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Background matching is the most familiar and widespread camouflage strat-

egy: avoiding detection by having a similar colour and pattern to the

background. Optimizing background matching is straightforward in a

homogeneous environment, or when the habitat has very distinct sub-

types and there is divergent selection leading to polymorphism. However,

most backgrounds have continuous variation in colour and texture, so

what is the best solution? Not all samples of the background are likely to

be equally inconspicuous, and laboratory experiments on birds and

humans support this view. Theory suggests that the most probable back-

ground sample (in the statistical sense), at the size of the prey, would, on

average, be the most cryptic. We present an analysis, based on realistic

assumptions about low-level vision, that estimates the distribution of back-

ground colours and visual textures, and predicts the best camouflage. We

present data from a field experiment that tests and supports our predictions,

using artificial moth-like targets under bird predation. Additionally, we

present analogous data for humans, under tightly controlled viewing

conditions, searching for targets on a computer screen. These data show

that, in the absence of predator learning, the best single camouflage pattern

for heterogeneous backgrounds is the most probable sample.
1. Introduction
Animals use a plethora of tactics to conceal themselves. The best known is

background matching: an adaptation of the animal’s body coloration to

reduce the signal-to-noise ratio to visually hunting predators [1,2]. Through

matching the hue, brightness and pattern of the background as perceived by

the predator, the animal looks like and, if successful, is indistinguishable

from a sample of the background [1,3–6]. One of the pioneers of the study of

animal camouflage, the artist Abbott Thayer, interpreted the concept of camou-

flage as sampling the background quite literally, painting backgrounds through

animal-shaped stencils and comparing the patterns to those of the animals

[7–9]. More recent authors have grounded the definition in statistical sampling

theory [1,3,4,10,11].

When the environment is homogeneous (its texture, hue and luminance do

not vary) at the spatial scale of the animal, then all samples from that background

are the same and there is a single optimal camouflage pattern. When the animal

can occupy very different habitats or, more generally, is seen against visually dis-

tinct patch types larger than itself, then the best solution also seems clear: unless

colour change is possible, match one background well at the expense of the

others [12–14]. If the world consists of black and white patches, then being

grey is not the answer. However, where the background is heterogeneous but

the variants are more similar, a strong trade-off between matching some back-

grounds at the expense of others does not necessarily hold and some form of
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compromise camouflage may outperform the specialist

approach [6,12,13,15]. Bond & Kamil [16] investigated the

effect of background heterogeneity with wild-caught birds

and prey patterns able to evolve in silico. They concluded

that when the environment consisted of large patches of two

different microhabitats (course-grained, as defined by Levins

[17]) then dimorphic specialists for each background evolved;

but if the backgrounds varied at a spatial scale smaller than the

prey (fine-grained), generalist colour morphs evolved. But

what is the best generalist camouflage?

Not all samples of the background are equally effective as

camouflage [6,12], even though concealment through being a

random sample of the background [1] has been an influential

idea in the development of a formal definition of crypsis

[1,3–6]. For example, if the background has two possible

variants and the animal lands on each with probability p
and (1 2 p), then an animal coloured to match the first var-

iant will match its background with probability p, an

animal with the colour of the second variant with probability

1 2 p. An animal that is a random sample of the background

will match with probability p2 þ (1 2 p)2 or 2p2 – 2p þ 1.

For p ¼ 0.5 (and, trivially, p ¼ 0 or 1), the two strategies

(match one versus match randomly) are equally good, but

otherwise the function 2p2 – 2p þ 1 is concave up, so less

than 1 2 p for 0 , p , 0.5, and less than p for 0.5 , p , 1.

Therefore, on average, matching the most common back-

ground beats (i.e. matches more backgrounds than) a

random sample (also discussed by [18]).

If, as in the example above, the background has a set of

states (or, more correctly, is perceived as comprising a set of

states), then the modal category is the best camouflage. More

generally, natural backgrounds are expected to vary continu-

ously in colour and texture (and, for some species,

polarization [19–21]), these attributes themselves having mul-

tiple perceptual dimensions. With backgrounds that vary

continuously in multiple features, a prey bearing coloration

equivalent to a rare background sample is more likely to mis-

match its local background than a prey bearing coloration

equivalent to a common sample. The concept of camouflage

through being an ‘average’ sample of the background has a

long history (see discussion in [6]). Thinking of the range of

possible background samples as having a multivariate distri-

bution, the best ‘average’ will be that which minimizes the

deviation from all possible samples in this perceptual space.

If the cost of deviation is the squared Euclidean distance,

this is the familiar arithmetic mean (or centroid of the multi-

variate distribution). If the cost is the absolute distance, then

it is the median. Of course, prey that can recognize a mismatch

to their immediate background can move to a more suitable

substrate (e.g. [22]), but it is still the case that a prey bearing

the colours and patterns of a common background sample

will have a lower cost of finding suitable resting places.

We present an analysis, based on a physiologically plaus-

ible model of low-level vision, of the colours and patterns

present in a set of complex natural backgrounds, sampled

at the same spatial scale as the focal prey item. All things

being equal (an issue returned to in the discussion), we pre-

dict that the best camouflage patterns will be those from

the centre of the sampling distribution. We tested this predic-

tion with (i) a field experiment involving bird predation on

artificial camouflaged prey items on oak trees, which have

complex, highly textured, bark, and (ii) an analogous labora-

tory experiment with human participants searching for
targets on photographs of the same bark as in the bird exper-

iment, on a computer screen. Our experiments focus on the

effects of predation rather than the cognitive and perceptual

processes underlying the effects observed. We address the

question of which background matching camouflage survives

best under predation by multiple avian predators across a

variable (but constrained) background.
2. Material and methods
(a) The backgrounds
Oak tree bark was chosen as a natural complex background

against which many arthropod species conceal themselves and

one for which artificially camouflaged (to birds) prey can be

used (e.g. [23]). Oak tree bark was photographed at approximately

head height (approx. 1.75 m) and at around 1 m distance with a

tripod-mounted Nikon D3200 digital SLR camera (Nikon Corp.,

Tokyo, Japan) in the mixed deciduous Leigh Woods National

Nature Reserve, north Somerset, UK (518 270 13.7300 N, 28 380

2.0600 W). The 6016� 4000 pixel digital colour images of bark

included a colour standard (X-Rite Color Checker Passport;

X-Rite, Grand Rapids, MI, USA) that was used for subsequent

linearization and white-point balancing [24] and mapping to

avian colour space [25,26]. The aperture of the camera was kept

at f8 and the ISO at 100 while the shutter speed was on automatic.

In total, images of the bark of 101 trees were used. Custom MATLAB

(The Mathworks Inc., Nattick, MA, USA) code was used both to

calibrate and select an area of bark from each image. Only areas

from the middle of the bark were selected, so that the tree’s curva-

ture did not distort the measurement of the texture. Each selected

area had five random, but non-overlapping, samples of bark with

equal dimensions (591� 296 pixels), and these were used in

subsequent analysis (totalling 505 samples of bark). Each rec-

tangular sample was used to create a triangular artificial prey

item (5 cm base and 2.5 cm height) printed at 300 dpi resolution

at 1 : 1 reproduction. To select appropriate targets for each treat-

ment, a colour and texture analysis was performed (see the

electronic supplementary material).
(b) Experimental procedure
(i) Field experiment
There were four treatments: (i) targets close to the cluster

centres for both colour and pattern; (ii) targets far from these

estimates (i.e. rare); (iii) targets that were common colour

samples but rare for pattern; and (iv) targets that were rare

samples for colour but common for pattern. To select the stimuli

for the treatments, all the samples were ranked according to

their Euclidian distances from the maximum-likelihood (ML)

estimates for colour and texture, respectively. Each treatment

comprised 12 different bark samples (triangular targets) from

the tops or bottoms of the ranked lists as appropriate. The

selections using a non-parametric distance measure [11] were

identical to those using the ML estimates (see the electronic

supplementary material). The experiment consisted of 10 repli-

cate blocks, each with the same 48 target patterns (12 from each

of the four treatments) placed in different areas of Leigh Woods

National Nature Reserve. This, combined with the placement of

our targets of each block in low densities, was done deliberately

to reduce the chances that two or more blocks lay within the

territory of the same individual predators. Therefore, each treat-

ment had 12 exemplars, with each exemplar tested against 10

different trees (one in each block). Fresh targets were used for

each block, but all from a single printing and calibration

process.
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Dead mealworms (Tenebrio molitor larvae frozen at 2808C,

then defrosted) were pinned underneath the targets, such that

only a small part of the mealworm was visible (as in [27]).

Treatments were randomly placed on trees, but young trees

were avoided, as were areas of bark covered with lichen. To

avoid any experimenter bias in target placement, the targets

were pinned at random coordinates (electronic supplementary

material). Their survival was checked at 7, 24, 31, 48, 55 and

72 h. Bird predation was confirmed when all or most of the meal-

worm disappeared. Targets that were not predated by birds

(spiders drained their fluids leaving only the exoskeleton intact,

slugs and snails left slime trails, and ants cover the entire meal-

worm) were considered as censored data in survival analysis,

along with those that could not be located or disappeared entirely,

and those that survived until the end of each trial (72 h).

(ii) Human experiment
For this experiment, 48 bark backgrounds randomly selected from

the same set used for the colour/texture analysis were used, and

one random sample was extracted from each photograph. This

time the samples were not dichotomized as ‘common’ or ‘rare’,

but had continuous variation in how close to the densest part of

the texture and colour distributions they lay. Therefore, the

whole range of ‘commonness’, and not just the extremes, was

tested. The size of the samples was the same as the targets from

the field experiment. The target was never placed in the location

it was extracted from. Consequently, 2304 (48 � 48) images were

created and 48 participants were tested on 48 images each, accord-

ing to a Latin square design. That is, each participant was shown a

unique combination of 48 targets, balanced for order, such that all

2304 stimuli were shown once and we obtained a measure of

detectability for every target on every background [28]. (The fact

that there were 48 targets, as in the bird experiment, is not signifi-

cant; these were a different set of samples, albeit from the same

image database.)

The experiment was run as a visual search task on a linear-

ized (gamma-corrected), 2200, 1024 � 768 pixel LaCie Electron

22Blue CRT monitor (LaCie Ltd., London) with a refresh rate

of 100 Hz and a mean luminance of 72 cdm22. The program

was controlled using a program running Psychtoolbox 3 [28,29]

for MATLAB. The participants were asked to locate the target

with the cursor and click on it, using the computer’s touchpad

(Macbook Pro; Apple Inc., Cupertino, CA, USA). This was

explained with reference to an example screenshot, and then

the participant gave their informed written consent in accord-

ance with the Declaration of Helsinki. The targets had the

same orientation (point up) and only one target was presented

in each trial. Before all test images a black fixation cross on a

mid-grey background was presented for 0.5 s. Each participant’s

session started with 10 practice trials and then consisted of four

blocks with 12 trials in each. Trials had a time limit of 30 s, at

which point the program advanced to the next image. Reaction

times and accuracy (misses and time-outs) were recorded.

(c) Analysis
(i) Field experiment
A survival analysis by mixed-effects Cox regression was

performed on the data using the coxme function in the coxme
package [30] in R with individual target pattern (n ¼ 48) and

block (n ¼ 10) as random effects and, as fixed effects, the 2 � 2

factorial combination of the two-level treatments ‘colour’

(common in the background, Colþ, or rare in the background,

Col2) and ‘texture match’ (common in the background, Txtþ,

or rare in the background, Txt2). The change in deviance and

degrees of freedom between the models with and without the

factor in question was tested against a x2 distribution for

statistical significance [31].
(ii) Human experiment
Log10 response times were analysed with a linear mixed model

(function lmer in the lme4 package, [32]), with the distances

from the centroid of colour and texture distributions, respect-

ively, as continuous fixed effects and both target and bark as

random effects. The proportion of hits was analysed analogously,

using a generalized linear mixed model with binomial errors

(function glmer in the lme4 package). Given the Latin square

design, participant is redundant as an additional random

effect. The two predictors were converted to z-scores (i.e. centred

on the mean and divided by the standard deviation) to ease com-

parison of effect size. Miss and timeout trials were not included

in the analysis.
3. Results
(a) Avian field experiment
The colour � texture interaction was significant (x2 ¼ 11.22,

d.f.¼ 1, p ¼ 0.0008; figure 1), and therefore the data were

split by the factor ‘colour match’ and two separate analyses

were performed to test the effect for texture. When the targets

had background colours that were common in the

environment then texture had a significant effect (x2 ¼ 22.72,

d.f.¼ 1, p , 0.0001). When targets had background colours

rare in the background, texture had no significant effect

(x2 ¼ 0.21, d.f. ¼ 1, p ¼ 0. 6472).

(b) Human laboratory experiment
For response time, the colour � texture interaction was

non-significant (x2 ¼ 1.66, d.f. ¼ 1, p ¼ 0.1980), but both

colour (slope ¼ 20.058, x2 ¼ 161.75, d.f. ¼ 1, p , 0.0001)

and texture distance (slope ¼ 20.039, x2 ¼ 74.81, d.f. ¼ 1,

p , 0.0001) significantly decreased response times as main

effects (figure 2a). For the proportion of hits, the inter-

action was also non-significant (slope ¼ 20.039, x2 ¼ 1.39,

d.f.¼ 1, p ¼ 0.2391), but both colour (slope ¼ 0.404, x2 ¼

25.52, d.f. ¼ 1, p ¼ 0.0001) and texture distance (slope ¼

0.280, x2 ¼ 15.34, d.f. ¼ 1, p , 0.0001) significantly increased

hit rates as main effects (figure 2b).
4. Discussion
For natural backgrounds such as used in our experiments, we

should not forget that the degree of background matching is

not the only force at work. Because visual search in complex

environments is more difficult [33], such environments are

likely to be more ‘forgiving’ of imperfect camouflage, and so

more morphs should be hard to find [34–39]. Nevertheless,

our results indicate a large difference in the detectability of the

different visual samples from the background. In both exper-

iments, the targets that were the commonest samples from the

background survived better in the face of bird predation, and

were more often missed and elicited longer response times

when searched for by humans, than those further from the

centre of the distribution. Additionally, the field experiment

showed that matching the commonest background texture and

the commonest colour have non-additive effects on conceal-

ment. If the colour is rare in the background, then texture does

not have an effect on the prey’s survival, but if the colour is

common, then bearing the commonest texture has significant

advantages. However, the laboratory experiment on humans
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did not replicate this result: here texture and colour matching

had additive effects, even though the magnitude of the effect

seemed to be stronger for colour (slope seven times greater).

In the field experiment, the fact that texture matching was

only important when colour also matched is plausibly

explained by the observation that a difference between the

colour of the prey and the background is perceived from a

longer distance than any difference in texture [1,40–43].

(We use the term ‘colour’ loosely here to include achromatic

differences in lightness.) However, when the predator moves

closer to the prey, texture differences from the background
become apparent. This can also explain why we got no

such interaction in the laboratory experiment. The partici-

pants were positioned at a single distance close to the

screen, and therefore texture mismatches were always, in

principle, detectable. Nevertheless, the fact that the effect of

texture alone did not improve a target’s survival in the field

experiment does not mean that matching one’s environ-

ment’s texture is not important. The data show that, for a

target that matches the background’s colour, texture match-

ing can increase its odds of survival by approximately 45%

(figure 1b). In principle, information on prey detection
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distances could be combined with different predators’ con-

trast sensitivity functions to reveal the distance at which

texture becomes important for prey detection [44,45].

One of the reasons for the choice of oak tree bark as the

background was to have a set of backgrounds that are com-

plex and varied, but all of a similar type. Those models

that predict the evolution of specialist morphs rather than a

single generalist [12,13] have two distinct patch types,

which creates disruptive selection. Here, the aim was to

investigate the situation where an animal faces a continuous

distribution of possible backgrounds and evolution must pick

the single colour pattern that fares best, on average. So, why

do we apparently reach a different conclusion from Bond &

Kamil [14], where, on fine-grained backgrounds not dissimi-

lar to those in our experiment, multiple morphs were

maintained through negative frequency-dependent selection?

The answer is likely to be predator learning: in Bond & Kamil

[14] prey evolution was directly coupled to predator prefer-

ences, whereas we deliberately minimized the opportunity

for predator learning by placing prey at low densities and

using fresh locations for each block. In the absence of the

opportunity for learning, our results suggest that the single

best background matching coloration is the most common

sample from the population of backgrounds a prey may

find itself against. However, if a population of animals have

the same coloration, then predators might forage specifically

for that morph and eventually the most common morph will

have a reduced survival [1,46–48]. This is apostatic selection,

often linked at a mechanistic level to the formation of a short-

term perceptual filter, or ‘search image’, for the common prey

type [49–54]. For this reason, camouflage strategies should
not be considered as static optimization solutions, and the

effects of learning and memory should be incorporated [55].

Predators do not only learn the distinguishing characteristics

of their prey [16,55]; they are also likely to learn the statistical

properties of the backgrounds on which they forage

(although this has only been shown for humans [56]). There-

fore, even unfamiliar prey can be detected by departures

from the expected distribution of the background [56]. When-

ever a predator is looking for local mismatches to the

background rather than using a perceptual template for

a specific conjunction of features (a search image), matching

the most common background sample is likely to be

favoured.
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