assumed that the epidemic started at a random time t0 in
the past and each presently infected individual is included
into the genotype sample with probability r = n/N. MCMC
is used to explore the space of parameters and obtain
a Bayesian posterior parameter distribution. We highlight
here that the ABC06 and Tree11 method rely on the same
model, up to the length of the epidemic and the exact sam-
pling procedure. The ABC06 method assumes the epidemic
spreads until N individuals are infected and then n isolates
are taken. The Tree11 method assumes that the epidemic
starts at a random time in the past, and an isolate is sampled
from an individual with probability r.

Stadler (2011) proposed that the discrepancy between
the methods was due to a loss of information from the data
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when using nonsufficient summary statistics in ABC06.
Here, we assess the choice of summary statistics in Tanaka
et al. (2006) by comparing the ABC method against the
exact likelihood of observing data sampled from a population
using the same simulation process as the ABC method. We
call this the “Exact method.” Following Stadler (2011) who
showed that the mutation rate, u, cannot be estimated from
snapshot genotyping data, we fix u = 0.198. We also found
that ABC06 with uninformative priors for the correlated
parameters l and m consistently leads to similar estimates
of R, regardless of the parameters used to simulate the data.
We were able to rectify this problem either by setting m to
a constant or by using an informed prior (we call this form
the “ABC method”). Here, we fix m = 0.52 as the sum of
estimates of the rates of self cure, death from causes other
than tuberculosis, and death from untreated tuberculosis
(Cohen and Murray 2004; Luciani et al. 2009).

The Exact method is as follows. Define the observed
data G0 as a sample of isolates of size n, c as the number of
distinct genotypes in G0, and ni as the number of instances
of genotype i in G0 so that n ¼

Pc
i¼1ni. Let Gs be the un-

observed population of size N, G the number of distinct
genotypes in Gs, and Xi the number of instances of genotype
i in Gs so that N ¼

PG
i¼1Xi. The posterior distribution of

the effective reproductive number, R = l/m, given
G0, is pðRjG0Þ ¼

R
pðR;GsjG0ÞdGs}

R
pðG0jR;GsÞpðR;GsÞdGs}R

pðG0jGsÞpðGsjRÞpðRÞdGs: Conditional on G $ c, we define
the set P as all of the c sized subsets in {1, 2,. . ., G} and p(i)
as the ith value of subset p in P. The probability that G0 came
from Gs is
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We used Equation 1 to sample from p(R, Gs | G0) and esti-
mate p(R | G0) for each of 100 simulated data sets gener-
ated from a known value of R and used standard MCMC
methods. We compared the resulting posterior distributions
to those obtained using the ABC and Tree11 methods via
a two-sample Kolmogorov–Smirnov test, based on posterior
samples of size 100. Box plots of the resulting P-values (Fig-
ure 1A) indicate that the posteriors from the ABC method
are similar to those from the Exact approach, while the
posteriors from the Tree11 method are clearly different in
each case. More precisely, we found that posteriors esti-
mated using the ABC method were centered on the true,
known values of R, but those estimated using the Tree11
method were shifted to the left (e.g., Figure 1, B–E). We
identified two problems that affect inference when using
the model from Stadler (2011).

First, f(T |t0) (cf. Stadler (2011) p. 666) gives the prob-
ability of an oriented tree, while the sampler operates on
vectors of branching times, T v (one vector per genotype).
To correct this we derived the distribution of the vectors

T v|t0. We calculated the probability of a labeled tree
ðf ðT jt0Þð2ðn21Þ=n!ÞÞ, summed over all within-genotype la-
beled trees ð

Qc
i¼1½ni!ðni 2 1Þ!=2ni21�Þ, and summed over

the number of ways (mi) in which a genotype cluster (i)
may connect to a tree ð

Qc21
i¼1miÞ to obtain

fðT vjt0Þ ¼ f ðT jt0Þ
2n21

n!

Yc
i¼1

ni!ðni 21Þ!
2ni21
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mi } fðT jt0Þ
Yc21

i¼1

mi:
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Second, we found that the state of the MCMC sampler would
become trapped in local maxima due to an inefficient proposal
distribution. To address this, we modified the proposal to
uniformly resample the genotype cluster vectors of branching
times at each stage of the algorithm. We refer to this adjusted
form of the Tree11 approach as the Tree method.

We tested the accuracy of the ABC, Tree11, and Tree
methods by computing the posterior distribution for R based
on data generated from TreeSim (Stadler 2010) with an
infinite alleles model of mutation. We then calculated the
mean squared error (MSE) of the resulting posteriors com-
pared to the true value of R. Table 1 presents the mean MSE
and standard errors for each method based on 10 replicate
data sets. An example of the posterior distributions resulting
from one of the replicated data sets is shown in Figure 1B.
Additional posterior distributions using different parameter
combinations are shown in Figure 1, C–E. Very clearly, the
ABC and Tree methods perform similarly well, and both
outperform the Tree11 method (see also Figure 1A).

Finally, we reanalyzed the observed data taken from the
IS6110 isolates in San Francisco in Small et al. (1994), but
by fixing the value of mutation rate u = 0.198 and using the
Gaussian prior m � N(0.52, s2 = 0.0125/3) for the death/
recovery rate. The prior standard deviation corresponds to
the standard deviation of the triangular distribution used in
Dye and Espinal (2001). Figure 1F shows the resulting pos-
terior distributions of R using the ABC, Tree11, and Tree meth-
ods. The original Tanaka et al. (2006) estimate using the
unmodified ABC method, trying to estimate all parameters, is
R = 3.4 (95% C.I. 1.4, 79.7). The estimate from the model
from Stadler (2011) is R = 1.63 (95% C.I. 1.32, 1.94). How-
ever, using the corrected methods, the estimate using the ABC
method is R = 2.10 (95% C.I. 1.54, 2.66), and the estimate
using the Tree method is R = 2.05 (95% C.I. 1.55, 2.53). The
point estimates and credible intervals from the posteriors from
the ABC and the Tree method are in close agreement.

We have shown that the ABC analysis of Tanaka et al.
(2006) based on the method of Marjoram et al. (2003) is
valid as long as an informative prior is used for two of the
parameters (here, the mutation rate u and the death and
recovery rate m). The modified priors eliminate potential
problems in the ABC and Tree approaches due to the strong
correlation between m and l. This correction addresses the
concern raised by Stadler (2011); that is, there is no sub-
stantial loss of information through the choice of summary
statistics in the ABC method. Finally, we have improved the
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method of Stadler (2011) by modifying the mechanism of
proposing new trees within the MCMC sampler to prevent it
from converging to local maxima. In combination, these
adjustments have reconciled the discrepancies between
Tanaka et al. (2006) and Stadler (2011); the methods now
perform equivalently.

Exact likelihood methods such as that of Stadler (2011) are
generally preferable to ABC, which is an approximate inferen-
tial procedure. Here, however, we have demonstrated the
value of using approximate methods to validate exact compu-
tational methods based on models with high-dimensional la-
tent variables. For this setting, the ABC method has similar
accuracy to and better computational efficiency than the Tree
method. A further advantage of the ABC method is that it can
easily be extended to more complex models. Recent work
generalizing the coalescent to incorporate SIR dynamics (Volz
et al. 2009; Rasmussen et al. 2011) presents a promising al-
ternative approach for estimating parameters from genetic
data under more realistic epidemiological models. Comparison
of the coalescent SIS approach to fully stochastic models has

been addressed elsewhere (Leventhal et al. 2014) and would
be an important issue to explore further in the future.
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