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Abstract

Neuroimaging biomarkers of treatment efficacy can be used to guide personalized

treatment in major depressive disorder (MDD). Escitalopram is recommended as first-

line therapy for MDD and severe depression. An interesting hypothesis suggests that

the reconfiguration of dynamic brain networks might provide important insights into

antidepressant mechanisms. The present study assesses whether the spatiotemporal

modulation across functional brain networks could serve as a predictor of effective

antidepressant treatment with escitalopram. A total of 106 first-episode, drug-naïve

patients and 109 healthy controls from three different multicenters underwent

resting-state functional magnetic resonance imaging. Patients were considered as

responders if they had a reduction of at least 50% in Hamilton Rating Scale for

Depression scores at endpoint (>2 weeks). Multilayer modularity framework was

applied on the whole brain to construct features in relation to network dynamic char-

acters that were used for multivariate pattern analysis. Linear soft-threshold support

vector machine models were used to separate responders from nonresponders. The

permutation tests demonstrated the robustness of discrimination performances. The

discriminative regions formed a spatially distributed pattern with anterior cingulate

cortex (ACC) as the hub in the default mode subnetwork. Interestingly, a significantly

larger module allegiance of ACC was also found in treatment responders compared

to nonresponders, suggesting high interactivities of ACC to other regions may be

beneficial for the recovery after treatment. Consistent results across multicenters

confirmed that ACC could serve as a predictor of escitalopram monotherapy treat-

ment outcome, implying strong likelihood of replication in the future.
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1 | INTRODUCTION

Major depressive disorder (MDD) affects approximately 216 million

individuals during their lifetime (Katikireddi, 2017) and constitutes

the second leading course of years lived with disability worldwide

(Global Burden of Disease Study, 2015). Antidepressants are com-

monly used to treat MDD, especially for those with moderate to

severe depression.

Escitalopram is an allosteric selective serotonin reuptake inhibitor

(SSRI) that exhibits a superior efficacy and tolerability compared to

other SSRIs in several randomized controlled trials (Cipriani et al.,

2009; Sanchez, Reines, & Montgomery, 2014). On average, it takes

8–12 weeks for evaluating the treatment efficiency of individuals with

MDD. The response rates of initially administered antidepressants

normally ranges 50–75% (Listed, 2000). However, numerous studies

have suggested that treatment with antidepressants may lead to a

response rate of only 30–40%, resulting in a large number of patients

with continued “alternative lifestyle” (Crane et al., 2017; Holtzheimer &

Mayberg, 2011; Trivedi et al., 2005; Williams, 2017). In cases where

patients do not respond to one SSRI, treatment can either be switched

to another antidepressant (Whooley & Simon, 2000) or to an atypical

antidepressant, which could conservatively be more effective than

SSRIs (Papakostas, Thase, Fava, Nelson, & Shelton, 2007; H. R. Wang

et al., 2015). However, it is noteworthy that every medication trial

takes weeks, prolonging the disability. In the meantime, frustration due

to delays in remission increases the risk of adverse outcomes such as

suicide. If treatment response of individuals could be predicted, clinical

intervention would be optimized.

Convergent neuroimaging biomarker studies focused on the main

underlying pathophysiologic processes in depression provided a better

understanding of treatment mechanism and a possibility for the devel-

opment of personalized treatment strategies (Phillips et al., 2015). A

systematic review (Dichter, Gibbs, & Smoski, 2015) linking resting-

state functional magnetic resonance imaging (fMRI) with treatment

response reported an increase in functional connectivity (FC) between

frontal and limbic regions in responders. A higher connectivity within

cognitive control network (CCN) and a negative correlation of the

anterior cingulate cortex (ACC) with the subcallosal cortex (Kozel

et al., 2011) were reported to be able to identify the preferred treat-

ments for individuals with MDD. Cerebellar connectivity (Guo et al.,

2013) and interaction among visual recognition circuits (L.-J. Wang,

Kuang, Xu, Lei, & Yang, 2014) were also suggested to be potential pre-

dictors. In addition, intra/inter hyperconnectivity in relation to default

mode network (DMN) has been identified in treatment resistant

depression compared to treatment sensitive depression. This poten-

tially suggested that lower DMN related connectivity is a feasible

predictor of effective antidepressant medications (Ma et al., 2012).

Beata and others (Godlewska et al., 2018) have also shown that pre-

treatment pgACC activity is predictive of response to escitalopram

after 6 weeks. FC of subcallosal cingulate cortex could identify indi-

viduals' treatment outcome to cognitive behavioral therapy (CBT) and

antidepressant medicine (Dunlop et al., 2017).

However, it is important to note that most of these studies that

examined the antidepressant effects on the connectivity or circuit

level rarely explored the underlying dynamic characteristics. Recent

studies have revealed brain modular-level abnormalities in MDD

patients (Tao et al., 2013; Tian et al., 2019; Zheng et al., 2017),

suggesting that modular-related properties may be more sensitive

than regional properties in reflecting brain alterations. In addition, the

dynamic brain network reconfiguration of schizophrenic patients with

antipsychotic medication was reported to have a significant “network

hyper-flexibility” (Braun et al., 2015). Therefore, the topic is of particu-

lar interest in light of growing understanding that MDD is not only

associated with abnormalities of a single or independent brain region,

but also with systems level dysfunction affecting discrete functionally

integrated neural circuits. An advanced study should be able to extend

the conventional methodological framework for a better understand-

ing of the discrepancy concerning mechanisms of MDD.

Truly, the two complementary principles of large-scale brain

networks namely, functional segregation and dynamic integration,

became of considerable interest. However, it is challenging to take

them into account simultaneously. In 2010, Mucha and Onnela

(2010) developed a generalized framework to study the community

structure of time-dependent, multiscale, and multiplex networks. It

has been introduced on neuroimaging data for better understand-

ing our brain (Bassett et al., 2011; Braun et al., 2015, 2016). After

modularizing the multislice community structure over time, the

node flexibility as the network parameters can be used to charac-

terize the dynamic community structure. The node flexibility was

defined as the number of times that node changed its modular alle-

giance normalized by the total number of changes that were possi-

ble across the scanning time (Bassett et al., 2011). It was suggested

that successful brain function might partly depend on a set of

regions whose allegiance to putative functional modules is flexible

through time to smooth the function transition (Hermundstad

et al., 2014). In this study, we try to find a personalized

escitalopram monotherapy treatment marker for treatment predic-

tion, with an interesting hypothesis that reconfiguration of dynamic

brain network might provide important insights into the depressive

disorder and also be potential for effective antidepressant treat-

ment prediction.
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2 | MATERIALS AND METHODS

2.1 | Study population

In this cohort study, we examined a total of 106 first-episode, drug-

naïve patients from three different hospitals. Thirty-five Han Chinese

depressive inpatients were recruited from Nanjing Brain Hospital

between May 2010 and October 2017 (Sample 1). Thirty-six outpa-

tients were enrolled from the Nanjing Drum Tower Hospital between

September 2014 and October 2017 (Sample 2). Thirty-six Chinese

outpatients were recruited from the Peking University Institute of

Mental Health between May 2010 and July 2016 (Sample 3). In addi-

tion, a total of 109 healthy controls from these centers were recruited

for comparing analyses.

The diagnosis of MDD was validated using the Mini-International

Neuropsychiatric Interview by at least two psychiatric physicians

(Sheehan et al., 1998). Patients were also assessed with Hamilton

Depression Rating Scale 17-Item (HDRS-17) (Hamilton, 1967) and

Hamilton Anxiety Scale (HAM-A) (Maier, Buller, Philipp, &

Heuser, 1988).

2.2 | Inclusion and exclusion criteria

First-episode patients suffering from an acute episode of depression,

with a HDRS-17 total score > 17, were included. The patients needed

to have experienced symptoms of depression for ≤24 months but

≥1 month. None of the subjects have repetitive transcranial magnetic

stimulation (rTMS), CBT, or other forms of psychotherapy during the

study period. Subjects with a history of alcohol and substance abuse

were also excluded. Patients that had comorbidity with other Axis I or

Axis II disorders psychiatric illnesses were ruled out. Pregnant patients

and those who are unable to undergo a MRI scans were excepted.

The patients who changed medications due to serious side effects

were not considered for further analysis. Similar exclusion criteria

were made for controls.

In this study, responders were conventionally defined as those hav-

ing a reduction of at least 50% in HDRS-17 scores at endpoint

(≤8 weeks). These patients showed a clinical improvement to

escitalopram treatment, with a more than 20% decrease from the base-

line HDRS-17 scores at 2 weeks. Patients who changed medications or

received electroconvulsive therapy due to poor improvement

(a reduction of less than 20% in HDRS-17 scores) after at least 2 weeks

escitalopram administration or had a reduction of less than 50% in

HDRS-17 scores at endpoint were defined as nonresponders. One par-

ticipant who had large head motion from Site 1 and one who had cere-

bral cysts from Site 2 were discarded from further neuroimaging analysis.

2.3 | Escitalopram administration

All participants underwent a baseline functional MRI scan, following

which they consented to commence escitalopram treatment at a dose

of 10 mg/day. Afterward, the dose for each individual was determined

by each patient's response and tolerance. After 7 days, patients had

their escitalopram dosage increased during the study period. The final

escitalopram dosage in the three multicenters (Nanjing Brian Hospi-

tal/Drum Tower Hospital/Peking University Institute of Mental

Health) were 20 mg/day (n = 15/4/11), 15 mg/day (n = 15/20/19),

and 10 mg/day (n = 4/10/6). The average dose (±SD) at the endpoint

was 16.6 ± 3.4/14.1 ± 3.1/15.7 ± 3.4 mg.

2.4 | MRI data acquisitions

Participants were not allowed to carry any piece of metal in the mag-

netically shielded room. They were instructed to keep their eyes

closed, not fall asleep and minimize movement. Head motion was con-

fined to less than 1.5 mm in any direction. No subjects were reported

to fall asleep during the scanning.

Data from the first and second cohorts were collected by a 3.0T Sie-

mens MRI Scanner (Siemens Medical solutions, Germany) equipped with

a 12-channel neurovascular array coil. Resting-state functional images

were recorded using echo-planar imaging sequence, yielding whole-

brain coverage in all participants. (repetition time [TR]/echo time

[TE] = 3,000 ms/40 ms; flip angle [FA] = 90�; matrix = 64 × 64; thick-

ness/gap = 4.0 mm/0 mm; slice number = 32). The recording session

lasted 6 min 45 s. The T1-weighted anatomic images were obtained by

gradient-echo sequence (TR/TE/FA = 1,900 ms/2.48 ms/9�).

Images from the cohort Sample 3 were also acquired by a 3.0T

Siemens MRI Scanner with the following parameters: TR/TE = 2,000-

ms/30 ms, FA = 90�, matrix = 64 × 64, thickness/

gap = 4.0 mm/0.8 mm, number of slices = 30, and lasting scan

time = 7 min. The parameters for the T1-weighted anatomic images

were TR/TE/FA = 2,300 ms/3.01 ms/9�.

2.5 | Image preprocessing

The first 10 functional volumes were deleted for signal equilibrium

and to allow the participants' adaptation to the machine noise. Data

preprocessing was handled via the Data Processing Assistant for

Resting-State fMRI (DPARSF) (Yan & Zang, 2010) and the Statistical

Parametric Mapping software (SPM8; http://www.fil.ion.ucl.ac.uk/

spm). Functional images underwent slice-timing and head-motion cor-

rection on a participant-level confound regression model which com-

bined six movement estimates and three physiological time series and

censored volumes preceding any movement (frame-wise displace-

ment) greater than 0.3 mm (Ciric et al., 2017; Drysdake et al., 2017).

The functional images were then normalized into the Montreal Neuro-

logical Institute (MNI) space and the parameter was set as

3 × 3 × 3 mm3. After that, functional images were smoothed with

6-mm full-width at half-maximum Gaussian kernel and band-pass fil-

tered (0.01–0.08 Hz) to reduce the effects of low-frequency drift and

high-frequency noise.

2.6 | Data analyses

The signals of each region were extracted via a sphere with a 6 mm

radius based on a template in a previously published article by Allen
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et al. (2014). A table for the definition of these regions by node loca-

tion and MNI coordinates has been added in the Table S2. The whole

brain dynamic FC was determined using pair-wise Pearson correlation

between 95 regions of interest with sliding window width = 45 TRs,

sliding step = 1 TRs. The resulting correlation matrices of each subject

were partitioned into time-dependent communities using a multilayer

community detection algorithm (approach details can be referred to

the Supporting Information and our previous work; Shao et al., 2019;

Tian et al., 2019). This framework embodies the notion of segregation

and integration, as the presence of modules/communities reflects the

balanced interactive between intra- and interclusters. Hence, commu-

nity detection methods enable the investigation of the interplay

between functional segregation and integration of brain, together

with numerous dynamic characteristics that other standard graph-

theoretical measures such as degree, rich club, and small-word prop-

erty cannot offer.

Subsequently, module allegiance (MA) matrices, demonstrated the

probability of two nodes being assigned to the same module/commu-

nities, were utilized to analyze the dynamic integration across large-

scale networks. We obtained MA matrices by making contingency

tables (1 if two regions were assigned in the same community; and

0 otherwise) and averaging all the variables such as time and itera-

tions. The larger the MA presented, the stronger connection the pair

of nodes possessed over the time domain. As was suggested via the

findings of Bassett, Yang, Wymbs, and Grafton (2015), the intercluster

interaction can be better delineated by the MA matrices than done by

FC matrices.

In order to capture the temporal variability for nodes in MA, we

calculated a time-dependent system flexibility vector F. After normal-

ized by the total number of time windows, each element Fi indicates

the times that a node i changes its modules between two consecutive

time windows in personal level. In this way, the representative flexibil-

ity resulted in a total of 95 features (one for each region) for

predicting individual treatment outcome.

2.7 | Multivariate pattern analysis

Multivariate pattern analysis (MVPA) was a well-suitable method and

was conducted to discern slight differences underlying the F values

(Mohr, Wolfensteller, & Ruge, 2017). The input features for the MVPA

were constructed by identifying subsets of data that are most relevant

to the treatment outcome using minimum redundancy maximum rele-

vance (mRMR) (Peng, Long, & Ding, 2005). As a popular approach over

neuroimaging studies, the linear soft-threshold support vector

machine (SVM) model (linear kernel, soft margin C = 1) (Schrouff et al.,

2013) was used to separate responders from nonresponders.

The model accuracy was tested using leaving-one-out cross valida-

tion (LOOCV) (Cawley & Talbot; Varoquaux et al., 2016). In this proce-

dure, each subject was left out once and used to test the prediction

model trained on the other subjects. In addition, we used a discrimina-

tive mapping approach to visualize the relative contribution of the dif-

ferent brain regions for the classifier decision. To eliminate site

effects, the leave-one-group-out analyses were also applied.

2.8 | Permutation test

The statistical significance of the accuracy and weight was tested by

randomly permuting the labels of the training samples with the

derived models. This process was repeated 1,000 times to determine

the null-distributions of accuracies/weights. The p value of accuracy/

weight was calculated from the permutation procedure that had a

larger accuracy/weight compared to the null model. The value and

TABLE 1 The demographic characteristics of the multicenter

Responders Nonresponders p

Numbers of subjects 19/17/20 15/19/16 —

Age (years) 33.74 ± 11.97/31.88 ± 7.43/35.80 ± 10.34 33.93 ± 9.39/29.37 ± 4.60/31.47 ± 9.60 .959/.268/.199a

Education (years) 12.31 ± 1.89/14.10 ± 2.93/13.69 ± 2.68 12.53 ± 3.02/14.91 ± 4.26/12.84 ± 2.69 .799/.866/.876a

Length of depressive episode (months) 5.640 ± 3.75/5.04 ± 5.22/- 5.50 ± 6.65/5.62 ± 4.11/- .942/.764a/-

Age of index episode (years) 33.27 ± 10.56/31.46 ± 6.48/- 33.47 ± 7.69/28.91 ± 3.80/- .938/.374a/-

Gender (male /female) 9M10F/8M9F/10M10F 11M4F/10M9F/7M9F .097/.600/.709b

Handedness (left or right) 0L19R/0L17R/0L20R 0L15R/0L19R/0L16R >.999b

Total HDRS score 23.95 ± 5.09/25.18 ± 5.95/27.5 ± 3.8 24.27 ± 4.96/25.47 ± 5.45/- .855/.918a/-

Anxiety 6.00 ± 2.57/6.80 ± 2.37/- 5.90 ± 1.76/6.78 ± 1.81/- .919/.988a/-

Weight loss 1.00 ± 0.94/0.87 ± 0.91/- 1.00 ± 0.89/0.94 ± 0.97/- .912/.807a/-

Cognitive disturbance 4.17 ± 2.85/4.73 ± 1.71/- 3.81 ± 2.14/4.37 ± 1.61/- .722/.527a/-

Retardation 7.41 ± 1.06/8.60 ± 1.72/- 8.27 ± 1.73/8.16 ± 1.38/- .115/.413a/-

Sleep disturbance 4.41 ± 1.73/3.13 ± 1.45/- 4.27 ± 1.90/3.68 ± 1.66/- .847/.320a/-

Note: Values shown are listed as Nanjing Brain Hospital/Nanjing Drum Tower Hospital/Peking University Institute of Mental Health (mean ± SD).

Abbreviation: HDRS, Hamilton rating scale for depression.
aTwo-sample t test;
bPearson Chi-square test.
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significance of the weights provided an indication of the relative

importance of the respective features for classification and prediction.

It should be noted, however, that these values must be interpreted

with care. The weights indicated the direction and quantified the con-

tribution of each node to classifier decision rather than unfolded the

difference between classes.

F IGURE 1 Dynamic modular structure and functional connectivity. (a) The community assignment of regions along the time windows of one
random responder and nonresponder. The horizontal axis represents the continuous time-windows, while the vertical axis represents the regions
of interest from Allen et al. (2014). A region possibly belongs to the same module across a series of continuous time windows until it gets
transferred to another module in the succeeding instance. The colors depict the respective community assignments. (b) The functional
connectivity matrices show the averaged Pearson correlation between regions of interest for responders and nonresponders. (c) The averaged
module allegiance matrices for the two subject groups illustrate the probability of areas being in the same community across time windows and
subjects. The white line showed the predefined “functional networks”
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2.9 | Statistical analysis

The interaction among meaningful discriminative regions was com-

pared between responders and nonresponders according to two-

sample two-tailed t tests. In order to account for multiple comparisons

and counteract the likelihood of false positives, false-discovery rate

(FDR) correction was applied (Storey, 2003). The statistically signifi-

cant difference was set at p < .05.

3 | RESULTS

3.1 | Demographic and clinical characteristics

The demographic and clinical characteristics of the subjects were

summarized in Table 1. There were no statistical differences in the

demographic variables between responder and nonresponder individ-

uals within the three separate cohorts, respectively, including age,

gender, years of schooling, and symptom scores. There were no statis-

tical differences in the demographic variables between depressive

individuals and healthy controls as well (see Table S1). The changes of

depression severity were scatter plotted in Figure S1.

3.2 | Dynamic network module

Dynamic modules, in this case, represent the groups of mutually cor-

related brain regions, which are weakly connected to the rest of net-

work along time. We investigated modular organization across the

brain networks in both responders and nonresponders using multi-

layer modularity framework. The multilayer community assignment of

one randomly selected responder and nonresponder were showed in

Figure 1a. Six networks were transiently integrated and segmented

and thereafter, rearranged into special communities across the intrin-

sic networks. The results of averaged FC matrices and averaged MA

matrices within each group were compared. The intrinsic functional

architecture was better delineated via MA matrices. Regions within

the DMN were more likely to be assigned into the same modules

while the CCN integrated with other intrinsic networks (Figure 1b,c).

F IGURE 2 Performance of SVM classification and mapping of feature weights. (a) The red line shows the performance of SVM models using
real data and the blue area represents the performance required for statistical significance (p < .001), derived from the null distribution. (b) The
accuracy of SVM models was tested for robustness performance. The lower histogram shows the distribution of accuracy and the pie chart
depicts most of possibilities concentrated on the accuracy of 70–80%. (c) The summary of features with high discriminative power. Relevant brain
regions were mapped and color-coded by weight directions. Positive weights were green, negative ones were blue. (d) The selection frequency of
features' physiological parameters. For each plot, the permutation tests were applied 1,000 times. A single asterisk indicated p < .01, double
asterisks indicated p < .005. ACC, bilateral anterior cingulate cortex; CC, cognitive control network; DM, default mode network; L SMA, left
supplementary motor area; L SOG, left superior occipital gyrus; R I, right insula; R MFG, right middle frontal gyrus; R MOG, right middle occipital
gyrus; R MTG, right middle temporal gyrus; SVM, support vector machine; VIS, visual network
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Similar results for the samples in second and third sites were showed

in Figures S2 and S3.

3.3 | SVM predictors for effective escitalopram
treatment

There was no significant difference in flexibility between the

responders and nonresponders (see details in Figure S4). Feature

wrapping approach of mRMR selected the related flexibility features

while SVM models were applied to differentiate responders from the

other patients. The real LOOCV accuracy was 79.41%, while sensitiv-

ity and specificity were 84.21% and 73.33%, respectively (see

Figure 2a).

Sample balance is really an important point in modeling, especially

for small sample cases (Scheinost et al., 2019). In order to retest the

robustness of our model, one participant from each of the two groups

was taken away while the above framework was reapplied to the

remaining subjects. Then, we cross-checked all the 285 (19*15)

sample combination possibilities. Figure 2b illustrates the distribution

of optimum classification results over difference sample combination,

with a peak possibility concentrated around the range of 70–80%.

These leave-two-out results implied that the discrimination perfor-

mance was robust and not just a mere coincidence arisen by limited

samples.

3.4 | Map of discriminating regions

The first eight discriminative regions of the optimal classier were dis-

played on Figure 2c,d. This map contained positive (green) and nega-

tive (blue) weights, involved in decision-making. Actually, these

regions are distributed across different networks in both hemispheres

(Figure 2c). Furthermore, permutation analyses demonstrated the sig-

nificantly discriminative regions compared to null models, including

the right middle temporal gyrus (R MTG, p = .035), right middle occipi-

tal gurus (R MOG, p = .037), left superior occipital gyrus (L SOG,

p < .001), right middle frontal gyrus (R MOG, p = .001), left

F IGURE 3 Module allegiance matrices of the key regions relating to the ACC. (a) The histogram illustrated the MA between ACC and other
brain regions in responders, nonresponders, and healthy controls. Patients with depression showed lower MA than healthy controls while
responders possessed larger one than nonresponders. Bars indicate mean values, and whiskers represent SDs. (b) The scatter plot of MA
concerning the ACC to some special regions, including R AG, R SFG, L MFG, and R MFG. A single asterisk indicated p < .01 and double asterisks
indicated p < .005. Bars indicate mean values, and whiskers represent SEMs. (c) The difference of MA in the anterior default mode subnetwork
between responders and nonresponders. Key nodes are shown in red color. Green lines represent positive MA and blue lines represent negative
MA. The larger the MA between them, the stronger the line. ACC, bilateral anterior cingulate cortex; L MFG, left middle frontal gyrus; MA,
module allegiance; R AG, right angular gyrus; R MFG, right middle frontal gyrus; R SFG, right superior frontal gyrus

TIAN ET AL. 1255



supplementary motor area (L SMA, p = .003), right insula (R I,

p = .008), bilateral ACC(p = .011), and right middle frontal gyrus

(R MFG, p = .049) (see Figure 2d).

3.5 | MA of responders and nonresponders

In further analyses, the interaction of these eight significantly discrimi-

native regions was explored on a system or subsystem level to assess

the differences between responders and nonresponders. The statistical

t test showed that the MA of ACC with all other nodes was lower in

patients with MDD comparing with healthy controls (t = 4.932, df = 67,

p < .001, FDR-corrected, 95% confidence interval [CI] [1.0327, 2.4368],

Figure 3a), while responders possessed larger characteristic comparing

with nonresponders (t = 3.045, df = 32, p = .005, FDR-corrected, 95% CI

[0.4525, 2.3101], Figure 3a). The statistical t test further suggested that

MAs of ACC concerning other special nodes were significantly different

between responders and nonresponders as well, including right angular

gyrus (R AG, t = 2.410, df = 32, p = .022, uncorrected, 95% CI [0.0217,

0.2607], Figure 3b), right superior frontal gyrus (R SFG, t = 2.557, df = 32,

p = .016, uncorrected, 95% CI [0.0388, 0.3460]), right angular gyrus

(R AG, t = 2.356, df = 32, p = .025, uncorrected, 95% CI [0.0210,

0.2910]), left middle frontal gyrus (L MFG, t = 3.000, df = 32, p = .005,

uncorrected, 95% CI [0.0808, 0.4235]), and RMFG (t = 2.421, df = 32,

p = .022, uncorrected, 95% CI [0.0296, 0.3463]). Interestingly, these

regions formed spatially distributed systemwhereby ACCwas the struc-

tural core (Figure 3c). It suggests that ACC acts as a pivotal part in facili-

tating the communication with a network that is particularly germane to

escitalopram treatment.

3.6 | Multicenter comparison

Parallel individual treatment response model for both Center 2 and

Center 3 were trained and tested independently as well. The similar

performances can be found in both centers as were showed in

Figure 4. The real balanced accuracy was 82.86% in Drum Tower Hos-

pital and 94.44% in Peking University Institute of Mental Health. The

F IGURE 4 Multicenter comparison. The performances of SVM models in Peking University Institute of Mental Health (a) and Nanjing Drum
Tower Hospital (b). The differences of MA matrices of subjects site 3 are showed in (c) and (d) (also see Supporting Information for site 2). Bars
indicate mean values, and whiskers represent SDs. BP possessed another key hub properties which interacted closely with ACC (description
similar to Figure 3). ACC, bilateral anterior cingulate cortex; BP, bilateral precuneus; L AG, left angular gyrus; MA, module allegiance; R AG, right
angular gyrus; R MFG, right middle frontal gyrus; SVM, support vector machine
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statistical t test showed that the MA of ACC (t = 3.418, df = 73,

p = .001, 95% CI [0.5649, 2.1552], Figure 4c) was significantly differ-

ent between patients and controls for all the subjects from these two

sites. Moreover, statistical analyses showed that the MA of ACC

(t = 3.143, df = 34, p = .004, 95% CI [0.5807, 2.7332], Figure 4c) was

significantly different between responders and nonresponders mainly

because of the interaction of ACC with several special nodes (see Fig-

ures S5 and S6 for each site, respectively). Besides, these regions

formed a spatially distributed ACC-hub DMN subnetwork (Figure 4d),

implying that escitalopram has intervened efficiency via the ACC.

Besides above satisfying model performance in each site, we fur-

ther tried the leave-one-group-out analysis to test the site effects. We

trained in two sites and tested in third one. The performance of leave-

one-group-out (69% for leaving Site 1 out, 71% for leaving Site 2 out,

72% for leaving Site 3 out) was comparable with that of the within-

group LOOCV performance (79%). It supported the robustness of our

model frame across sites.

4 | DISCUSSIONS

Using a baseline fMRI and SVM models, we presented the flexibility

of some special regions, such as MFG, right insula, and ACC for accu-

rate prediction of escitalopram treatment response. We specifically

chose to characterize functional connection using MA since it displays

behaviorally or pathophysiologically relevant interactions. A larger MA

of ACC was found in responders compared to nonresponders. Further

investigation revealed a system level dysfunction whereby the ACC

was found to be the crucial discriminative region.

4.1 | The flexible brain

A clear interaction between regions congruent with FC showed tem-

poral changeability (Figure 1b,c). The flexible brain was also found in

humans during the learning process (Bassett et al., 2011). Flexibility is

deemed as a trustworthy indicator of a given subject's biological pro-

cess in response to learning or neurorehabilitation. Treatment

response of 8 weeks prescription with escitalopram could be

predicted by the baseline flexibility of brain regions (Figure 2c,d),

suggesting the flexible brain could be beneficial for depressed individ-

uals' pharmacological intervention.

4.2 | ACC effects on antidepressant outcome

The ACC is involved in the processing of specific modules which is

responsible for reward anticipation (Bush et al., 2002), attention, error

detection, conflict monitoring (Bush, Luu, & Posner, 2000; Shenhav,

Botvinick, & Cohen, 2013), social cognition (Apps, Rushworth, &

Chang, 2016; Tolomeo et al., 2016), and emotional response (Bush

et al., 2000; Etkin, Büchel, & Gross, 2015; Tolomeo et al., 2016). Its

abnormalities were associated with diverse symptoms such as suicidal

thoughts (Holmes et al., 2017), negative bias, poor cognition, and

comorbid anxiety in depression. Fox, Buckner, White, Greicius, and

Pascualleone (2012) applied rTMS to depressed patients and found

that a more anticorrelated FC of ACC predicted better treatment

response. Weigand et al. (2017) also applied rTMS to predict antide-

pressant efficacy but targeted the subgenual ACC. In addition, CBT

trials found that ACC hypoactivation was linked to better treatment

outcomes (Ball, Stein, & Paulus, 2014). These findings confirmed that

rTMS and CBT targeted directly or indirectly the ACC to rehabilitate

the individuals who are predisposed to less activation (Fox

et al., 2012).

In contrast, the most consistent finding in mediation studies was

that greater ACC activation was associated with better outcomes (Ball

et al., 2014). This finding indicated that medication treatment may not

target the ACC activity and may therefore be most beneficial for indi-

viduals who exhibited robust pretreatment activation. Escitalopram,

as a SSRIs, administration increases the level of 5-hydroxytryptamine

in the serotonergic system, including prefrontal cortical area, amyg-

dala, ACC and hippocampus. Vai et al. (2016) found reduced effective

connectivity from amygdala to the ventrolateral prefrontal cortex and

to ACC, with an increased modulation of ACC to amygdala during

fearful emotional stimuli in nonresponders to escitalopram mon-

otherapy. Chakroborty et al. (2017) did not discover any significant

differences in activation in the ACC after treatment. These findings

suggested that frontal-ACC circuit, not a local region, might provide a

neuropathy mechanism that involved in recovery from depression.

Flexibility measures the attributes of a region that changes its

modular allegiance which is motivated by top-down connectivity

(frontal-ACC). Higher ACC modular allegiance was found in the

responders than nonresponders, suggesting that top-down influences

might be biased by the pretreatment status of ACC which in turn can

act as a predictive biomarker of effective response to SSRIs

treatment.

4.3 | The ACC and DMN

The DMN can be divided into the dorsal medial and medial temporal

subsystem (Andrewshanna, Smallwood, & Spreng, 2014), which

broadly overlaps with the anterior and posterior subsets (Buckner,

Andrewshanna, & Schacter, 2008; Raichle et al., 2001). The part of

ACC connecting with the medial prefrontal cortex is the main brain

region of the anterior DMN subnetwork. In recent years, the dissocia-

tion of DMN is of great research interest in MDD. Li et al. (2013)

found an increased FC within both anterior and posterior DMN, but

only the posterior DMN was normalized after treatment. A study

which investigated the relationships between DMN subsystems and

rumination showed opposite connectivity alteration within different

subnetworks (Zhu, Zhu, Shen, Liao, & Yuan, 2017). Consequently,

DMN subsets may provide new insights into the pathophysiology and

antidepressant response efficiency in MDD.

The different DMN subsystems, of which the ACC was a hub, dis-

tinctively impacted escitalopram treatment efficacy. As a result, the

strong functional integration of ACC may be regarded as a predictor

of escitalopram monotherapy outcome in major depressive patients.

This implies that the pretreatment modular integration of ACC may be
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used to assess patients' recovery progress. Our findings have a huge

potential to be replicated in the future.

4.4 | Exploring the robust biomarks for treatment
response prediction

Many studies demonstrated that even a single dose of escitalopram is

sufficient to alter the brain's functional anatomy even in a short term

(Komulainen et al., 2018). Studies of brain response to a single dose,

such as escitalopram, would seem to be noteworthy and relevant.

Barron et al. (2018) applied a cross-validated predictive model to clas-

sify pharmacologic effect across 11 task-based fMRI data sets

(306 samples). However, they failed to classify if antidepressants

modulate brain responses to the emotional faces task and achieved

only limited evidence in a consistent manner. It may partly be

explained by different drug administrations and patient populations

across datasets. Furthermore, more standardized implementation of

the task protocol is in demand in the future work. In this consider-

ation, measuring the changes in emotional processing may weak the

individual effect on the task protocol and then provide a sensitive

early measure of antidepressant efficacy for individual patients

(Browning et al., 2019).

Our consistent performance over data sets suggested the poten-

tial ability of resting state fMRI over exploring the clinical consistent

biomarks. The results in relation to ACC-core subnetwork were

repeated with data from Drum Tower Hospital (Samples 2) and Peking

University Institute of Mental Health (Samples 3). Predicting of the

treatment response performs well within-data set Leave-One-Sample-

Out validation and cross-data set Leave-One-Group-Out validation.

The significant difference of overall MA in ACC did not reoccur in

Sample 2. It is possibly derived from heterogeneity of the subjects,

whereby the averaged MA of ACC concerning other regions cannot

be sensitive enough to detect the individual treatment response.

However, each MA value between ACC to some special regions was

still significant. Therefore, we can conclude the important role of

ACC-core subnetwork in treatment response prediction.

The main limitation of this experiment is a relatively small sample

size. Our results should be further validated by larger cohorts together

with multimodal data and other therapy methods. One limitation of

this study in the design was an open-labeled and not placebo-con-

trolled. The response to antidepressant treatment could be inter-

preted by a combination of specific and nonspecific effects, which in

addition to placebo neurobiological effects, may include variations in

the natural history of illness, regression to the mean, and reporting

biases.

In conclusion, the present study is the first to demonstrate individ-

ual response of MDD patients with escitalopram by use of baseline

resting state fMRI and then validate over different datasets. A more

advanced analysis showed significant hyperinteraction within the

ACC-core subnetwork in first-episode, drug-naïve responders. We

confirm that ACC could serve as a predictor for better treatment out-

comes in individuals prescribed with escitalopram monotherapy.

Overall, our findings suggest that there is a huge potential in

combining fMRI data with machine learning techniques. This tech-

nique will further evolve to identify biomarkers which may be used as

a reliable biomarker for prognosis, optimizing therapeutic decisions

and assisting psychiatric research of depression.
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