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Abstract

The β-barrel assembly machinery (BAM) inserts outer membrane β-barrel proteins (OMPs) in the 

outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of 

the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF-OMP complexes. Here, 

we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA 

adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged 

deep inside the lumen of the BamA barrel, binding regions proposed to undergo an outward and 

lateral opening during OMP insertion. On the basis of our structural and biochemical data, we 

propose a push-and-pull model for RcsF export upon conformational cycling of BamA and 

provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope 
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stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of 

BAM activity.

Introduction

The vast majority of proteins inserted in the outer membrane of Gram-negative bacteria 

adopt a β-barrel conformation. Their assembly depends on the activity of the conserved β-

barrel assembly machinery (BAM), whose core component is the OMP85-family protein 

BamA1,2. BamA is an outer membrane 16-stranded β-barrel with a large periplasmic 

extension consisting of five POlypeptide TRansport-Associated (POTRA) domains at its N-

terminus1. Structures of BAM have shown that BamA can adopt two conformations: an 

outward-open conformation3,4, in which the β-barrel domain opens between strands β1 and 

β16 to form a lateral gate to the membrane, and an inward-open conformation5,6, in which 

the lateral gate is sealed while a periplasmic entry pore to the barrel lumen is open. In the 

bacterium Escherichia coli, four accessory lipoproteins (BamB, BamC, BamD, and BamE) 

complete BAM, forming a pentameric holocomplex7,8. BamBCDE are anchored to the outer 

membrane by a lipid moiety but reside in the periplasm. BamB and BamD directly bind the 

POTRA domains of BamA, while BamC and BamE bind BamD1,2. Although all 

components are required for efficient assembly of E. coli’s diverse set of OMPs, only BamA 

and BamD are essential and conserved throughout Gram-negative bacteria1,2. Despite 

important structural and functional insights during 15 years of intense scrutiny due to the 

essential activity of BAM in generating and maintaining the outer membrane, crucial 

questions remain unsolved regarding the mechanism of this molecular machine. In 

particular, the functional importance of BamA cycling between the outward-open and 

inward-open conformations remains unclear, as are the respective contributions of the 

various BAM components to OMP assembly9.

The primary function of BAM is the assembly of OMPs and, when necessary, the 

translocation of their associated extracellular domains across the outer membrane. More 

recently, BAM has also been implicated in export of the outer membrane lipoprotein RcsF to 

the cell surface10,11 via the assembly of complexes between this lipoprotein and three 

abundant OMPs (OmpA, OmpC, and OmpF)10,11. Support for the involvement of BAM in 

RcsF export comes from in vivo crosslinking experiments in which a complex between RcsF 

and BamA, considered to be an intermediate in the formation of RcsF-OmpA/C/F 

complexes, was trapped10,11. Further, in cells lacking BamB and BamE, RcsF accumulates 

on BamA and causes a lethal block to BAM-mediated OMP assembly, suggesting that 

OMPs and surface-exposed RcsF exploit at least partially overlapping assembly routes12,13.

RcsF functions as an envelope stress sensor capable of mounting a protective response when 

damage occurs in the peptidoglycan or in the outer membrane14,15. Interestingly, we 

previously determined that sending RcsF to the surface is part of a cellular strategy that 

enables RcsF to detect damage in the cell envelope. Under stress conditions, newly 

synthesized RcsF molecules fail to interact with BamA10: they are not exported to the 

surface and remain exposed to the periplasm, which allows them to trigger the Rcs signaling 

cascade by reaching the downstream Rcs partner in the inner membrane16. Thus, surface 
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exposure is intimately linked to the function of RcsF. However, the molecular details of the 

BamA-RcsF interaction, how BAM orchestrates the export of RcsF with OMP assembly, and 

what prevents RcsF from interacting with BamA under stress conditions remain unknown. 

Here we sought to address these questions by obtaining structural information about the 

interaction between BamA and RcsF.

Results

RcsF can be purified with the BAM complex

In a series of exploratory experiments, we co-overexpressed RcsF with the BamAB sub-

complex, or with the BamABCDE holocomplex; both BamAB-RcsF and BamABCDE-RcsF 

could be detergent-extracted from the membrane and purified via affinity chromatography 

using a His-tag on the N-terminus of BamA (Fig. 1a). Using native gel electrophoresis, we 

confirmed that RcsF binds BamABCDE, and not only BamAB (Fig. 1a, b, c). However, 

whereas BamAB-RcsF was stable and could be purified to homogeneity by size-exclusion 

chromatography, BamABCDE-RcsF was unstable (Extended Data Fig. 1a, b). Interesting to 

note, destabilization of BamABCDE was only observed when RcsF was present (Extended 

Data Fig. 1c).

BamA is in the inward-open conformation in the structure

The BamAB-RcsF complex was crystallized and its structure solved to 3.8 Å resolution by 

molecular replacement using the structures of BamA and RcsF (PDB: 5D0O and 2Y1B, 

respectively; Supplementary Table 1). While this structure contained BamA and RcsF (Fig. 

2), BamB dissociated from the BamA-RcsF complex during crystallization and was absent. 

The asymmetric unit contained two BamA-RcsF conformers, although for one of them, no 

unambiguous electron density was observed for POTRA domains 1, 2, 3, and 5 (Extended 

Data Fig. 2a, b). The β-barrel of BamA was found in an inward-open conformation closely 

matching that reported in structures of E. coli BamABCDE (6, with a root mean square 

deviation of 0.9 Å for 383 equivalent Cαatoms in the BamA β-barrel of PDB: 5D0O) or 

BamA truncates lacking POTRA domains 1-4 or 1-517–20.

RcsF is located inside the lumen of the BamA β-barrel

In both BamA copies, RcsF was lodged deep inside the lumen of the BamA β-barrel (Fig. 

2a; Extended Data Fig. 2c). RcsF contacts two BamA loops protruding into the β-barrel: (1) 

extracellular loop L6 (eL6; ~77 Å2 buried surface area, one putative H bond; note that at 3.8 

Å resolution, amino-acid sidechain positions cannot be unambiguously determined), and (2) 

the periplasmic loop connecting strands 7 and 8 (pL4; ~140 Å2 buried surface area, one 

putative H bond) (Fig. 2, 3a). Although contacting RcsF, these loops retain a conformation 

closely matching that seen in inward-open BamA structures (Fig. 3b). However, the main 

BamA-RcsF contact occurs through the luminal wall of the BamA β-barrel, encompassing 

~1100 Å2 of buried surface area and comprising up to 15 putative H-bonds (Fig. 2). This 

RcsF-BamA β-barrel interaction can be divided into three zones. Zone 1 (Z1) consists of 

perhaps nine H bonds formed by BamA residue 488 and residues 463, 465, and 466 in the 

loop connecting β3 and β4 and contacting the RcsF loop connecting β1 and β1 (Lβ1-α1) 

(Fig. 2b, c, Fig. 3a, c). Zone 2 (Z2) is made of perhaps four H bonds formed by BamA 
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residues 592 and 634, located above pL4 (Fig. 2c, 3a). β16, one of the components of the 

proposed lateral gate of the BamA β-barrel, constitutes the third zone (Fig. 2b, c, 3a). The 

bottom of RcsF protrudes out of the BamA β-barrel into the periplasm, residing in close 

proximity to POTRA domains 3-5 (Fig. 2a, b). As a result, RcsF sterically pushes POTRA5 

outward, causing a 26° rotation compared to the inward-open conformation found in BamA 

structures5,6 (Fig. 3b). Although the lipid anchor of RcsF and the N-terminal disordered 

linker (residues 16-50)21,22 are not apparent in this structure, the position of RcsF is 

compatible with the lipid anchor residing in the inner leaflet of the outer membrane. Of note, 

the binding interface between RcsF and BamA does not overlap with the binding sites of 

BamA for its accessory lipoproteins (Extended Data Fig. 3). Consistent with this 

observation, the RcsF-BamA interaction is compatible with the binding of BamBCDE, as 

determined experimentally (Fig. 1; Extended Data Fig. 1).

To validate the BamA-RcsF conformation revealed by the X-ray structure, we subjected the 

complex to crosslinking and analysis via mass spectrometry using the homobifunctional 

NHS-ester crosslinker disuccinimidyl dibutyric urea23. The sequence coverage of RcsF was 

about 60% (Extended Data Fig. 4a). Note that one peptide from the N-terminal linker was 

detected, indicating that the N-terminal disordered region was not degraded during 

purification. Crosslinks were identified between lysine residues in RcsF (two lysines from 

the globular domain and one located at the C-terminus of the linker) and those in POTRA4 

and POTRA5 (Extended Data Fig. 4b; Supplementary Table 2), providing further support for 

the architecture of BamA-RcsF determined by crystallography. To confirm that RcsF binds 

inside the barrel of BamA, we incorporated the photoreactive lysine analog N6-((3-(3-

methyl-3H-diazirin-3-yl)propyl)carbamoyl)-L-lysine (DiZPK)24 at multiple positions in the 

BamA β-barrel domain, selecting residues (R583, R592, K598, K610, R632, R634, R661, 

K808) whose sidechains face the lumen of the barrel (Extended Data Fig. 4b). After 

exposure to ultraviolet light, RcsF efficiently crosslinked to BamA when DiZPK was 

incorporated at three of the selected residues (R592, R598, K610) and to a lower extent at 

residue K808 (Extended Data Fig. 4b, c), confirming that RcsF binds deep inside the barrel. 

We measured an equilibrium dissociation constant of 350±49 or 420±48 nM, respectively, 

depending on whether BamA or RcsF was immobilized (Extended Data Fig. 4d, e). Finally, 

we deleted loop 1, a short, non-essential25 segment located between the first and second β-

strands of the barrel (residues 434 to 437; BamAΔloop1) (Fig. 3a; Extended Data Fig. 4b). 

BamAΔloop1 is functional 5 and able to rescue the lethality of a ΔbamA deletion mutant, 

despite the fact that the levels of major OMPs are slightly decreased in cells expressing 

BamAΔloop1 (Extended Data Fig. 4f). We hypothesized that deleting this loop would 

destabilize the BamA-RcsF interaction because of the close proximity of loop 1 to the lateral 

gate area and to loop 6, two regions of interaction between BamA and RcsF. As predicted, 

RcsF could be pulled down with BamA but not with BamAΔloop1 (Extended Data Fig. 4g). 

Further, the Rcs signaling cascade, which is turned on when RcsF fails to interact with 

BamA10, was constitutively induced in ΔbamA cells complemented with BamAΔloop1 

(Extended Data Fig. 4h). In sum, these results provide functional evidence for our structure 

of BamA-RcsF and confirm the presence of RcsF inside the barrel of BamA.
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RcsF does not bind BamA when the lateral gate is open

Strikingly, our structure suggests that RcsF binding is incompatible with the BamA β-barrel 

residing in the outward-open conformation (Fig. 3a). Confirming this hypothesis, RcsF was 

found to bind BamAG433C/N805C, a mutant in which opening of the lateral gate is prevented 

by a disulfide bond between β1 and β1626, but not to BamAG393C/G584C, which is locked in 

the outward-open conformation 5 (Extended Data Fig. 5a, b). However, when reduced, 

BamAG393C/G584C returned to the inward-open conformation and regained the ability to bind 

RcsF (Extended Data Fig. 5c). Importantly, given its ability to only bind the inward-open 

conformation of BamA, the BamA-RcsF complex serves as a proxy for this state. 

Interestingly, RcsF was recently reported to accumulate on BamA and to jam OMP assembly 

in the absence of BamB and BamE12,13. Thus, in light of our structural findings, BamA 

conformational cycling is likely impaired when BamB and BamE are absent. However, 

binding of these accessory lipoproteins cannot be sufficient to trigger conformational 

changes in BamA. The structure of BamABCDE has been solved not only in the outward-

open conformation but also in the inward-open conformation3–6, despite the presence of all 

accessory lipoproteins. In addition, we have shown here that RcsF could be co-purified with 

BamABCDE (Fig. 1; Extended Data Fig. 1), implying that in this purified complex, BamA 

was in the inward-open conformation. Thus, BamA can remain in the inward-open 

conformation even when BamBCDE are present, strongly supporting the notion that BAM 

conformational cycling is triggered by an external signal.

OMP substrates trigger conformational cycling in BamA

What is this trigger? Insights came from in vivo crosslinking experiments carried out in cells 

in which the expression levels of the BAM components were only moderately increased (~2-

fold) compared with wild-type levels. Whereas RcsF can be crosslinked to BamA when the 

BamA and BamB subunits are slightly over-expressed, the BamA-RcsF complex becomes 

barely detectable when the moderate over-expression of all BAM components is induced 

(Fig. 4 a, b). We explain this as follows: the BamAB subcomplex is not functional and does 

not funnel RcsF to its OMP partners. As a result, BamA-RcsF accumulates and OmpA-RcsF 

does not form (Fig. 4a). However, if all BAM components (BamABCDE) are moderately 

overexpressed, BAM activity is restored, RcsF only transiently interacts with BamA, and 

formation of OmpA-RcsF resumes (Fig. 4a; note that in these experiments, BAM is still 

expressed at physiological levels from the chromosome—by using plasmids, we manipulate 

the stoichiometry of the BAM components (Fig. 4b)). Therefore, whether a stable RcsF 

complex forms with BAM depends critically on the rates of OMP synthesis and delivery to 

BAM, as well as the ratio of active BAM complexes to the concentrations of OMP and RcsF 

substrates. When we purified the BamABCDE-RcsF complex (Fig. 1; Extended Data Fig. 

1), all BAM components were highly over-expressed, which increased the ratio of active 

complexes to incoming OMP substrates and allowed accumulation of RcsF on BAM. Thus, 

our data support a model in which it is the flux of incoming OMP substrates that triggers 

conformational changes in the BamA barrel and release of RcsF to its OMP partners (see 

below; Fig. 4c). Although complexes have to date only been observed between RcsF and 

OmpA/C/F10,11, complexes may form between RcsF and other, less abundant OMPs, 

depending on the unfolded OMP that is delivered to the BamABCDE-RcsF complex.
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RcsF is transferred to its partners during BamA cycling

RcsF is not an integral component of BAM; it can bind BamA with high affinity, but it is 

eventually funneled to OMPs and displayed on the cell surface10,11. It has been proposed 

that RcsF crosses the outer membrane by being threaded through the lumens of OMPs11. In 

one possible scenario, RcsF could be transferred from BamA to its OMP partner following 

opening of the lateral gate and formation of a hybrid barrel (or another non-covalent 

complex9 between BamA and the nascent OMP), which then buds away from BamA, taking 

RcsF with it. Available structures show that the transition from the inward-open to the 

outward-open conformation of BamA encompasses a large outward rotation of strands 1-6 

of the BamA β-barrel, as well as a 20 Å inward displacement of POTRA 5 (Fig. 3a, b, c)5,6. 

Strikingly, BamA strands 1-6 coincide with the main RcsF-BamA interaction zone (Z1) seen 

in our structure, such that outward rotation of Z1 may exert a pulling force on the tip of 

RcsF (Fig. 3a, c). Concomitantly, the inward movement of POTRA5 would exert a pushing 

force on the bottom of RcsF (Fig. 3c). We therefore hypothesize that during the inward-to-

outward transition of BamA, this push-and-pull action on RcsF could play a role in the 

transfer of RcsF to its OMP partners and its translocation to the cell surface (Fig. 4c). 

Supporting this, dynamic importance sampling simulations in which BamA transitions from 

the inward-open conformation (as in our structure) to the outward-open conformation (PDB 

code 5D0Q) show POTRA5 moving towards the periplasmic exit of the lumen, pushing 

RcsF upwards. The movement of POTRA5 is accompanied later on by the movement of Z1, 

opening the outward-facing extremity (Extended Data Fig. 6a, b, c, d and Supplementary 

Video). Furthermore, by introducing a short peptide in the hinge between POTRA5 and the 

β-barrel domain of BamA (BamAhinge), we could confirm the functional importance of this 

region for BamA activity. We found indeed that expression of BamAhinge from a plasmid 

rescues the growth of ΔbamA cells in minimal media at 30°C but not in rich media at 37°C, 

indicating that BamAhinge is unable to cope with the rate of OMPs folding in these latter 

conditions (Extended Data Fig. 6e).

Discussion

Our work reveals how BamA interacts with RcsF, providing insights into the mechanism 

used by BAM to assemble RcsF-OMP complexes, a novel activity by which BAM exports 

this lipoprotein to the cell surface. It would be surprising if an essential machinery such as 

BAM—with a global role in formation of the cell envelope—was only dedicated to export 

RcsF to the surface. Hence, it is tempting to speculate that other lipoproteins may follow the 

same route and decorate the surface of E. coli, in contrast to the general view that outer 

membrane lipoproteins face the periplasm27.

By showing that the globular domain of RcsF is lodged deep inside the barrel of BamA, our 

structure also reveals the remarkable—and unanticipated —finding that the BamA β-barrel 

can accommodate a lipoprotein “substrate” with a globular domain 12 kDa in size. This 

finding further establishes BAM as an essential hub that contributes to outer membrane 

biogenesis by interacting both with nascent OMPs for assembly and lipoproteins for export. 

Future work will reveal whether other lipoproteins bind BamA in a way similar to RcsF and 

also clarify the topology of the RcsF-OMP complexes. It has indeed been proposed that the 
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lipid moiety of RcsF is anchored in the outer leaflet of the membrane and that the N-

terminal disordered linker is exposed on the cell surface before being threaded through the 

lumens of the OMPs11. In this model, the globular domain of RscF resides inside the 

periplasm. Although we cannot rule out that RcsF flips during release from BamA and 

transfer to its OMP partners, our structure is more consistent with the hypothesis that BamA 

releases the globular domain of RcsF on the cell surface. Further investigation will therefore 

be needed to answer this question, and whether the location of RcsF depends on the identity 

of its OMP partner.

It is also remarkable that RcsF binds the lateral gate area and the outward rotating region of 

the BamA barrel, sites that sense BAM conformational cycling triggered by incoming OMP 

substrates. We previously reported that RcsF uses its interaction with BamA to detect stress 

in the cell envelope: when damage occurs in the peptidoglycan or the outer membrane, 

newly synthesized RcsF molecules fail to interact with BamA, activating the Rcs stress 

response10. Our structure provides a possible explanation for this scenario by suggesting that 

BamA preferentially adopts the outward-open conformation when envelope integrity is 

impaired, which would de facto prevent RcsF binding and promote Rcs activation. Thus, we 

propose that cells could monitor envelope integrity via the conformational cycling of BamA.

How the outer membrane of Gram-negative bacteria is assembled remains a long-standing 

mystery and a crucial question in biology. Here, we focused on BamA, the core component 

of BAM whose activity is essential to constructing and maintaining the outer membrane. By 

solving the structure of BamA in complex with its lipoprotein substrate RcsF, our work 

sheds new light on BAM. It not only provides crucial molecular insights into how BAM 

exports lipoproteins to the surface, but also uncovers important new features of this essential 

machinery and its mechanism. Because BAM activity is required for bacterial survival, the 

complex is an attractive target for new antibiotics28–31. Our work also paves the way to the 

design of new antibacterials that interfere with BAM conformational cycling, because 

blocking BAM in the inward-open conformation lethally jams BAM with RcsF.

Methods

Bacterial strains, plasmids, and primers

Bacterial strains and plasmids used in this study are listed in Supplementary Tables 3 and 4, 

respectively. The parental E. coli strain DH300 is a MG1655 derivative deleted for the lac 
region and carrying a chromosomal rprA P::lacZ fusion at the λ phage attachment site to 

monitor Rcs activation32. To delete bamA on the chromosome, a kanamycin resistance (kan) 

cassette33 with the flanking regions of bamA was PCR amplified from the genomic DNA of 

a ΔrcsF::kan strain (PL339) using primers “bamA Km del F” and “bamA Km del R”. Then 

we performed λ-Red recombineering 34 with plasmid pSIM5-tet 35 on the strain containing 

pSC270 as a bamA-complementing plasmid in DH300. Deletion of bamA was verified by 

PCR. After preparing P1 lysate from this strain, bamA deletion (by transferring the kan 
cassette) was performed via P1 phage transduction of the appropriate strains.

We performed site-directed mutagenesis to generate bamA variants on plasmids. For single-

codon changes, primer sequences are available upon request; otherwise see Supplementary 
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Table 5. By using pJH114 as a template and performing site-directed mutagenesis (SDM), 

we introduced a six-histidine tag at the N-terminus of BamA. The C-terminal His-tag of 

BamE was also removed via SDM, generating pRRA1. The primer pairs were “SDM-

HisBamA F” with “SDM-HisBamA R” and “bamE delHis F” with “bamE delHis R”. To add 

bamB next to bamA in pBamA, both bamA and bamB were PCR amplified as a single DNA 

fragment from pJH11436 using primers “pTrc-for” and “bamB (NotI) R”. The PCR product 

and pBamA were digested with NcoI and NotI and then ligated, yielding pBamA-B. 

pBamAhinge plasmid was generated by SDM using primers “BamA hinge F” and “BamA 

hinge R” and pBamA as template. To clone bamC, bamD, and bamE as an operon into a 

low-copy plasmid (pAM238), PCR was performed on pRRA1 as a template using primers 

“bamC kpnI F” and “pTrc-rev2”. The PCR product and pAM238 were digested with KpnI 

and XbaI and ligated, generating pSC263. We cloned bamA without the six-histidine tag 

into the low-copy plasmid pSC2310, yielding pSC270. bamA was PCR amplified from E. 
coli genomic DNA using primers “BamA (PciI)F” and “BamA (XbaI)R” and ligated with 

pSC231 predigested with NcoI and XbaI. To generate the bamA variants locked in the 

closed and open conformations, SDM was performed on pBamA-B. First, the two cysteines 

in the eL6 loop of BamA were mutated to serines, generating pBamAL6-B. This plasmid was 

used as template for SDM to generate pBamAG393C/G584C-B and pBamAG433C/N805C-B. To 

generate bamA variants with amber codons (TAG) to insert 3-(3-methyl-3H-diazirine-3-yl)-

propaminocarbonyl-Nε-L-lysine (DiZPK; Artis Chemistry, Shanghai) at selected positions, 

we performed SDM on pBamA-B and pSC270; primer sequences are available upon request.

Expression and purification of the BamAB-RcsF complex

E. coli PL358 cells harboring pJH118 expressing N-terminal six-histidine-tagged BamA and 

BamB36 and pSC216 expressing RcsF10 were cultured to overexpress BamA, BamB, and 

RcsF. Cells were grown in Terrific Broth Auto Inducing Medium (Formedium) 

supplemented with 0.2% (w/v) L-arabinose at 37 °C (to induce RcsF), ampicillin (200 μg/

mL), and chloramphenicol (25 μg/mL). Cells (1 L) were pelleted when they reached OD600 

~ 4, re-suspended in cold phosphate-buffered saline (25 mL) containing a protease-inhibitor 

cocktail (Complete, Roche), and lysed by two passages through a French pressure cell at 

1,500 psi. The cell lysate was centrifuged for 40 min at 40,000 × g and 4 °C. After 

centrifugation, inner-membrane proteins were solubilized using 0.5% (w/v) N-lauryl 

sarcosine (Sigma) in a buffer containing 20 mM Tris-HCl [pH 7.5] and 150 mM NaCl for 

1.5 h at 4 °C on a roller. The suspension was centrifuged for 40 min at 40,000 x g and 4 °C, 

after which the inner membrane fraction was in the supernatant while the outer membrane 

fraction remained in the pellet. Outer-membrane proteins were solubilized using 1% (w/v) n-

dodecyl-β-d-maltopyranoside (DDM; Anatrace) in a buffer containing 20 mM Tris-HCl [pH 

7.5], 300 mM NaCl, and 20 mM imidazole overnight at 4 °C on a roller. After centrifugation 

(40,000 x g, 4 °C, 40 min), the supernatant was mixed with Ni-NTA agarose beads (2 mL; 

IBA Lifescience) equilibrated with 20 mM Tris-HCl [pH 7.5], 300 mM NaCl, 20 mM 

imidazole, and 1% (w/v) DDM. After washing the resin with 10 column volumes of buffer 

(20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 20 mM imidazole, 0.6% (w/v) tetraethylene 

glycol monooctyl ether (C8E4; Anatrace), and 0.01% (w/v) DDM), proteins were eluted 

with 5 column volumes of the same buffer supplemented with 200 mM imidazole. The 

eluted complex was then concentrated to 1 mL using a Vivaspin 4 Turbo concentrator (Cut-
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off 5 kDa; Sartorius). A final purification step was performed using size-exclusion 

chromatography by loading the proteins on a HiLoad 10/300 Superdex 200 column (GE 

Healthcare) using 20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.6% (w/v) C8E4, and 0.01% 

(w/v) DDM. Peak fractions were pooled and concentrated to ~30 mg/mL for crystallization.

For co-crystallization with NaI, NaI replaced NaCl in the gel-filtration buffer. Peak fractions 

were pooled and concentrated to ~30 mg/mL using a Vivaspin 4 Turbo concentrator 

(Sartorius).

The Blue native electrophoresis analysis of the concentrated complex was carried out on a 

3-12% Bis-Tris gel (Life Technologies) following the manufacturer’s instructions. The 

protein complex bands separated in the native electrophoresis were identified via SDS-

PAGE. Briefly, bands of interest were excised, boiled in SDS-PAGE sample buffer, and 

applied to the top of a polyacrylamide gel.

Expression and purification of BAM (BamABCDE) in complex with RcsF

E. coli BL21 (DE3) was transformed with pRRA1 expressing all five BAM proteins (N-

terminal six-histidine-tagged BamA, BamB, BamC, BamD, and BamE) and pSC216 

expressing RcsF for BAM and RcsF overexpression. In control cells, only pRRA1 was 

transformed. Protein expression and purification were performed as described above except 

that the detergent was exchanged to 0.1% (w/v) DDM during Ni-NTA affinity 

chromatography and size-exclusion chromatography. Eluted complexes were identified via 

SDS-PAGE and concentrated to 4 mg/mL. Blue native electrophoresis of the concentrated 

complexes was carried out as described above.

Crystallization, data collection and structure determination

Crystallization assays were carried out using the hanging drop vapor diffusion method in 48-

well plates (Molecular Dimensions) at 20°C. The protein solution was mixed in a 2:1 ratio 

with the crystallization solution from the reservoir. The best native crystals were grown after 

4 to 5 days in C10 and G10 conditions from Morpheus crystallization screen (Molecular 

dimensions; C10: 0.03 M sodium nitrate, 0.03 M sodium phosphate dibasic, 0.03 M 

ammonium sulfate, 0.10 M Tris-base [pH 8.5]; BICINE, 20 % (v/v) ethylene glycol; 10 % 

w/v PEG 8000; G10: 0.02 M sodium formate; 0.02 M ammonium acetate; 0.02 M sodium 

citrate tribasic dihydrate; 0.02M potassium sodium tartrate tetrahydrate; 0.02 M sodium 

oxamate; 0.10 M Tris-base [pH 8.5]; BICINE; 20% (v/v) ethylene glycol; 10 % (w/v) PEG 

8000).

The crystals were harvested in a nylon loop, flash-cooled and stored in liquid nitrogen for 

data collection. Crystals were screened on beamlines Proxima-1 and Proxima-2 at 

Synchrotron Soleil (Gif-sur-Yvettes, France) as well as beamlines I03 and I04-1 at Diamond 

Light Source (Didcot, UK). Data for structure determination were collected on the 

Proxima-2 beam-line at Synchrotron Soleil at a wavelength of 1.77 Å. Data were indexed 

and integrated using XDS37, scaled using XSCALE37 and anisotropically corrected using 

STARANISO, applying a high resolution cutoff of I/σI = 1.238. The crystals belong to space 

group C2, with the unit cell dimensions a=158.84, b=142.5300, c=116.4200 Å3 and 

μ=102.61°. The structure was determined by molecular replacement using Phaser39, with the 
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globular domain of RcsF (residues 51-130, PDB:2Y1B) and the inward open BamA μ-barrel 

(residues 422-809, PDB: 5D0O) and BamA POTRA domain 4 (residues 265-344; PDB: 

5D0O) as search models. Molecular replacement searches identified two copies each of the 

BamA μ-barrel, RcsF and POTRA domain 4. Following 10 cycles of rigid body refinement 

POTRA domains 1, 2, 3 and 5 of the first BamA-RcsF copy in the asymmetric unit 

(Extended Data Figure 2) could be manually placed in the 2FoFc and FoFc difference 

density and were subjected to an additional 10 rounds of rigid body refinement. The model 

was refined to 3.8 Å resolution using BUSTER40 and intermittent manual inspection and 

correction of the model in Coot41. BUSTER was run using Local Structure Similarity 

Restraints (LSSR) over the two copies in the asymmetric unit, as well as target-based 

similarity restraints using the inward open BamA structure as reported in PDB:5D0O. The 

final model shows R and freeR factors of 28.3% and 31.4%, respectively, containing 1388 

amino acids, of which 19 are indicated as Ramachandran outliers (1.4%). We note that side 

chain positioning is frequently ambiguous at 3.8 Å resolution and should therefore not be 

over-interpreted by users of the deposited model. Side chains for which no unambiguous 

electron density was observed were not pruned for ease of model interpretation. Such side 

chains were included in refinement and manually modelled in there most likely rotamer 

using Coot. Data collection and refinement statistics are found in Supplementary Table 1.

Site-specific photo-crosslinking

We used a site-specific photo-crosslinking method described previously10 with some 

modifications. To incorporate DiZPK into BamA, we used the pSup-Mb-DIZPK-RS plasmid 

encoding an evolved Methanosarcina barkeri pyrrolysyl-tRNA synthetase and an optimized 

tRNACUA
Pyl  suppressor24. DH300 cells were co-transformed with pSup-Mb-DIZPK-RS and 

one of the plasmids containing an amber codon in BamA in pSC270. Cells were grown in 3-

(N-morpholino) propanesulfonic acid (MOPS) minimal medium supplemented with 0.2% 

glucose, 0.2% (w/v) arabinose, 200 μM IPTG, 0.001% (w/v) casamino acids, and 0.8 mM 

DiZPK. When cells reached OD600 = 1, 500-μL samples were irradiated with ultraviolet 

light at 365 nm or left unirradiated for 10 min. Cells were precipitated with trichloroacetic 

acid, washed with ethanol, and proteins were solubilized in 100 μL SDS-PAGE sample 

buffer (50 mM Tris-HCl [pH 7.5], 1% (w/v) SDS, 10% (v/v) glycerol, 0.002% (w/v) 

bromophenol blue) before SDS-PAGE and immunoblotting using anti-RcsF and anti-BamA 

antibodies.

In vivo BS3 crosslinking

Cells were harvested around mid-log phase (OD600 = ~ 0.5). In vivo crosslinking was 

performed as described previously10, except that bis(sulfosuccinimidyl)suberate 

(CovaChem) was used instead of 3,3’-dithiobis(sulfosuccinimidyl propionate).

Chemical crosslinking-mass spectrometry

We first performed buffer exchange of the purified BamAB-RcsF complex using a PD-10 

desalting column (GE Healthcare Life Sciences). The complex was eluted with 20 mM 

HEPES [pH 7.5], 150 mM NaCl, and 0.1% (w/v) DDM. A 30-fold molar excess of the 

crosslinker disuccinimidyl dibutyric urea (50 mM stock solution in dimethyl sulfoxide, 
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Thermo Scientific) was added to the protein solution and incubated at 37 °C for 1 h. The 

reaction was quenched by adding Tris-HCl to a final concentration of 20 mM. Crosslinked 

proteins were precipitated with ethanol and trypsinized, and crosslinked peptides were 

enriched through cation exchange as described previously42. Briefly, crosslinked proteins 

(50 μL) were precipitated by adding ice-cold ethanol (150 μL) and 3 M sodium acetate [pH 

5.3] (5 μL) prior to incubation at −20 °C for 16 h. The sample was centrifuged (16,200 x g, 4 

°C, 30 min), the supernatant was removed, and the pellet was washed by adding 80% (v/v) 

ice-cold ethanol (200 μL) and vortexing for 30 s. The sample was centrifuged again, the 

supernatant was removed, and the pellet was dried in a vacuum centrifuge. The pellet was 

dissolved in 1% (w/v) RapiGest (Waters) (10 μL) and trypsin (Sequencing grade, Promega) 

solution was added (90 μL, 1:50 trypsin:protein mass ratio) before incubating overnight at 

37 °C. Trifluoroacetic acid was added (final concentration 0.5% (v/v)) and the sample was 

incubated at 37 °C for 1 h to precipitate the Rapigest. The mixture was centrifuged (16,200 x 

g, 4 °C, 30 min), the supernatant was concentrated using a vacuum centrifuge, and the pellet 

was dissolved in 20% (v/v) acetonitrile/0.4% (v/v) formic acid (20 μL). Strong cation 

exchange enrichment was carried out using OMIX 10 μL strong cation exchange pipette tips 

(Agilent) as previously described42.

Fractionated peptides (5 μL) were injected onto a reverse-phase Acquity M-Class C18, 75 

μm x 150 mm column (Waters) and separated via gradient elution of 1-50% (v/v) solvent B 

(0.1 % (v/v) formic acid in acetonitrile) in solvent A (0.1 % (v/v) formic acid in water) over 

60 min at 300 nL/min. The eluate was infused into a Xevo G2-XS (Waters) mass 

spectrometer operating in positive ion mode. Mass calibration was performed by infusion of 

aqueous NaI (2 μg/μL). [Glu1]-Fibrinopeptide B was used for the lock mass spray, with a 0.5 

s lock spray scan taken every 30 s. The lock mass correction factor was determined by 

averaging 10 scans. Data acquisition was performed in DDA mode with a 1 s mass-

spectrometry scan over m/z 350-2000. Instrument parameters were optimized for the 

detection of crosslinked peptides, as described previously43. Data processing and crosslink 

identification were performed using MeroX44.

Expression of BamA mutants and co-purification with RcsF

pBamA and pBamA-B each provide chromosomal-level expression of BamA10. Therefore, 

we introduced mutations of bamA in these plasmids to test the physiological effects of 

BamA mutants; plasmids were expressed in the presence or absence of bamA on the 

chromosome. Cells (2 mL) were harvested at OD600 ~ 0.5 to purify BamA, except during 

the following experiment. The cysteine mutants of BamA, when oxidized to form a disulfide 

bond, allow BamA to form an “open” or “closed” lateral gate. Therefore, the efficiency of 

disulfide-bond formation in these mutants is very important. To enhance the oxidation of 

cysteines to form disulfide bonds, we added 3 mM tetrathionate as an oxidant45 at OD600 ~ 

0.5 and harvested cells (1 mL) at OD600 ~ 1.0.

Since there was a six-histidine tag at the N-terminus of BamA, we used Dynabeads™ His-

Tag (Invitrogen) for Ni-affinity purification. After resuspending cells in 350 μL of 25 mM 

Tris-HCl [pH 7.4], 290 mM NaCl, 1 mM imidazole, and 0.05% (w/v) DDM (buffer A), cells 

were lysed via mild sonication on ice. Membrane vesicles were further solubilized by 
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increasing the DDM concentration to 1% (w/v). After removing debris via centrifugation at 

9,300 × g for 10 min, 5 μL of Dynabeads™ His-Tag (pre-washed with buffer A and 

resuspended in the same volume) were added to 250 μL of the supernatant, which was 

incubated for 20 min at 4 °C. The rest of the supernatant was used as the input fraction. The 

magnetic beads were pulled by a magnet and the supernatant was taken for the flow-through 

fraction. After washing the beads three times with 750 μL buffer E using the magnet, bound 

proteins were eluted with 83 μL (three times enrichment compared to the other fractions) of 

buffer A with 300 mM imidazole. Forty microliters of the input, flow-through, and elution 

fractions were mixed with SDS-PAGE sample buffer. After denaturation of the three 

fractions, SDS-PAGE was performed, followed by immunoblotting using rabbit-raised anti-

BamA, anti-RcsF10, anti-BamB, anti-BamC, anti-BamD, and anti-BamE.

To determine the redox states of the cysteine-introduced gate mutants of BamA, we added 3 

mM N-ethylmaleimide in SDS-PAGE sample buffer to alkylate cysteines to prevent thiol-

disulfide exchange. The sample was divided into two aliquots and 10 mM of tris(2-

carboxyethyl) phosphine was added to one of them to obtain the reduced state of BamA as a 

control. Nu-PAGE (4-12% gradient; Novex) was used to separate the oxidized and reduced 

bands of BamA.

Spotting assay for growth—Cells were grown in M9 minimal glucose medium at 30°C 

until they reached OD600 =1. Tenfold serial dilutions were made in M9 minimal glucose, 

plated onto M9 minimal glucose or LB agar, and incubated at 30°C or 37°C. Plates were 

supplemented with ampicillin (200?μg/ml).

Biolayer interferometry

Untagged BamA was first biotinylated using the EZ-Link NHS-PEG4-biotin kit (Perbio 

Science). The reaction was stopped by adding Tris [pH 8] to the final concentration of 20 

mM. Excess NHS-PEG4-biotin was removed by passing the sample through a Zeba Spin 

Desalting column (Perbio Science). Biolayer interferometry was performed in black 96-well 

plates (Greiner) at 25 °C using OctetRed96 (ForteBio). Streptavidin and Ni-NTA biosensor 

tips (ForteBio) were hydrated with 0.2 mL working buffer (20 mM Tris [pH 8], 150 mM 

NaCl, 0.03 % (w/v) DDM) and then loaded with biotinylated BamA or 6xHis-tagged RcsF, 

respectively.

In the forward experiment, purified 6xHis-tagged RcsF (5 μg/mL) was immobilized on Ni-

NTA sensors until the signal reached 0.5-0.6 nm. Association and dissociation of BamA to 

RcsF-coated tips were monitored for 1200 s and 300 s, respectively, by dipping tips into 

BamA-containing buffer (serial two-fold dilution from 4000 nM to 62.5 nM), and 

subsequently in buffer only. In the reverse experiment, biotinylated BamA was immobilized 

on streptavidin sensor tips to a signal of 2.0 nm. The association and dissociation of RcsF 

(serial 3-fold dilution from 3000 nM to 12.34 nM) to BamA-coated tips were monitored for 

4800 s and 700 s, respectively. Dissociation constants were determined using Graphpad 

Prism by linear regression of the steady-state binding responses in the saturation binding 

experiment (Extended Data Fig. 4c, d).
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For binding of the BamAG393C/G584C mutant (Extended Data Fig. 5c), 6xHis-tagged RcsF 

was immobilized on Ni-NTA sensors. To follow BamA association and dissociation, RcsF-

coated tips were dipped into 0.2 mL of 200 nM BamA solution, with or without 2 mM 

diothiothreitol, for 1200 s, followed by 1200 s in buffer only.

Antibodies and immunoblotting

Rabbit anti-RcsF antibody was previously generated and used by us10. We newly raised the 

antibodies against BamA, BamB, BamC, BamD, and BamE in rabbits as follows. Except 

BamA, the DNA sequences encoding the proteins without the signal sequence were cloned 

into pET28a (Novagen) using the NcoI and XhoI restriction sites, which allows the 

expressed proteins to be his-tagged at the C-terminus. For BamA, DNA encoding the 

POTRA domains (1-4) of BamA with a C-terminal strep-tag (but without the signal 

sequence) was cloned in pET21a (Novagen). All the proteins above were overexpressed in 

BL21(DE3) and purified using standard methods for Ni-NTA affinity purification or 

streptavidin purification (POTRA 1-4). Small aliquots of the purified proteins were sent to 

the CER group (Marloie, Belgium) to raise antibodies in rabbits. Goat Anti-Rabbit IgG 

alkaline phosphatase conjugated (Sigma) was used as a secondary antibody at a 1:20,000 

dilution.

Antibody specificity was confirmed by comparing the immunoblot of the wild-type strain 

with that of a mutant using each corresponding antibody. The dilutions of the antibodies for 

immunoblotting were 1:10,000 (BamA), 1:20,000 (BamB), 1:40.000 (BamC), 1:10,000 

(BamD), and 1:20,000 (BamE). The specificity of the antibodies was verified; data are 

available upon request.

To simplify the detection of Bam components and RcsF after purification of BamA, we used 

two mixtures of antibodies (anti-BamA plus anti-RcsF; anti-BamB, anti-BamC, anti-BamD, 

plus anti-BamE). Detection specificity was verified using similar mutants as above but 

harboring pBamA. Data are available upon request.

The antibody recognizing the transmembrane domain of OmpA is a gift from the Bernstein 

laboratory46. The rabbit polyclonal OmpC antibody was purchased from EPIGENTEK. The 

anti-E. coli EF-Tu antibody (mAb 900) was purchased from HycultBiotech. The Goat anti-

mouse IgG conjugated with the Cy3 fluorescent dye was used as a secondary antibody for 

EF-Tu (Amersham).

β-galactosidase assay

Rcs induction was monitored by measuring β-galactosidase activity as described47. Briefly, 

cells harboring PrprA-lacZ at the attB phage lambda site on the chromosome were diluted 

1:100 from overnight cultures in Luria broth (LB), then incubated at 37°C. Cells were 

harvested at OD600 = 0.6-1. Twenty microliters of cells were harvested and incubated with 

80 μl of permeabilization solution (60 mM Na2HPO4·2H2O, 40 mM NaH2PO4·H2O, 10 mM 

KCl, 1 mM MgSO4·7H2O, 50 mM β-mercaptoethanol) for 30–45 min at room temperature. 

Then, 600 μl of substrate (1 mg/ml O-nitrophenyl-β-d-galactoside, 50 mM β-

mercaptoethanol) were added. The mixture was further incubated at 30°C for 20-90 min. 

Seven hundred microliters of 1 M Na2CO3 were added to stop the reaction, and the optical 

Rodríguez-Alonso et al. Page 13

Nat Chem Biol. Author manuscript; available in PMC 2021 March 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



density was measured at 420 nm. The standardized amount of β-galactosidase activity was 

reported in Miller units. The ratio of PrprA-lacZ induction was calculated relative to the 

basal level in a WT strain. Bar graphs with corresponding statistical analysis were prepared 

using Prism 7 (GraphPad Software, Inc.).

Statistical methods

The significance of differences among bacterial strains was assessed using GraphPad Prism 

8 according to analysis of variance (two ways ANOVA), followed by the application of 

Tukey’s multiple-comparison test. Normality was assessed using the Shapiro-Wilk test.

Molecular modeling: protein insertion in the lipid bilayer

The initial simulation system was prepared starting from the BamA-RcsF complex 

determined in this work (PDB code 6T1W) with the POTRA1-4 domains removed. Missing 

residues and C-terminal residues of BamA and RcsF were completed with MODELLER 

v9.2248 to generate a protein complex containing residues 347-810 for BamA and 51-134 

for RcsF. This complex was preorientated with respect to the membrane normal (z axis) 

using the structure 5AYW 6 from the OPM database (https://opm.phar.umich.edu)49 as 

template, then embedded in an asymmetric bilayer to mimic the E. coli outer membrane 

using CHARMM-GUI (http://www.charmm-gui.org) 50 and following the protocols 

described for OmpLA51 and BamA52). The inner leaflet was a mixture of 100 lipids: 75 1-

palmitoyl(16:0)-2-palmitoleoyl(16:1 cis-9)-phosphatidylethanolamine (PPPE), 20 1-

palmitoyl(16:0)-2-vacenoyl(18:1 cis-11)-phosphatidylglycerol (PVPG), and 5 1,10-

palmitoyl-2,20-vacenoyl cardiolipin with a net charge of –2e (PVCL2), corresponding to a 

ratio of 15:4:1. The outer leaflet was composed of 36 LPS (including the lipid A, R1 core 

and O-antigen polysaccharide fragments). The equilibration was performed according to the 

standard protocol from CHARMM-GUI Membrane Builder, with restraints that were 

gradually reduced in 6 steps (2.125 ns overall), using CHARMM version 44b153. A similar 

protocol was used to build a second system, containing the outward-open conformation of 

BamA (PDB code 5D0Q)5 with the POTRA1-4 domains removed and the RcsF from 6T1W 

shifted upwards on the z axis by 30 Å.

Dynamic importance sampling simulations

Dynamic importance sampling (DIMS) uses a biasing with correction approach to improve 

the sampling efficiency of rare events. The soft ratcheting algorithm generates transitions 

between states using a stochastic approach54. It should be noted that at any point of the 

DIMS simulation the intermediate system is realistic (no force is applied and the potential 

function is not modified) and the simulated pathway is always possible, although it may not 

be in all cases the lowest energy one. In this work, we carried out DIMS Langevin dynamics 

(LD) simulations using CHARMM version 44b1 (collision frequency of 25.0) starting from 

the first system and with the second system as target. The “soft-ratcheting” implemented in 

DIMS accepts all steps proceeding towards the desired final state and a fraction of steps 

away from the target. This fraction is defined by DIMS-Cartesian for which we used the 

recommended value of 10−6 55. Two replicas were simulated, providing similar results, and 

only the results from the first replica are presented here.
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Image and video rendering

The pictures representing molecular data were generated using PyMOL version 2.2.0 

(Schrödinger LLC, https://pymol.org). The video was generated from the DIMS simulation 

(replica 1) using VMD56.

Extended Data

Extended Data Fig. 1. RcsF can be co-purified with the BAM complex
(a,b,c) Gel filtration profiles of the affinity-purified BamAB-RcsF, BAM-RcsF and BAM 

complexes. The size exclusion chromatography was performed using a HiLoad 10/300 

Superdex 200pg. The input and peak fractions were collected and the samples were analyzed 

by blue native electrophoresis with Coomassie staining. The migration pattern of 

BamABCDE-RcsF (b) was modified compared to BamABCDE (c) upon size exclusion 

chromatography (band 8 increases), reflecting the higher instability of the BamABCDE-

RcsF complex. n= 4 biologically independent experiments.
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Extended Data Fig. 2. Crystal structure of the BamA-RcsF complex
(a, b) Final 2Fo-Fc electron map of the BamA-RcsF complex, shown with a map contour 

level of 0.08 e-/Å3 (root mean square deviation 1.02 Å). The asymmetric unit of the crystals 

holds two BamA-RcsF copies, one revealing interpretable electron density for the full BamA 

sequence (a), and a second revealing unambiguous density for POTRA domain 4 only (b). In 

the second copy (b), the electron density corresponding to POTRA domains 1, 2, 3, and 5 is 

too weak to allow unambiguous rigid body placement of the domains. All descriptions and 

images in the main text are based on the first copy (a). (c) Overlay of two BamA-RcsF 

complexes in the asymmetric unit. The first complex depicts BamA in gold and RcsF in 

blue, while these molecules are yellow and light blue, respectively, in the second complex. 

In both copies, RcsF makes an average displacement of 4 Å relative to the BamA β-barrel. 

(d) Crystal packing of the BamA-RcsF complex viewed along the a- (left) and c-axis (right). 

For the first copy of the BamA-RcsF complex in the asymmetric unit (orange-slate) the 

conformation of the POTRA domains is stabilized by the packing along the b-axis, whilst 

for the second copy (cyan-slate) only POTRA domain 4 is involved in crystal contacts. In the 

latter, POTRA 5, 3, 2 and 1 are not in contact with neighboring molecules and show weak 

electron density only due to the lack of conformational stabilization.
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Extended Data Fig. 3. Structural dynamics of the BamA POTRA domains
(a, b) Superimposition of BamA-RcsF (gold and blue, respectively) with the POTRA 

domains in the inward-open BamABCDE complex (PDB: 5D0O; light blue) or the outward-

open BamACDE complex (PDB: 5EKQ; green). Complexes are superimposed based on 400 

equivalent Cα atoms in the BamA β-barrel, and shown in side (a) or periplasmic (b) view. 

For 5d0o and 5ekq, the accessory Bam subunits and the BamA β-barrel are omitted for 

clarity. (c) Periplasmic view of the inward-open BamABCDE complex, showing binding of 

the BAM accessory proteins BamB (magenta), BamC (red), BamD (blue), and BamE 

(yellow). Pulldown experiments showed that RcsF binds the BamABCDE complex (Fig. 1). 

In agreement with this observation, structural comparisons reveal that RcsF binding would 

not result in direct steric clashes with any BAM accessory protein. However, the positions of 

the POTRA domains in the BamA-RcsF and BamABCDE complexes are markedly 

different. In the BamA-RcsF complex, POTRA5 makes a 26 outward rotation to 

accommodate RcsF (see also Fig. 3), and a reorganization in the joint between POTRA 

domains 3 and 2 results in a more extended conformation of the POTRA “arm” and the 

projection of POTRA domains 2 and 1 further from the BamA β-barrel, a conformation not 

previously reported in available BamA structures. In the BamABCDE complex, BamD 

contacts both POTRA5 and the joint of POTRA domains 1 and 2. In the BamA-RcsF 
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complex, POTRA5 and POTRA domains 2 and 1 are too distant to be bridged by BamD; 

binding of BamD to BamA-RcsF therefore requires a conformational change in the POTRA 

arm or the dissociation of BamD at either of these two contact points.

Extended Data Fig. 4. Validation of the BamA-RcsF structure
(a) RcsF aminoacid sequence. The sequence coverage of the XL-MS experiment was about 

60% as highlighted in violet (b) Ribbon diagram of the BamA-RcsF structure. Highlighted 

residues show sites mutated to amber for incorporation of the photoreactive lysine analog 

DiZPK. Sites that crosslink to RcsF are green, sites that show no crosslinking are magenta. 

Mutation of extracellular loop 1 (eL1; red) leads to loss of RcsF binding (see panel g). 

BamA sidechains found to crosslink with RcsF by means of the homobifunctional amine-

reactive crosslinker disuccinimidyl dibutyric urea (DSBU) are shown as sticks and colored 

cyan. Residue K61 from RcsF, which was found to crosslink to BamA using DSBU, is 

shown as a stick and colored orange. The other two RcsF residues (K42 and K134) that 

could be crosslinked to BamA are not visible in this structural model. (c) In vivo 

photocrosslinking experiment in which cells expressing the BamA mutants containing 

DiZPK at the indicated positions were treated (+) or not (-) with ultraviolet light. Proteins 

samples were analyzed via SDS-PAGE and immunoblotted with anti-RcsF or anti-BamA 
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antibodies, showing that the photo-crosslinked complexes contain BamA and RcsF. WT, 

wild type. (d,e) Sensorgrams from biolayer interferometry (left) and corresponding 

equilibrium binding plots (right) of immobilized RcsF titrated with BamA (d) or 

immobilized BamA titrated with RcsF (e), n=1 biologically independent experiment. (f) The 

levels of major OMPs are slightly decreased in cells expressing BamAΔloop1. WT cells 

harboring the empty plasmid (pAM238) were used as control and EF-Tu expression levels 

were analyzed as loading control. n= 3 biologically independent experiments. (g) Deletion 

of loop 1 in BamA prevents RcsF from being pulled down with BamA. WT cells harboring 

the empty plasmid (pAM238) were used as control. n= 3 biologically independent 

experiments. (h) Overexpression of pBamAΔLoop1 in a bamA deletion strain activates the 

Rcs system compared to WT. A chromosomal rprA::lacZ fusion was used to monitor Rcs 

activity, and specific β-galactosidase activity was measured from cells at mid-log phase 

(OD600=0.5). Boxplot with whiskers from minimum to maximum. All values were 

normalized to the average activity obtained for WT cells harbouring the empty plasmid 

(pET3a) obtained from N=8 biologically independent experiments. Mean is showed as +. 

WT, wild-type; Kan, kanamycin.
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Extended Data Fig. 5. RcsF binds the inward-open conformation of BamA
Models for the BamAG393C/G584C 5 and BamAG433C/N805C 26 double cysteine mutants, 

which are locked in the outward-open or inward-open conformation, respectively, when 

oxidized. Mutated cysteines are shown as atom spheres. (b) BamA barrel locking and RcsF 

binding. Overexpression of double cysteine mutants pBamAG393C/G584C-B and 

BamAG433C/N805C-B in a wild-type strain. RcsF can be co-purified with the BamA β-barrel 

locked in the inward-open conformation (BamAG433C/N805C) by a disulfide bond (ox) but 

not in the outward-open conformation (BamAG393C/G584C). BamA mutants become reduced 
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(red) following treatment with tris(2-carboxyethyl) phosphine (TCEP) and migrate similarly. 

The oxidized form of BamAG393C/G584C migrates more slowly than wild-type BamA. As a 

result, two bands are visible for BamA in the input of BamAG393C/G584C, the lower 

migrating band corresponding to wild-type BamA expressed from the chromosome. n= 3 

biologically independent experiments. (c) Sensorgram from biolayer interferometry of 

immobilized RcsF titrated with BamAG393C/G584C, without (oxidized; - DTT) or with 

dithiothreitol (reduced; + DTT). When the β-barrel is locked in the outward-open 

conformation (- DTT), RcsF is unable to bind BamA. When reduced, BamAG393C/G584C 

regains binding, demonstrating that BamA reverts to the inward-open conformation in which 

it can bind RcsF.

Extended Data Fig. 6. The movement of POTRA5 towards the periplasmic exit of the lumen of 
the BamA barrel could push RcsF upwards
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(a,b) Lateral view of the initial and final conformations, respectively, of the BamA-RcsF 

complex during the dynamic importance sampling simulation (DIMS) of the BamA-RcsF 

complex. (c,d) Bottom view (from the periplasm) of the above conformations. BamA and 

RcsF are colored in orange and blue, respectively. The initial conformation of the system 

(BamA and RcsF) corresponds to the structure determined in this work (PDB code 6T1W)5 

with the POTRA1-4 domains removed. The final conformation of BamA is similar to the 

outward-open structure (PDB code 5D0Q). The explicit outer membrane and solvent are not 

shown for clarity. (e) Expression from BamAhinge from a plasmid in ΔbamA cells leads to a 

severe growth defect when cells are grown at 37°C in rich media, but not when they are 

grown in minimal media at 30°C. Cells were grown in M9 minimal glucose medium at 30°C 

until they reached OD600 =1. Tenfold serial dilutions were made in M9 minimal glucose, 

plated onto M9 minimal glucose or LB agar, and incubated at 30°C or 37°C. Plates were 

supplemented with ampicillin (200μg/ml). n=3 biologically independent experiments.
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Figure 1. RcsF forms a complex with BamAB and BamABCDE.
(a, b) SDS-PAGE (a) and blue native (b) analysis of purified BAM, BAM-RcsF and 

BamAB-RcsF complexes obtained via BamA-affinity chromatography. The bands analyzed 

in (c) are labelled 1 to 8. (c) SDS-PAGE analysis of the complexes shown in panel b (bands 

1 to 8). The BAM complex expressed from pRRA1 is a mixture of BamABCDE and 

BamABDE. n= 4 biologically independent experiments.
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Figure 2. Structure of the BamA-RcsF complex.
(a) Ribbon diagram of the BamA-RcsF complex in side view. BamA, gold; RcsF, blue. (b, c) 
Front (b) and extracellular (c) views of BamA-RcsF, with RcsF shown as a solvent-

accessible surface. POTRA domains 1 and 2 have been omitted for clarity. BamA eL6, 

green; pL4, magenta. Putative RcsF-interacting residues in contact zones Z1 and Z2 of the 

BamA β-barrel are colored cyan and magenta, respectively, and shown as sticks. Strands β1 

and β16, which form the proposed “lateral gate” of the BamA β-barrel1, are yellow. (d) 
Periplasmic view of the BamA-RcsF complex, with the BamA β-barrel shown as a solvent-

accessible surface and RcsF as a ribbon. Colors are as in panels b and c. POTRA domains 

were omitted for clarity.
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Figure 3. Conformational characteristics of the BamA-RcsF complex.
(a, c) Tilted top view and slabbed side view of the overlay of the BamA-RcsF complex and 

BamA in the outward-open conformation (grey, taken from BamACDE complex 

PDB:5EKQ4). The BamA β-barrel undergoes a ~45 outward rotation at strands β1-β6, and a 

20 Å inward displacement of POTRA5 compared to the structure of BamA-RcsF presented 

here. (b) Slabbed side view of the overlay of BamA-RcsF and BamA in the inward-open 

conformation (grey, taken from BamABCDE complex PDB:5D0O 5). In the structure of 

BamA-RcsF presented here, POTRA5 makes a 26 outward rotation relative to R421, where 

it connects to the BamA β-barrel. (a-c) Color scheme for BamA-RcsF is as in Fig. 2b. RcsF 

is shown as a solvent-accessible surface (a) or a ribbon (b, c). Panels (b, c) show side views, 

slabbed down to view the interior of the complex. For 5EKQ and 5D0O, the BAM accessory 

proteins BamB, C, D, and E were omitted for clarity, as were POTRA domains 1-4 in all 

shown BamA structures.
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Figure 4. BamA-RcsF is a proxy for the inward-open conformation of BamA.
(a) In vivo chemical crosslinking of RcsF with BamA and OmpA. The BamA-RcsF complex 

accumulates when either BamA alone or BamAB together are moderately over-expressed 

from a plasmid in cells also expressing BAM at physiological levels from the chromosome. 

The copies of BamA and BamAB in excess are not functional (BamCDE is required for 

BAM activity) and do not funnel RcsF to its OMP partners. As a result, RcsF accumulates 

on BamA and OmpA-RcsF does not form. Over-expression of BamCDE (also from a 

plasmid) in these cells restores the stoichiometry between the BAM components: BamA-
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RcsF does not accumulate and the formation of OmpA-RcsF is restored. As shown 

previously10, levels of OmpA-RcsF are inversely correlated with BamA-RcsF. 

Overexpression of the BamCDE sub-complex alone does not impact the activity of the BAM 

complex expressed from the chromosome: wild-type BamA-RcsF and OmpA-RcsF levels 

are observed. Wild-type BamA-RcsF and OmpA-RcsF levels are also detected when BamA 

and BamCDE are overexpressed together, as expected given that BamB is not essential. 

RcsF also forms a complex with the abundant lipoprotein Lpp (Lpp-RcsF), as in10. Protein 

expression levels of OmpA were analyzed by immunoblot in the non-crosslinked samples, 

showing no differences. The additional bands that are detected in the lanes where BamA-

RcsF is not observed likely correspond to poorly abundant complexes between RcsF and 

unknown proteins. n= 3 biologically independent experiments. (b) Protein expression levels 

of BamB, BamC, BamD, BamE and RcsF from no-crosslinked samples overexpressing 

BamA (pBamA), BamAB (pBamA-B) and BamCDE (pSC263) were analyzed by western 

blot. EF-Tu expression levels were analyzed as loading control. n= 3 biologically 

independent experiments. (c) Model proposing that BamA conformational cycling is 

triggered by incoming OMP substrates on the BAM holocomplex. A BamA inward-to-

outward open transition could result in an upward displacement of RcsF via a push-and-pull 

mechanism, resulting in an OMP-RcsF complex. The push-and-pull mechanism involves 

BamA POTRA5 (P5) and Z1. The topology of the OMP-RcsF complex remains to be 

established. For clarity, POTRA1-4 and the BAM lipoproteins have been ommitted.
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