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Summary

Poly- and perfluorinated chemicals, including per-
fluorinated alkyl substances (PFAS), are pervasive
in today’s society, with a negative impact on human
and ecosystem health continually emerging. These
chemicals are now subject to strict government reg-
ulations, leading to costly environmental remedia-
tion efforts. Commercial polyfluorinated compounds
have been called ‘forever chemicals’ due to their
strong resistance to biological and chemical degra-
dation. Environmental cleanup by bioremediation is
not considered practical currently. Implementation
of bioremediation will require uncovering and
understanding the rare microbial successes in
degrading these compounds. This review discusses
the underlying reasons why microbial degradation
of heavily fluorinated compounds is rare. Fluori-
nated and chlorinated compounds are very different
with respect to chemistry and microbial physiology.
Moreover, the end product of biodegradation, fluo-
ride, is much more toxic than chloride. It is impera-
tive to understand these limitations, and elucidate
physiological mechanisms of defluorination, in
order to better discover, study, and engineer bacte-
ria that can efficiently degrade polyfluorinated com-
pounds.

Introduction

Greater than 9000 heavily fluorinated chemicals have
been synthesized for commercial applications (Hogue,
2021). The term ‘perfluorinated alkyl substances’ (PFAS)
has become pervasive, but many environmentally relevant
fluorinated compounds contain carbon atoms bonded to
elements other than fluorine, and so they are best termed
polyfluorinated. This review will cover polyfluorinated com-
pounds, both aliphatic and aromatic (Fig. 1). It will discuss
perfluorinated compounds and compounds with perfluori-
nated alkyl groups bonded to other functional groups.
While fluoroacetate is not a polyfluorinated compound, it
is discussed here because it is the most well-studied
compound with respect to biodefluorination. The knowl-
edge gained from those studies is important to inform
ongoing studies with polyfluorinated compounds. The
industrial uses of polyfluorinated compounds and moieties
have expanded exponentially, being used in more than
200 distinct applications (Gl€uge et al., 2020). The goal is
to present microbial successes and failures in biodegrad-
ing polyfluorinated compounds and the underlying rea-
sons for those outcomes. It is important to better
understand the chemistry, microbiology and evolutionary
history underlying the many failures in order that we may
better find and, optimistically, engineer successes.
Polyfluorinated compounds are found in every corner of

earth, and human and ecosystem toxicity are now well doc-
umented (Ahrens and Bundschuh, 2014; Sunderland et al.,
2019; Sinclair et al., 2020; Brase et al., 2021; Podder et al.,
2021; Rice et al., 2021). Most recently, negative impact of
PFAS exposure includes more severe disease progression
following COVID-19 infection (Grandjean et al., 2020). Envi-
ronmental remediation efforts are increasing exponentially,
with billions of dollars being earmarked for the remediation
and litigation of polyfluorinated chemicals (Gardella, 2020;
Chesler et al., 2021; Cordner et al., 2021; Lim, 2021). How-
ever, designating heavily fluorinated compounds as ‘forever’
chemicals has hindered progress on effective remediation
strategies. The term signals to the public, regulators and
environmental engineers that nature will never destroy them
a priori. This review takes the stance that it is premature to
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preclude bioremediation of polyfluorinated compounds.
Biodegradation removes chemicals permanently and is a
relatively inexpensive option for eliminating low concentra-
tions of widely distributed pollutants (Alexander, 1999;
Wackett and Hershberger, 2001; Parales et al., 2002;
Dvo�r�ak et al., 2017). In that context, bioremediation is often
the method of choice for gasoline spills, groundwater
plumes of chlorinated solvents and general industrial waste
captured in holding ponds.
Fluorinated compounds pose a new challenge to micro-

bial metabolism and hence to the use of microbes for
bioremediation. There is a need for more fundamental
research on how microbes interact and react with organic
and inorganic fluorine. Fluorine differs from the other halo-
gen elements and chemical functional groups in many of
its properties (Aigueperse et al., 2000; Clark, 2002;
Jeschke, 2004; Kirsch, 2004; Emsley, 2011). This review
will highlight the uniqueness of organofluorine chemistry
and consider microbial metabolism in light of that. Overall,

the microbial metabolic degradation of heavily fluorinated
compounds is a rare phenotype, but one that must be
studied at a fundamental level in order to identify, and
hopefully engineer, microbes for more rapid biodegrada-
tion. Those doing enrichments or molecular engineering
will equally benefit from a background understanding of
fluorine chemical reactivity, interaction of organofluorine
with biomolecules, a natural history of fluorinated com-
pounds in the environment and the potential toxicity of
metabolic products of defluorination metabolism. This con-
tribution will review the published literature on fluorine
chemistry and biology with the goal of stimulating efforts
to better understand and implement PFAS biodegradation.

Polyfluorinated, including perfluorinated,
compounds are biodegradable

While news reports continue to describe polyfluorinated
compounds as ‘forever’ chemicals, the scientific literature

Fig. 1. Common fluorinated compounds found in the world. The only natural product, fluoroacetate, has a single fluorine substituent. The others
are industrial products and are polyfluorinated. Tetrafluoroethene (lower left) is typically not used directly but is polymerized to make the non-
stick polymer Teflon�.
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details the biodegradation of multiple fluorinated chemi-
cals, including PFAS. Specifically, two recent papers in
Environmental Science and Technology describe a sin-
gle bacterium and a consortium, respectively, that cat-
alyze defluorination of PFAS (Huang and Jaff�e, 2019;
Yu et al., 2020). In Huang and Jaff�e (2019), microbial
incubations with perfluooctanoic acid (PFOA) and perflu-
orooctanesulfonic acid (PFOS) led to their disappear-
ance concurrent with fluoride anion release, and proper
controls were performed to rule out artifacts. Both stud-
ies identified defluorinated products derived from the par-
ent compound. Huang and Jaff�e showed defluorination
concomitant with a progressive shortening of the mole-
cule, with perfluorooctanoate proceeding to perfluorohep-
tanoate and to perfluorohexanoate and so on (Huang and
Jaff�e, 2019). A similar degradative series has been
demonstrated in chemical studies using strong oxidants
or reductants, with proposed radical intermediates causing
decarboxylation and subsequent defluorination (Singh
et al., 2019; Su et al., 2019; Filho and Souza, 2020; Liu
et al., 2021; Palma et al., 2021). Given that radical decar-
boxylation reactions are well known in biological systems
(Liu et al., 2018a,b; Michlits et al., 2020; Rodrigues et al.,
2020; Pastore et al., 2021), a radical-based mechanism
for perfluorooctanoate was proposed (Wackett and Robin-
son, 2020). Moreover, radical desulfonation enzymology
has been described (Peck et al., 2019; Dawson et al.,
2021), and radical desulfonation chemistry for PFAS has
been described (Niu et al., 2016). Another major class of
polyfluorinated compounds are the fluoroteleomers, which
typically consists of a polyfluorinated chain bonded to
several methylene carbon atoms (Kwiatkowski et al.,
2020). In one recent example, 6:2 fluoroteleomer sulfonic
acid is biodegraded via attack at the carbon to sulfur
bond to produce a fluoroteleomer aldehyde, oxidized to a
carboxylic acid, and subsequently defluorinated by HF
elimination from the carbon atoms alpha and beta to the
carboxylic acid group (Shaw et al., 2019).
Collectively, these studies on the microbiology,

enzyme biochemistry and chemistry of polyfluorinated
chemicals demonstrate that they are chemically degrad-
able and biodegradable. Indeed, a large industry focus-
ing on remediation has arisen using physical and
chemical methods (Batelle, 2021; Cordner et al., 2021;
Envirogen Technologies, 2021; Lim, 2021). Incineration
has been investigated, but it is energy intensive for low
concentrations in water and may produce hazardous
hydrogen fluoride in the off gases (Winchell et al., 2021).
In addition, electrochemistry, plasma arc technology, and
chemical oxidants and reductants are being employed
(Singh et al., 2019; Su et al., 2019; Filho and de Souza,
2020; Liu et al., 2021; Palma et al., 2021). However, the
major drawback to these methods are their non-
specificity, expense and the chances for producing toxic,

reactive compounds as byproducts. In this context,
reverse osmosis and nanofiltration have been emerging
as important water treatment methods (Mastropietro
et al., 2021). Overall, the most common method for
water remediation of polyfluorinated compounds is sur-
face adsorption. Activated carbon is often used because
of its relative low cost and familiarity to the water treat-
ment communities (Belkouteb et al., 2020; Liu et al.,
2020; Sonmez et al., 2021). Carbon filtration is known to
remove many organic contaminants, often present at
higher concentration than the fluorinated compounds,
resulting in competition for binding sites on the adsor-
bent. For this reason, there have been accelerated
efforts to produce more specific adsorbents, and new
companies have emerged from these technologies
(Ching et al., 2020; Maga et al., 2021).
Biodegradation of fluorinated compounds, as observed

to date, occurs on scales of weeks and months, the range
of chemicals degraded is limited, and there are few
enzymes yet identified that represent the different chemi-
cal mechanisms of defluorination (Bondar et al., 1998;
Hasan et al., 2011; Tiedt et al., 2016; Huang and Jaff�e,
2019; Yu et al., 2020). A rare example is the enzyme fluo-
roacetate dehalogenase, which has been studied struc-
turally and mechanistically in significant detail (Goldman,
1965; Kurihara et al., 2003; Donnelly and Murphy, 2009;
Chan et al., 2011; Chan et al., 2011; Nakayama et al.,
2012)). However, the reaction is likely not representative
of how polyfluorinated compounds are biodegraded. Diflu-
oroacetate has been found to be much more recalcitrant
to biodegradation (Alexandrino et al., 2018), while
dichloroacetate is readily biodegraded (Slater et al., 1985;
Busto et al., 1992; Thomas et al., 1992; Blackburn et al.,
2000; Dixon et al., 2000; Pandey et al., 2017; Chen et al.,
2021). Recently, the enzymatic defluorination of difluorac-
etate and 2,3,3,3-tetrafluoropropionic acid has been
reported (Li et al., 2019; Yue et al., 2021). While the les-
ser fluorinated analogs are not major pollution problems,
trifluoroacetate is used in larger scale industrially, and
bioremediation systems have been sought, such as in
peptide synthesis companies where this strong acid is
used in deblocking chemistry (Sakakibara and Inukai,
1965; Pearson et al., 1989). Interestingly, the biodegrada-
tion of trifluoroacetate was initially reported in 1994 (Viss-
cher et al., 1994). However, that enrichment has not been
made available, and all efforts to reproduce that result
have been unsuccessful till date (Ochoa-Herrera et al.,
2016; Alexandrino et al., 2018; Yu et al., 2020). The report
by Huang and Jaff�e showed the formation and disappear-
ance of perfluorobutyrate as an intermediate (Huang and
Jaff�e, 2019), but biodegradation of trifluoacetate was not
examined in that study.
In total, the evidence that fluorinated compounds,

including polyfluorinated compounds, are biodegraded is
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compelling. However, it is also evident that this metabo-
lism is confined to a small number of microbial cultures.
In addition, when it does occur, the rates of defluorina-
tion of heavily fluorinated compounds is low. The proba-
ble reasons for the rarity and modest rates of
biodegradation are discussed below.

In biology, fluorine is very rare while chlorine,
bromine and iodide are much more prevalent

The halogen elements on earth are largely combined
with other elements and in that largely inorganic form,
fluorine is the most abundant of the halogens on Earth
and is overall the 13th most abundant element (Allegre
et al., 1995; McDonough, 2021). Despite that, fluorine is
relatively insignificant biologically, and this contrasts with
the halogens chlorine, bromine and iodine. Cellular chlo-
ride transport is an important physiological function in
bacteria, plants and mammals (Chen, 2005). The gen-
omes of many bacteria and archaea encode a Clc-type
chloride channel to import and maintain chloride balance
(Iyer et al., 2002). In Escherichia coli, a mutation in the
chloride channel showed it to be essential for pH home-
ostasis and acid stress survival (Maduke et al., 1999).
Thousands of chlorinated natural products have been
identified over the last few decades (Fig. 2) (Gribble,
2012, 2015; Dong et al., 2020; Ludewig et al., 2020),
and brominated natural products are common in marine
environments (K€upper and Carrano, 2019). Certain algae
accumulate high levels of iodine (Mondal et al., 2021),
and iodine represents more than half the mass of the
human hormone thyroxine (Thomas et al., 2009). Indeed,
many chlorinated, brominated and iodinated natural
products contain four or more halogen substituents
(Fig. 2). Multiple enzymes have been identified that pro-
duce organohalides, largely containing chlorine, bromine
or iodine. In fact, six different classes of halogenase
enzymes are known (Walker and Chang, 2014; Agarwal
et al., 2017; Murphy et al., 2017; Fejzagi�c et al., 2019;
Liu et al., 2021). Halogenase activity has apparently
evolved independently from different protein folds and
utilizing different (or no) cofactors. The classes are as
follows: (1) heme-iron haloperoxidases, (2) non-heme
iron halogenases, (3) flavin halogenases, (4) S-
adenosyl-L-methionine halogenases, (5) vanadium
haloperoxidases and (6) cofactor-free haloperoxidases.
By contrast, bacteria and other organisms do not

employ fluorine as they do chlorine and other halogens.
Fluoride is not accumulated. In fact, it is highly toxic to
bacteria, as discussed in a later section. Moreover,
biosynthesis of organofluorides by all living things is rare
(Murphy et al., 2003; Fincker and Spormann, 2017). The
naturally occurring organofluorine compounds are singly
fluorinated (Fig. 2) and are typically analogs of common

metabolites, such as acetate, citrate, amino acids and
nucleotides. This contrasts with chlorinated and bromi-
nated natural products, which are often unique structures
and may contain a large number of halogen sub-
stituents.
It is hypothesized here that the paucity of natural fluo-

rinated compounds compared to other organohalides is
one factor underlying the rarity of PFAS biodegradation.
It is well accepted that dehalogenases reactive with
organochlorine and organobromine compounds have an
ancient evolutionary origin and processed natural prod-
ucts prior to industrialization (Leisinger et al., 1994; Val-
verde et al., 2004; Quack et al., 2007; Futagami et al.,
2008; Liang et al., 2012; Hug et al., 2013; Richardson,
2013; Jugder et al., 2016). Some aromatic natural prod-
ucts substituted with chlorine and bromine substituents
(Fig. 2) resemble specific industrial chlorinated biphenyl
and brominated aromatic ethers (Hou et al., 2021). Poly-
halogenated methanes are also natural products (Grib-
ble, 2015) and may have primed the biodegradation of
industrial halomethane solvents. For example, a bac-
terium isolated from a bioreactor degrading dichloro-
methane contains a dehalogenase that produces
formaldehyde, which feeds into the organism’s C1 meta-
bolic pathways. The enzyme dichloromethane dehaloge-
nase is found broadly with widely divergent sequences,
consistent with a long evolutionary trajectory. Moreover,
it may have evolved under selection for metabolizing the
natural product dibromomethane (Quack et al., 2007).
The enzyme has a higher kcat and a lower KM for dibro-
momethane than dichloromethane (Scholtz et al., 1998).
In contrast, there is evidence for newly evolved dehalo-
genases that act on anthropogenic organochloride pesti-
cides (Wackett, 2004; Copley, 2009). Two example
enzymes for which there is good evidence for recent
evolution are atrazine chlorohydrolase (Seffernick and
Wackett, 2001) and 1,3-dichloropropene dehalogenase
(Poelarends and Whitman, 2004).
Fluorine-containing organic compounds are completely

different. There are on the order of a dozen fluorine-
containing natural products and well over one million
synthetic organic compounds containing fluorine, as
found in a search of PubChem (Kim et al., 2021). The
synthetic compounds have only entered commerce, and
the environment, in the last few decades. These new
organofluorine compounds have been thrust upon rela-
tively unprepared microbial populations. This contrasts
with the earlier explosion in synthesis of organochloride
commercial chemicals in the 1930s and 1940s that met
a microbial population exposed to highly chlorinated nat-
ural products for millions of years (Fig. 2). Clearly,
microbes are at an evolutionary disadvantage with
respect to PFAS and other fluorinated organic chemi-
cals.
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Fluorine chemistry is different from other halogens,
fluorine microbiology must differ too

Overlaid on this evolutionary consideration are the
chemical impediments to the biological disposition of
organofluorides, which will be discussed here. However,
only a relatively cursory treatment of organofluorine
chemistry will be presented, and the reader is recom-
mended to consult more detailed and excellent reviews
published elsewhere (Kissa, 2001; Smart, 2001; Dolbier,
2005; O’Hagan, 2008; H€ugel and Jackson, 2012).
In the microbiological literature, the rarity of organoflu-

orine degradation is often attributed to the C–F bond
being chemically much harder to cleave than other C-
halogen bonds in comparable compounds. This is an
oversimplification. Indeed, it is not universally correct
because in nucleophilic aromatic substitution reactions,
the C–F bond is more readily cleaved than comparable
C–Cl and C–Br bonds. That knowledge underlies the
use of 1-fluoro-2,4-nitrobenzene, or Sanger’s reagent, for
reaction with, and development of a detection method

for, amino acids (Sanger, 1945). In addition, as previ-
ously discussed, many bacteria produce a fluoroacetate
dehalogenase that hydrolyzes a natural product in which
the single C–F bond is reasonably reactive, activated by
the adjacent carboxylate moiety. This review article
seeks to describe the features of C–F chemistry that
most relate to the variable biodegradability of different
organofluorines as it pertains to their structures and indi-
vidual reactivities.
While it is difficult to completely generalize, some

chemical properties of fluorine and organofluorine com-
pounds can be described (Table 1). Fluorine is the most
electronegative atom, which is why organofluoride degra-
dation invariably leads to the electrons leaving with the
fluorine atom as an anion. The small size of fluorine is
important in the use of fluorine in drug development,
since fluorine is not too much larger than a hydrogen
substituent and can often substitute sterically without
compromising target binding. Such a substitution can
serve to substantially moderate drug clearance, an
important consideration in drug efficacy (Meanwell,

Fig. 2. Comparing and contrasting (A) fluorinated natural products (NPs) and (B) chlorinated, brominated and iodinated NPs.
A. Fluorinated NPs have only a single fluorine substituent and are typically analogs of biomolecules: I is 18-fluorosteric acid, II is fluoroacetone,
III is fluorocitric acid, IV is fluorothreonine, V is nucleocidin.
B. NPs Cl, Br, and I may contain multiple halogen substituents, examples with 4–6 per molecule are shown. VI, VII, and IX are marine natural
products. VIII is sigillin A, a deterrent produced by a flea. X is the human hormone thyroxine.
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2018; Al-Harthy et al., 2020; Hevey, 2021; Richardson,
2021). The lower reactivity of designed organofluorine
drugs with Phase I drug metabolism enzymes, typically
oxygenases, is paralleled by a typically lesser biodegra-
dation by bacterial oxygenases that act on hydrocarbon
substrates in the environment. This has resulted in a
recent trend of an increased incorporation of fluorine into
agrichemicals to increase environmental lifetime and effi-
cacy (Jeschke, 2017; Burriss et al., 2018; Ogawa et al.,
2020). Additionally, fluoride anions interact much more
strongly with water compared to other halide anions and
this might partially explain why biological systems have
rarely incorporated fluoride into biomolecules (Smart,
2001; Tahaikt et al., 2007). This also relates to fluoride
toxicity to cells, which will be discussed later.
The carbon-to-fluorine bond strength is often reported

as the strongest known bond, but the variation in bond
strength is considerable (Table 1). For example, the
bond strength for CF3–F is 130.5 kcal/mol whereas
CH3–F is 108.3 kcal/mol. Another literature source
reports a C–F bond strength of 154 kcal/mol in hexafluo-
robenzene (Edelbach and Jones, 1997). Yet, as previ-
ously discussed, molecules such as fluoroacetate
(Goldman, 1965; Nakayama et al., 2012) and various flu-
oronitrobenzenes (Zhao et al., 2014; Xu et al., 2019) are
relatively reactive, or can be activated, and are readily
biodegraded by microbes, so the C–F bond is not uni-
formly recalcitrant to microbial disruption. Moreover,
bond strength is not the sole determinant of reactivity in
organofluorine chemical reactions. For example, while
C–F bonds are generally stronger than C–H bonds in
aromatic and aliphatic compounds containing both, che-
mists have learned to selectively cleave either bond
using metallo-catalysts (Eisenstein et al., 2017). Selec-
tive C–F cleavage takes advantage of bond cleavage
mechanisms in which the more exothermic fluoride form-
ing reaction is favored. In general, aryl and olefinic fluo-
rine compounds are more reactive than perfluoroalkanes

since the p-bonds are subject to nucleophilic attack and
fluoride is a good leaving group in metal-catalyzed reac-
tions of this type (Kiplinger et al., 1994). Defluorination
of fluoroolefins with replacement by carbon dioxide was
shown to be carried out in good yield by copper cata-
lysts (Gao et al., 2020). Recently, a perfluoroalkenoic
acid was shown to undergo defluorination at an olefinic
carbon by a microbial consortium (Yu et al., 2020).
Perfluoroalkanes are generally less reactive, but are

not completely inert and are capable of undergoing
reductive defluorination (Saunders, 1996). However,
reduction of non-branched fluorocarbons containing only
secondary and primary C-F bonds is rare. This is due to
the low reduction potentials, generally less than �2.7
volts (V) (Park et al., 2009).
Fortunately, most commercially important PFAS are

not perfluoroalkanes, but contain other functional groups.
Two prominent examples are perfluorooctanoic acid
(PFOA), perfluorooctanesulfonic acid (PFOS) and deriva-
tives thereof (Wang et al., 2019). In addition to C–F
bonds, these molecules contain C–C(carboxylate) and
C–S(sulfonate) bonds that represent another weaker
point of attack. Indeed, one-electron reduction or oxida-
tion of these bonds to generate a carbon-centered radi-
cal, with subsequent installation of a hydroxyl group, is
plausible (Fig. 3). This will generate a shorter chain by
one via facile gem-elimination and hydrolysis reactions,
and that cycle will repeat (Fig. 3). That is a plausible
biodegradation mechanism, and there is precedent for
this with non-biological oxidative and reductive chemistry
as has been demonstrated in numerous publications
(Park et al., 2009; Liu et al., 2021; Palma et al., 2021).
Another distinctive chemical feature of fluorine in

organic molecules has relevance to the availability and
binding of these chemicals in biological systems. Perflu-
orocarbons have very low water solubility (Dalvi and
Rossky, 2010). In fact, perfluorocarbons are poorly sol-
uble in organic solvents and thus can form a third ‘fluo-
rous phase’ when added to a two-phase water/organic
solvent mixture (Studer et al., 1997; Dobbs and Kimber-
ley, 2002). Hydrofluorocarbons are much more water sol-
uble and perfluoro carboxylate and sulfonate compounds
show greatly variable solubility depending upon their car-
bon chain length. With longer chain lengths, water solu-
bility decreases. PFAS compounds in natural waters,
where their concentrations are typically parts per billion
or parts per trillion, will be dissolved.
Although solubilities can be measured directly, much

less is known about how PFAS compounds such as
PFOA and PFOS might move out of an aqueous envi-
ronment and into bacterial cells. There is evidence that
these compounds can partition into cellular membranes
passively (Fitzgerald et al., 2018b); in one case, this was
shown to affect the quorum sensing response (Fitzgerald

Table 1. Chemical properties of fluorine relevant to microbial physi-
ology.

General
Highest electronegativity by far
Smaller than any carbon substituent after hydrogen
Fluoride ion is highly solvated in water
Forms tight bonds with carbon, wide variability in bond strength
Low polarizability

In partially fluorinated molecules
Overall molecule often very polar
Variable reactivity

In perfluorocarbons (compounds with only C–C and C–F bonds)
Often lower boiling than the analogous hydrocarbons of much
lower MW
High vapor pressures
Poorly soluble in water and organic solvents
Poorly reactive with many reagents
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et al., 2018a). It is less clear if these molecules are
actively transported, perhaps adventitiously by trans-
porters evolved for other uptake functions.
Fluorinated molecules, even perfluorinated, can bind

to non-catalytic proteins such as bovine serum albumin
(Fedorenko et al., 2021). This indicates that natural pro-
teins and their amino acid side chains have the potential
for evolving pre-equilibrium binding of these molecules
as substrates. Indeed, a recent study has analyzed the
human protein ‘interactome’ of perfluorooctanephospho-
nic acid (PFOPA) and identified 469 PFOPA-binding pro-
teins (Zhang et al., 2021).

Mechanisms and limitations for microbial
organofluorine biodegradation

Microbial degradation of organochlorides has been
extensively studied, and so it is useful to compare analo-
gous chlorinated and fluorinated compounds here. Stud-
ies of microbial dechlorination physiology have revealed
five general types of reactions: (1) reductive, (2) oxida-
tive, (3) hydrolytic, (4) substitutive, and (5) eliminative
(Fig. 4). Based on known chemistry as previously dis-
cussed, the propensity for organofluorine biodegradation
following each of these mechanisms will be compared
and contrasted with organochlorine biodegradation.
Since this review focuses on fluorine, C–F bonds are
illustrated. However, it should be understood that there
are many more examples of C–Cl bond cleavage for
each type of reaction. As previously discussed, fluorine

differs from other halogens and so we would anticipate
that many dechlorinating enzymes would fail to catalyze
defluorination of analogous molecules. Exceptions are
known with some reasonably reactive monofluorinated
compounds such as fluoroacetate (Kurihara et al., 2000),
fluoroatrazine (Seffernick et al., 2000) and 2-
fluorobenzoate (Engesser and Schulte, 1989).

Reductive defluorination

In the mid-twentieth century, many chlorinated synthetic
pesticides were considered to be highly persistent in the
environment, even non-biodegradable (Wackett and
Robinson, 2020). It was realized in the 1960s that cer-
tain of these organochloride and organobromide pesti-
cides underwent reductive dehalogenation in soil (Castro
and Belser, 1968). Subsequent research showed that
reduced metallo-enzymes and their cofactors could cat-
alyze reductive dechlorination (Stotter et al., 1977;
Schrauzer and Katz, 1978). Subsequently, chloro-
aromatics (Suflita et al., 1982), chloro-alkenes (Vogel
and McCarty, 1985) and chloroalkanes (G€alli and
McCarty, 1989) were shown to undergo microbially cat-
alyzed reductive dechlorination (Fig. 4). Enzymes have
been purified, structures determined, and reactions
shown to be dependent on reduced low-potential cobalt-
corrinoid cofactors (Neumann et al., 1996; Kr€autler et al.,
2003; Payne et al., 2015). To this author’s knowledge,
none of these well-characterized dechlorinating and
debrominating enzymes have been shown to catalyze

Fig. 3. A proposed mechanism for the complete defluorination of perfluorooctanoate. The mechanism shows initiating cleavage of the C1-C2

bond in a radical fashion and quenching of the radical to make a C7 pefluorinated alcohol. The reactions of the alcohol to the carboxylic acid on
the right are non-enzymatic and rapid. The resultant C7 carboxylic acid can undergo the same reaction cycle to make a C6 carboxylate, and
then shorter chains, iteratively.
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reductive defluorination, but reduced corrinoids have
been demonstrated to have defluorination activity with
polyfluorinated compounds (Ochoa-Herrera et al., 2016;
Liu et al., 2018a,b; Sun et al., 2021).
A key feature of reductive dechlorination came to light

with the realization that polychlorinated biphenyls (PCBs)
and other aromatic and aliphatic compounds can serve
as final electron acceptors in respiratory metabolism
(Brown et al., 1987; Mohn and Tiedje, 1990; Schu-
macher and Holliger, 1996; Susarla et al., 1997; Holliger
et al., 1998; Smidt et al., 2000; Duhamel and Edwards,
2007). Microorganisms will often utilize respiratory over
fermentative metabolism, when they are capable of both,
to capture more energy. In this context, anaerobes use
many different electron acceptors in place of oxygen to
maximize energy acquisition. Some bacteria are now
known to catalyze reduction of C–Cl bonds in a manner
that is analogous to the reduction of nitrate or sulfate.
Halo-respiring organisms couple dechlorination to elec-
tron transport-driven ATP generation (Smidt and de Vos,
2004). This process of organochlorine and organobro-
mine respiration is now considered to be reasonably
common, evolutionarily ancient, and further adapted in
response to the many chlorinated and brominated natu-
ral products produced in the environment (Mayer-
Blackwell et al., 2016; Tang et al., 2016). The process is
thermodynamically feasible and beneficial because the
redox potential of the C–Cl bond in many chloroaromat-
ics and chloroaliphatics is in the range of +250 to

+600 mV (Holliger et al., 1998). So many simple meta-
bolic oxidation reactions, for example, the two-electron
oxidation of succinate to fumarate at +32 mV (Thauer
et al., 1989), have a lower redox potential and could the-
oretically couple to chloro-reduction to input electrons
into the respiratory chain and ultimately produce ATP for
the organism.
C–F bond reduction is not analogous energetically. As

discussed previously under the preceding section, the
redox potential of �2700 mV or lower is well below any
oxidizable growth substrate for bacteria and out of the
range of biological redox carriers. PFAS compounds that
are more amenable for reduction, such as PFOS and
PFOA, are reported to have redox potentials in the
�450 mV range (Park et al., 2009). While this is within
the low end of redox catalysts in biology, it is much too
low for the reduction reaction to be coupled to a respira-
tory chain and generate ATP for a bacterium. Oxidizable
substrates for microbes typically have redox potentials
more positive than �450 mV, and so transfer of electron
from those substrates to PFAS reduction would be ther-
modynamically unfavorable. Therefore, unlike C–Cl bond
reduction, C–F bond reduction seems unlikely to be cou-
pled to ATP generation.
In light of this, how might the C–F bonds of polyfluori-

nated compounds with a low but biologically accessible
redox range, in the range of �400 to �700 mV, be
amenable to reductive defluorination? By way of calibra-
tion, the low potential coenzyme for many cellular

Fig. 4. Generalized mechanisms of defluorination based on examples in the scientific literature. The carbon atoms may be alkyl, olefinic or aro-
matic. The reactions are simplified to show the key elements of each reaction type. Beta-elimination can also occur with H-C-C-F containing
compounds and produce H+ and F� as products.
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reduction reactions, NADH, has a standard redox poten-
tial of �320 mV and would not directly couple in these
reaction. There are, however, several important pro-
cesses microorganisms have evolved to meet the need
for low-potential reduction metabolism. One is the evolu-
tion of enzymatic machinery for the six-electron reduction
of atmospheric dinitrogen to produce two atoms of
ammonia, a process known as nitrogen fixation and cat-
alyzed by the enzyme nitrogenase. The redox potential
of the nitrogenase Fe–Mo protein is reported to be
approximately �540 mV (Milton and Minteer, 2019).
Since nitrogen-fixing bacteria often grow on oxidizable
carbon and energy sources with more positive redox
potentials than �540 mV, ATP is required to ramp down
redox potentials through a series of electron carriers to
the Fe-Mo protein (Rutledge and Tezcan, 2020). Another
example of low potential metabolism that has evolved in
certain bacteria is represented by enzymes mediating
anaerobic growth on benzene-ring compounds via an ini-
tial reduction reaction (Wischgoll et al., 2005; L€offler
et al., 2011). The benzene ring is stabilized by a reso-
nance energy of 36 kcal mol�1 over 1,3,5-hexatriene, so
reduction of the benzene ring, as carried out by organic
chemists, employs extremely powerful reducing reagents
such as elemental sodium in liquid ammonia (Zimmer-
man, 2012). The bacterium Geobacter metallireducens
meets this demand by biosynthesizing a one megadalton
enzyme complex that can attain a redox potential of
�622 mV (Huwiler et al., 2019). Like nitrogenase, attain-
ment of a requisite ultra-low redox potential requires ATP.
Indeed, there is precedence for ATP-dependent reduc-

tive defluorination (Tiedt et al., 2016). Thauera aromatica
has been shown to catalyze an ATP-dependent reaction
in which 4-fluorobenzoyl-CoA is overall reductively deflu-
orinated to benzoyl-CoA and HF. The reaction is cat-
alyzed by an enzyme homologous to known benzoyl-
CoA reductases and is proposed to proceed via an aro-
matic ring reduction followed by HF elimination. This is
an example of defluorination of a monofluorinated com-
pound but, as discussed above, may prove relevant to
polyfluorinated compounds.
Accrued knowledge of PFAS redox chemistry, microbi-

ological redox biochemistry and direct microbiological
data (Tiedt et al., 2016) suggests that C–F bond reduc-
tion will require ATP, in contrast to C–Cl bond reduction
that can generate ATP. Earlier in this review, evolution
was said to favor metabolism of organohalides other
than organofluorides because of the prevalence of poly-
chlorinated and polybrominated natural products.
Another disadvantage for C–F reduction is that it may be
selected against in evolution because it provides no ben-
efit, and may even drain cellular energy. This further
explains why the reduction of PFOA and PFOS may be
rarely identified and relatively slow, consistent with

reports of laboratory persistence (Dinglasan et al., 2004;
Parsons et al., 2008; Murphy, 2010), and a limited num-
ber of recent successful enrichments that show relatively
slow biodegradation rates (Huang and Jaff�e, 2019; Yu
et al., 2020). It is important to understand the molecular
basis of the defluorination reactions to better find natural
representatives and to potentially re-engineer microbial
ultra-low redox systems for PFAS biodegradation. Note
that nitrogenase is being re-engineered in this manner
(Milton and Minteer, 2019) and is now demonstrated in
the laboratory to generate hydrocarbons (Yang et al.,
2011) and other organic products (Seefeldt et al., 2013)
in an effort to extend the enzyme’s catalysis beyond its
evolved function of dinitrogen reduction.

Oxidative defluorination

There are numerous reports of oxidative defluorination,
most of which involve aromatic or other ring systems with
single fluorine substituents. Excellent review articles are
available covering C-F bond cleavage with a focus on
aromatics (Kiel and Engesser, 2015) and reactions cat-
alyzed by metalloenzymes (Wang and Liu, 2020). Many
of the metalloenzymes catalyzing defluorination are oxy-
genases, oxidases and peroxidases. The mechanisms of
monodefluorination have been studied with cytochrome
P450 monooxygenases (Harkey et al., 2012), dioxyge-
nases (Li et al., 2020; Renganathan, 1989) and oxidases
(Li et al., 2020). Recently, bacterial degradation of
monofluorinated alkyl chains via oxygenase-initiated reac-
tions was reported (Xie et al., 2020). This type of reaction
is best represented by the second mechanism from the
top depicted in Fig. 4.
Bacterial oxidative biodegradation of polyfluorinated ole-

fins is relatively rare. An exception is the biodegradative
defluorination of trifluoroethylene by the soluble methane
monooxygenase from Methylosinus trichosporium OB3b
(Fox et al., 1990). The major product of the reaction was
glyoxylate. The rate of oxidation was only 10% of the rate
with trichloroethylene. Chlorotrifluoroethylene was oxidized
to oxalate, consistent with complete dehalogenation, but
the rate was only 25% of that for trifluoroethylene.
The major focus on this review article is on polyfluori-

nated compounds, particularly aliphatic compounds with
carbon atoms containing multiple fluorine substituents. In
drug design, it is widely appreciated that substituting triflu-
oromethyl for methyl groups will block oxygenases that
initiate metabolism and thus slow drug clearance (Hag-
mann, 2008; Sun et al., 2011). Trifluoromethyl groups on
aromatic rings often persist, even as the ring may be oxi-
dized, and the three C-F bonds can end up on trifluoroc-
etate as a metabolic end-product (Key et al., 1997; Kiel
and Engesser, 2015). Difluoromethyl substituents are
much less common in commercial compounds. They
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have been examined as anti-metabolites and inhibitors in
medical chemistry. A difluoromethyl-analog of proges-
terone has been suggested to be hydroxylated at the –

CHF2 group due to its effectiveness as an irreversible
inhibitor. Inhibition is proposed to result from hydroxyla-
tion, gem-elimination and reaction of the resultant acyl flu-
oride with the cytochrome P450, thus inhibiting the
enzyme (Stevens, 1991).

Hydrolytic defluorination

The prototypic bacterial enzyme catalyzing hydrolytic
defluorination is fluoroacetate dehalogenase. As previ-
ously discussed, fluoroacetate (Fig. 1) is a natural product
and highly toxic, so bacteria may benefit from detoxifica-
tion and acquisition of carbon and energy from the defluo-
rinated product, glycollate (Goldman, 1965). In this
context, fluoroacetate is degraded by bacteria isolated
from the rumen of cows, which may periodically ingest
one or more of the forty plants known to biosynthesize
fluoroacetate (Davis et al., 2012). Fluoroacetate dehaloge-
nase enzymes have also been identified in diverse soil
bacteria of the genera Moraxella, Delftia, Burkholderia,
Pseudomonas and Rhodopseudomonas (Seong et al.,
2019). Many of these enzymes isolated as fluoroacetate
dehalogenases have some activity with chloroacetate and
bromoacetate. However, fluoroacetate typically shows the
highest catalytic efficiency, kcat/KM, with enzymes desig-
nated as fluoroacetate dehalogenases.
The nature of the relative catalytic efficiency with fluo-

roacetate has been most well-studied with the enzyme
denoted FacD from Burkholderia sp. FA1 via studies involv-
ing X-ray crystallography, site-directed mutagenesis, rapid
synchotron crystallography and computational studies
(Chan et al., 2011; Miranda Rojas et al., 2018; Schulz
et al., 2018). The reaction is known to proceed via nucle-
ophilic attack of an aspartate nucleophile to generate an
aspartate ester intermediate that is resolved by attack of
water activated by an active site histidine. This is a fairly
unremarkable mechanism common to many enzymes with
a general a/b hydrolase fold. Rather a major factor in
reduction of the activation barrier of C-F bond cleavage is
the specific interaction of the fluorine with the halogen
pocket. The halogen pocket is defined by the triad of a tryp-
tophan, histidine and tyrosine within a distance of 3.0 to 3.3
Angstrom from the fluorine that defines a fluorine-specific
pocket in the enzyme–substrate complex. Computational
studies have further defined optimum bond angles and
plausible energy barriers to facilitate C-F bond cleavage.

Substitutive defluorination

Rumen bacteria with hydrolytic fluoroacetate dehaloge-
nases are known to protect animals that have ingested

fluoroacetate-containing plant material (Loh et al., 2020).
However, fluoroacetate is also detoxified by enzymes
that substitute atoms for fluorine other than the oxygen
of a water molecule, with the nucelophile represented as
X� in Fig. 4. These types of reactions have been most
studied in plants and animals that use their own
enzymes for detoxification. An enzyme was identified in
mammals that catalyzed the substitution of the fluorine
atom of fluoroacetate with the sulfur atom of the
tripeptide glutathione (Soiefer and Kostyniak, 1983).
The enzymes, later known as theta-glutathione-S-
transferases, are found in non-mammalian sources as
well, so the ability to detoxify fluoroacetate may be found
broadly throughout biological systems (Sheehan et al.,
2001). Interestingly, an enzyme of the same class is
thought to catalyze defluorination of the difluo-
romethylene moiety of the anesthetic methoxyflurane
(Wang et al., 1986).

Eliminative defluorination

The classic eliminative dehalogenation reaction is that cat-
alyzed by the LinA dehydrohalogenase. LinA transforms
the pesticide lindane, or gamma-hexachlorocyclohexane,
to 1,3(R),4(S),5(S),6(R)-pentachlorocyclohexane via the
elimination of H+ and Cl� from adjacent carbon atoms,
similar to the beta-elimination of two halide substituents
shown in Fig. 4. The reaction has been studied in some
detail (Nagata et al., 2001; Manna et al., 2015). Analogous
dehydrofluorination reactions have been shown to occur
with enzymes in which synthetic fluorinated substrate ana-
logs have been used as mechanistic probes (O’Hagan
and Rzepa, 1997; Gulick et al., 2001). Dehydrofluorination
of polyfluoroalkanes via non-enzymatic catalysis is known
(Pedler et al., 1972; Li et al., 1998).
There are examples of fluoride eliminations that occur

non-enzymatically after attack by reductive (Tiedt et al.,
2017) or oxygenative (Fox et al., 1990) enzymes, as
previously discussed. A somewhat novel alpha-
elimination was observed following reduction of
fluorotrichloromethane by a bacterial cytochrome P450
followed by chloride elimination, fluorchlorocarbene for-
mation, and then loss of both remaining halide ions
(Fig. 4) (Li and Wackett, 1993). Most recently, a beta-
elimination pathway was proposed for the defluorination
and complete biodegradation of 3,3,3-trifluoropropionic
acid by a sludge sample from a wastewater treatment
plant (Che et al., 2021).

Defluorination produces fluoride, and fluoride is
highly toxic to all living things

It is proposed here that there is another very significant
reason why so few microbes have evolved the
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capabilities to biosynthesize or biodegrade organofluo-
ride compounds. With fluoride being the most elec-
tronegative element, the C–F bond is invariably cleaved
heterologously to yield fluoride. However, fluoride is
highly toxic to prokaryotic and eukaryotic cells.–Fluoride
and chloride are very different environmentally and bio-
logically. While fluorine is significant in the earth’s crust,
it is largely bound up in minerals. The ratio of chloride to
fluoride in seawater is > 7600 to 1 (Greenhalgh and
Riley, 1961). Chloride, is also much more prevalent in
terrestrial water sources, where it can be found at > 4 M
in some saline seas. Halophilic bacteria survive and
thrive in 4 M chloride concentrations in these environ-
ments (M€uller and Oren, 2003). Bacteria growing in
lower saline environments also use chloride extensively.
For example, the light-driven chloride pump proteins
classified as rhodopsins have been extensively studied
(Inoue et al., 2015). Some bacteria have been found to
contain ~ 1 M chloride intracellularly (Chen, 2005).
Fluoride is not only much less prevalent in natural

waters, but it is also highly toxic to organisms in general.
The World Health Organization has recommended a
human limit for fluoride in drinking water to be
1.5 mg l�1, or 79 lM (Edmunds and Smedley, 2013). In
certain waters, fluoride concentrations as low as 26 lM
can adversely affect some invertebrates and fishes
(Camargo, 2003). Fluoride is also highly toxic to bacte-
ria. This has been exceptionally well documented in
many different types of experiments with diverse bacteria
(Bhatnagar and Bhatnagar, 2004; Adamek et al., 2005;
Ochoa-Herrera et al., 2009; Baker et al., 2012; Breaker,
2012; Stockbridge et al., 2012; Ji et al., 2014; Nelson
et al., 2015; Liao et al., 2017; Liu et al., 2017; Last
et al., 2018; Turman et al., 2018; Zhu et al., 2019; John-
ston and Strobel, 2020; Dionizio et al., 2021).
What are the mechanisms of fluoride toxicity? In mam-

mals, fluoride can induce oxidative stress, disrupt redox
homeostasis, increase protein carbonyl content, alter
gene expression and cause apoptosis (Barbier et al.,
2010). In bacteria, cellular disruption is largely attributa-
ble to inhibition of essential and non-essential enzymes
(Wiseman, 1970). This has been extensively studied in
oral bacteria and is one of the reason for the presence
of fluoride in toothpastes (Hamilton, 1990). Fluoride is
highly inhibitory to metallo-enzymes, particularly those
using magnesium. The inhibition of specific enzymes
can be exceedingly strong, with KI values for some
enzymes measured to be as low as 2 lM (Guranowski,
1990). Essential enzymes shown to be inhibited by fluo-
ride include pyrophosphatase (Baykov et al., 2000), pro-
ton translocating ATPases (Sutton et al., 1987; Sturr and
Marquis, 1990) and enolase (Qin et al., 2006) (Fig. 5).
The urease of Klebsiella aerogenes has been shown to
be inhibited by fluoride (Todd and Hausinger, 2000).

These findings over the last four decades raise an
important question regarding the biodegradation of polyflu-
orinated compounds. Reductive defluorination and other
reactions requiring complex enzyme machinery will almost
invariably occur intracellularly and release fluoride, so this
is another impediment to microbes degrading highly fluori-
nated compounds. The intracellular volume of a typical
bacterial cell is less that 10�12 ll (Ingraham et al., 1983).
Therefore, if there were 108 bacteria per ml and they
released one fluorine atom while degrading 10 lM of a flu-
orinated compound from their surrounding solution, the ini-
tial intracellular fluoride concentration would be 100 mM, a
highly toxic level. Many PFAS compounds contain ten or
more fluorine atoms, compounding the problem.
Fortunately, some bacteria have evolved protective

mechanisms of fluoride resistance (Chouhan et al., 2012;
Liao et al., 2015; Mukherjee et al., 2017; Chellaiah et al.,
2021), and these systems would need to be very effective
to protect the cell while biodegrading even low lM levels
of polyfluorinated compounds. Given that fluorinated natu-
ral products and defluorinating enzymes are rare, this pro-
tection has likely evolved to protect against external
fluoride. There are many regions in the world where fluo-
ride exceeds healthy levels for humans, and bacterial
enzymes would be impacted at those same levels (Amini
et al., 2008). Fluoride uptake in bacteria is impacted by
the strong H-bonding propensity of fluoride in water,
which causes it to interact more strongly with protons.
That raises the pKa to 3.4, which is much higher than the
pKa for other hydrogen halides (O’Hagan, 2008). Under
mildly acidic aqueous extracellular conditions, sufficient
HF will be present. HF readily partitions into bacterial
cells, and free fluoride is released under the more neutral
pH of the cytoplasm (Ji et al., 2014). If millimolar concen-
trations are reached, bacterial enzymes will be severely
inhibited, as discussed previously.
Two responses are needed to protect the bacterial

cells. First, fluoride needs to be sensed. Second, fluoride
detection needs to be followed by responses that mitigate
against toxic effects. For the latter, the cell is best served
by removing fluoride from the cell as a number of
enzymes are reversibly inhibited by fluoride, allowing
recovery of activity. On the first point, thousands of
fluoride-sensing riboswitches (Fig. 5) have been discov-
ered in many diverse bacterial strains (Baker et al., 2012;
Breaker, 2012). Riboswitches are components of certain
mRNAs that bind to ligands and subsequently regulate
protein expression from that mRNA. Proteins expressed
via fluoride riboswitches include higher copy numbers of
enolase, stress genes, DNA repair functions and hypo-
thetical proteins. Ultimately, the cell can be rescued from
fluoride by producing one or both of two non-homologous
classes of transport proteins (Stockbridge et al., 2012; Ji
et al., 2014; Last et al., 2018). One such type of transport
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is a passive, gradient-controlled passage of fluoride via
what is known as Fluc-F� channels. The other class are
F�/H+ antiporters that act similarly to multi-drug resistance
transporters and use a proton gradient or ATP hydrolysis
to expel fluoride against a gradient (Fig. 5).
The toxicity of fluoride raises a key issue for any newly

evolving C–F bond cleavage metabolism. Without rapid
export of the fluoride product, the metabolism will be
counter-selected against and not be retained in populations.
Therefore, this imposes another constraint on biodegrada-
tion. In total, effective biodegradation might require a power-
ful enzyme(s), ATP-consumption to drive low-potential C–F
bond cleavage and fluoride sensing and export capabilities
(Fig. 5). Interestingly, Acidmicrobium sp. A6, which biode-
grades PFAS compounds (Huang and Jaff�e, 2019), has a
putative fluoride ion transporter gene(s) in its genome (S.
Huang & P. Jaff�e, personal communication).

Prospects and hope

This review has related that polyfluorinated compounds,
including PFAS, are biodegradable, the metabolism has not
evolved over eons like that for other organohalides, and the
chemistry and biology of fluorine make PFAS

biodegradation rare. First, microbes have not been long-
exposed to highly-fluorinated natural products, requiring
newly evolved metabolism. Second, evolution and gene
spread is driven by natural selection, and metabolism of
polyfluorinated compounds may often lack selective benefit.
Many PFAS are at or near the carbon dioxide oxidation
level, so they are not oxidizable for energy. Moreover, they
cannot serve as a final electron acceptor if the redox poten-
tial is low enough to preclude a thermodynamic benefit to
reduction. Indeed, C–F bond cleavage of multiply fluori-
nated compounds may require ATP and thus impose a
metabolic burden (Fig. 5). If these metabolic impediments
hold, then biodegradation will largely be relegated to meta-
bolic ‘accidents.’ That is, high-powered metabolic enzymes,
designed by nature for other metabolism, will potentially
cross-over and react with some polyfluorinated compounds.
Third, multiple systems will likely need to be in place for
sustained biodegradation. In this context, biodegradation
requirements could include low potential redox transfer pro-
teins, enzymes capable of reacting with C–F bonds, trans-
port into the intracellular space and robust fluoride
resistance mechanisms (Fig. 5). The latter likely includes
active fluoride export proteins and enzymes that are intrinsi-
cally more resistant against fluoride inhibition.

Fig. 5. Visualizing requirements of a bacterial cell found naturally, or via laboratory engineering, that would be capable of rapid defluorination of
PFAS. The need for multiple systems to be present simultaneously is shown. First, the fluorinated compound, denoted C–F, may enter the cell
passively based on uptake studies. The mechanism of defluorination in this example is reductive. That may require a cofactor such as cobal-
amin and a low-potential ferredoxin reducing system. Both the low-potential electron generating system and the reductive dehalogenase may
require ATP. Fluoride, if remaining in the cell, can be inhibitory to the required ATPase, preventing new ATP generation. Fluoride can also inhi-
bit essential cellular enzymes such as pyrophosphatase and enolase. To protect against fluoride toxicity, the cell must sense fluoride, perhaps
using a fluoride riboswitch regulatory system, and synthesize a membrane-bound fluoride exporter system to maintain a low, steady-state intra-
cellular fluoride concentration.
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Currently, remediation biotechnology uses commer-
cially available cultures of Dehalococcoides for
organochloride cleanup (Kanitkar et al., 2016), and it is
important, in concluding this review, to consider if
organofluorine compounds might also be microbiologi-
cally remediated. The tough questions here focus on
PFAS, the most recalcitrant of the organofluorine com-
pounds. For that deliberation, it is necessary to address
the following questions: (1) Do PFAS degrading organ-
isms exist? (2) Can the mechanisms of those PFAS
degraders be elucidated? (3) Can PFAS degrading bac-
teria ultimately be harnessed for bioremediation?
For the first point, bacteria have already been demon-

strated to biodegrade PFAS (Huang and Jaff�e, 2019; Yu
et al., 2020). Given that there are estimated to be greater
than 1030 prokaryotes on earth (Whitman et al., 1998),
the vast majority of which are yet unstudied, there are
likely to be more PFAS-metabolizing bacteria uncovered.
For the second point, if microorganisms can be shown to
biodegrade PFAS in the laboratory, it is reasonable to
expect that the genes and enzymes can be identified and
studied in detail. The third question is more difficult to
answer. The rates of PFAS degradation reported to date
are very low (Huang and Jaff�e, 2019; Yu et al., 2020),
and, currently, they may not be suitable for bioremedia-
tion. This impediment could be overcome with discoveries
of new organisms or from laboratory engineered microbes
derived from insights into the enzymes and mechanisms.
There may be questions as to whether regulatory agen-
cies would allow genetically engineered bacteria to be
used in PFAS bioremediation, but that is a political, not a
scientific, issue. In conclusion, this author is hopeful that
real-world solutions will be forthcoming.
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