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Abstract: Ovarian cancer is a common cause of death among women worldwide. The current
diagnostic and prognostic procedures available for the treatment of ovarian cancer are either not
specific or are very expensive. Gene expression profiling has proved to be a very effective tool in the
exploration of new molecular markers in patients with ovarian cancer, although the link between such
markers and patient survival and clinical outcomes is still elusive. We are looking for genes that may
function in the development and progression of ovarian cancer. The aim of our study was to evaluate
the expression of selected suppressor genes (ATM, BRCA1, BRCA2), proto-oncogenes (KRAS, c-JUN,
c-FOS), pro-apoptotic genes (NOXA, PUMA), genes related to chromatin remodeling (MEN1), and
genes related to carcinogenesis (NOD2, CHEK2, EGFR). Tissue samples from 30 normal ovaries and
60 ovarian carcinoma tumors were provided for analysis of the gene and protein expression. Gene
expression analysis was performed using the real-time PCR method. The protein concentrations from
tissue homogenates were determined using the ELISA technique according to the manufacturers’
protocols. An increase in the expression level of mRNA and protein in women with ovarian cancer
was observed for KRAS, c-FOS, PUMA, and EGFR. No significant changes in the transcriptional
levels we observed for BRCA1, BRCA2, NOD2, or CHEK2. In conclusion, we suggest that KRAS,
NOXA, PUMA, c-FOS, and c-JUN may be associated with poor prognosis in ovarian cancer.
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1. Introduction

Ovarian cancer causes the highest number of deaths of any gynecological cancer. The
disease is initially asymptomatic, and therefore, it is usually detected in advanced stages,
when a complete cure is almost impossible [1]. In 2018, approximately 293,000 new cases
of ovarian cancer were diagnosed, and 185,000 cases resulted in death [2]. It is estimated
that 65% of all ovarian cancers are diagnosed as advanced-stage (FIGO III–IV), leading to a
5-year overall survival (OS) of patients ranging from 30 to 50% [3]. Despite many years of
research, there are still no biomarkers with appropriate diagnostic sensitivity and specificity
or other effective diagnostic methods enabling screening. The pathogenesis of ovarian
cancer is still unclear; the suspected etiology indicates the involvement of hormones and
genetic and environmental factors [4–6].

A characteristic feature of malignant tumors and the main cause of death from cancer
is metastasis. In the multistage process of neoplasm, the accumulation of mutations and
changes in gene expression occurs, which is associated with the acquisition of not only the
characteristics of a growing phenotype but also an invasive phenotype, characteristic of
a malignant tumor, with the ability to overcome the basal membranes of vessels, tissues,
and organs and to initiate secondary growth in places distant from the primary lesion.
Despite many attempts, molecular tests in the early diagnosis of ovarian cancer have not
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yet been established [7–10]. Analysis of the expression profile of genes associated with the
tumorigenesis process is an important research strategy that combines data from genetics
and molecular transcription to find dysregulated genes between patients and healthy
individuals [7]. Microarray research is providing more and more whole-gene transcription
information for ovarian cancer. Moreno et al. showed that cell proliferation, apoptosis,
the cell cycle, and DNA damage were upregulated in ovarian cancer [8]. Another study
showed changes in the expression levels of genes acting in several signaling pathways,
such as Wnt, Notch, TGFβ/BMP, and the canonical cell cycle [9]. Oliveira et al. found
four candidates—HSPA1A, CD99, RAB3A, and POM121L9P, which are associated with
overall survival and poor clinicopathological features [10]. However, the results of the
previous studies differ due to the diversity of the selection of the cohort, the origin of
the samples, and experimental designs. Therefore, we are constantly looking for genes
that may function in the development and progression of ovarian cancer. The aim of
our study was to evaluate the expression of selected suppressor genes (ATM, BRCA1,
BRCA2), proto-oncogenes (KRAS, c-JUN, c-FOS), pro-apoptotic genes (NOXA, PUMA),
genes related to chromatin remodeling (MEN1), and genes related to carcinogenesis (NOD2,
CHEK2, EGFR).

2. Materials and Methods
2.1. Patients

A total of 90 subjects were recruited for the study, including 60 patients with ovarian
cancer diagnosed and treated at the Clinical Hospital of the Poznan University of Medical
Sciences (Poland). Histological tests were the basis of cancer diagnosis. The majority of
patients in the study group had serum ovarian cancer, stage III according to FIGO (Inter-
national Federation of Gynaecology and Obstetrics), with a low degree of differentiation.
The mean age of these patients was 57 years (41 to 80 years).The control group (n = 30)
included women operated on for uterine fibroids or prolapse of the reproductive organ
after menopause without any history of cancer. The mean age of these patients was 63 years
(51–77 years). Tissue samples from 30 normal ovaries and 60 ovarian carcinoma tumors
were provided for analysis of gene and protein expression.

The Bioethics Committee of Poznan University of Medical Sciences, Poland (no. 77/19),
approved the study. All patients were informed about the purpose of the study and
provided written informed consent. The study was conducted in accordance with the
Declaration of Helsinki.

2.2. Expression Analysis

The RNA isolation from tumor tissue removed during surgery was performed us-
ing TriPure Isolation Reagent (Roche Diagnostics, Mannheim, Germany), according to
the manufacturer’s protocol. cDNA synthesis from total RNA was performed using the
Transcriptor First Strand Synthesis Kit (Roche Diagnostics, Mannheim, Germany). The
obtained cDNA was used directly for the real-time PCR (RT-PCR) or stored at −20 ◦C. The
mRNA levels of genes such as ATM, BRCA1, BRCA2, KRAS, c-JUN, c-FOS, NOXA, PUMA,
MEN1, NOD2, CHEK2, and EGFR were analyzed by real-time quantitative PCR using a
LightCycler480 Instrument (Roche, Mannheim, Germany) and a LightCycler480 Probes
Master kit (Roche, Mannheim, Germany). GAPDH and β-ACTIN were used as house-
keeping genes for normalization. All primer sequences were synthesized by Genomed
(Warsaw, Poland) and are summarized in Table 1. The PCR program was initiated with
activation at 95 ◦C for 10 min. Each PCR cycle comprised a denaturation step at 95 ◦C, an
annealing step at a specific temperature, and an extension step at 72 ◦C. The increase in the
fluorescence level of PCR products was measured, and the data were analyzed using the
LightCycler480 software.
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2.3. ELISA

The Human ATM ELISA Kit (sensitivity: 0.094 ng/mL; LSBio, Seattle, WA, USA),
Human BRCA1 ELISA Kit (sensitivity: 0.065 ng/mL; LSBio), BRCA2 ELISA Kit (sensitivity:
0.062 ng/mL; Biomatik, Wilmington, NC, USA), Human KRAS ELISA Kit (sensitivity:
0.115 ng/mL; LSBio, Seattle, WA, USA), C-JUN ELISA Kit (sensitivity: 1.0 ng/mL; My-
BioSource, San Diego, CA, USA), Human c-FOS ELISA Kit (sensitivity: 0.188 ng/mL;
AssayGenie, Dublin, Ireland), Human NOXA ELISA Kit (sensitivity: 0.078 ng/mL; LSBio,
Seattle, WA, USA), Human PUMA ELISA Kit (sensitivity: 0.056 ng/mL; LSBio, Seattle,
WA, USA), Human MEN1 ELISA Kit (sensitivity: 0.039 ng/mL; MyBioSource, San Diego,
California, USA), Human NOD2 ELISA Kit (sensitivity: 0.062 ng/mL; MyBioSource, San
Diego, CA, USA), Human CHEK2 ELISA Kit (sensitivity: 0.062 ng/mL; MyBioSource, San
Diego, CA, USA), and Human EGFR ELISA Kit (sensitivity: 0.001 ng/mL; MyBioSource,
San Diego, CA, USA) were employed to evaluate the concentrations of ATM, BRCA1,
BRCA2, KRAS, c-JUN, c-FOS, NOXA, PUMA, MEN1, NOD2, CHEK2, and EGFR from
tissue homogenates, according to the manufacturers’ protocols. The reaction was blocked,
and the absorbance was measured on a microplate reader (Infinite 200, TECAN). The
concentrations of ATM, BRCA1, BRCA2, KRAS, c-JUN, c-FOS, NOXA, PUMA, MEN1,
NOD2, CHEK2, and EGFR were determined by interpolation of the standard curve using
linear regression analysis.

2.4. Statistical Analysis

Statistical analysis was performed by the SPSS 17.0 PL program using one-way analysis
of variance (ANOVA). All values are expressed as means ± SD. Values of p< 0.05 were
considered statistically significant differences [11].

Table 1. Sequences of primers used for real-time PCR.

Gene Forward (5′-3′) Reverse (5′-3′) Reference

ATM GGTATAGAAAAGCACCAGTCCAGTATTG CGTGAACACCGGACAAGAGTTT [12]
BRCA1 GCATGCTGAAACTTCTCAACCA GTGTCAAGCTGAAAAGCACAAATGA [12]
BRCA2 AGACTGTACTTCAGGGCCGTACA GGCTGAGACAGGTGTGGAAACA [12]
KRAS TCTTGCCTCCCTACCTTCCACAT CTGTCAGATTCTCTTGAGCCCTG [13]
c-JUN ACCTTCAACACCCCAGCCATG GGCCATCTCTTGCTCGAAGTC [14]
c-FOS GCCTCGTTCCTCCAGTCCGA TGCGATGGAAAGGCCAGCCC [14]
NOXA GCTGGAAGTC GAGTGTGCTA CCTGAGCAGAAGAGTTTGGA [15]
PUMA GCCAGATTTGTGAGACAAGAGG CAGGCACCTAATTGGGCTC [16]
MEN1 CTTCCATTGACCTGCACACC CAGCCAGGTACATGTAGGG [17]
NOD2 ACCTTTGATGGCTTTGACG CACCTTGCGGGCATTCTT [18]
CHEK2 TCAGCAAGAGAGGCAGACCC ACAGCTCTCCCCCTTCCATC [12]
EGFR TGATAGACGCAGATAGTCGCC TCAGGGCACGGTAGAAGTTG [13]

GAPDH GCAAATTCCATGGCACCGT TCGCCCCACTTGATTTTGG [12]
β-ACTIN GCCAGAGCGGGAGTGGTGAA GGCTTGGGCTCAGGGTCATT [14]

ATM-ATM Serine/Threonine Kinase, BRCA1-BRCA1 DNA Repair Associated, BRCA2-BRCA2 DNA Repair
Associated, KRAS-Kirsten rat sarcoma viral oncogene homolog, c-JUN-Jun proto-oncogene (AP-1 transcription
factor subunit), c-FOS-Fos proto-oncogene (AP-1 transcription factor subunit), NOXA-phorbol-12-myristate-13-
acetate-induced protein 1, PUMA-p53 upregulated modulator of apoptosis, MEN1-menin 1, NOD2-nucleotide
binding oligomerization domain containing, CHEK2-checkpoint kinase 2, EGFR-epidermal growth factor receptor,
GAPDH-glyceraldehyde-3-phosphate dehydrogenase.

All methods were carried out in accordance with relevant guidelines and regulations.

3. Results

In Table 2, we show the statistical differences in the level of leukocytes, platelets,
hemoglobin, hematocrit, glucose, and sodium between the control group and women with
ovarian cancer. The values for D-dimer and fibrinogen were statistically higher in women
with ovarian cancer compared with controls (3329.63 ng/ML vs.789.69 ng/mL, p < 0.001;
7.55g/L vs. 2.91g/L, p < 0.001, respectively). The tumor markers CA-125 and HE4 were also
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statistically higher in patients with ovarian cancer (773.51–454.22 U/mL vs. 128.29 U/mL,
p < 0.001;1708.42 pmol/L vs. 83.47 pmol/L, p = 0.009, respectively).

Table 2. Comparison of selected clinical and biochemical parameters between women with ovarian
cancer and control groups.

Parameter Group Mean ± SEM Median 95% CI p

Leukocytes 109/L
OC 8.24 ± 3.48 7.32 7.53–8.94

0.006Control 6.93 ± 2.61 6.57 6.41–7.45

Erythrocytes 1012/L
OC 4.28 ± 0.58 4.32 4.16–4.40

0.148Control 4.39 ± 0.53 4.41 4.28–4.49

Platelets 109/L
OC 328.87 ± 158.44 287.00 296.76–360.96

0.014Control 266.48 ± 64.87 262.50 253.47–279.48

Hemoglobin g/dL OC 7.46 ± 1.01 7.50 7.26–7.67
0.035Control 7.71 ± 0.91 7.80 7.52–7.89

Hematocrit
OC 0.37 ± 0.36 0.37 0.36–0.38

0.059Control 0.46 ± 0.83 0.38 0.30–0.63

Glucose mg/dL OC 96.12 ± 18.28 92.00 92.41–99.82
<0.001Control 88.81 ± 14.96 84.85 71.22–91.81

Sodium mmol/L
OC 139.50 ± 2.89 138.91 138.91–140.09

0.035Control 139.28 ± 2.60 139.00 138.75–139.80

Potassium mmol/L
OC 4.37 ± 0.43 4.37 4.29–4.46

0.417Control 4.25 ± 0.31 4.21 4.19–4.32

Creatinine mg/dL OC 0.84 ± 0.49 0.73 0.73–0.95
0.631Control 0.82 ± 0.24 0.76 0.70–0.94

eGFRmL/min/1.73 m2 OC 85.53 ± 33.53 87.21 77.22–93.84
0.289Control 94.97 ± 22.65 96.95 82.91–107.04

Total protein g/dL OC 6.93 ± 0.81 6.95 6.74–7.12
0.314Control 7.07 ± 0.40 7.05 6.88–7.28

Uric acid mg/dL OC 5.08 ± 1.77 4.80 4.67–5.49
0.714Control 5.14 ± 1.51 5.10 4.36–5.92

Urea mg/dL OC 33.30 ± 18.89 28.70 28.22–37.65
0.276Control 32.42 ± 10.38 30.00 27.09–37.77

D-dimer ng/mL OC 3329.63 ± 2124.62 1831.00 2459.53–4199.53
<0.001Control 789.69 ± 423.54 464.50 397.20–1182.18

Fibrinogen g/L OC 7.55 ± 6.34 3.62 0.25–14.84
<0.001Control 2.91 ± 0.75 2.89 2.61–3.20

INR
OC 1.17 ± 0.23 1.12 1.12–1.22

0.073Control 1.09 ± 0.05 1.11 1.07–1.12

PTT
OC 12.92 ± 2.52 12.40 12.36–13.47

0.058Control 12.08 ± 0.65 12.20 11.81–12.35

APTT
OC 30.00 ± 3.82 30.20 29.17–30.84

0.955Control 30.31 ± 3.72 30.45 28.74–31.88

Systolic pressure
mmHg

OC 123.07 ± 13.17 125.00 120.39–125.76
0.165Control 120.81 ± 14.98 120.00 117.81–123.82

Diastolic pressure
mmHg

OC 78.94 ± 14.59 80.00 75.98–81.89
0.719Control 78.32 ± 8.45 80.00 76.62–80.01

CA-125 U/mL
OC 773.51–454.22 290.00 501.27–1045.74

<0.001Control 128.29 ± 100.43 20.81 8.49–266.64

HE4 pmol/L OC 1708.42 ± 1204.42 363.45 129.20–3967.74
0.009Control 83.47 ± 30.34 73.66 8.12–158.83

INR—international normalized ratio, PTT—prothrombin time, APTT—activated partial thromboplastin time,
OC—women with ovarian cancer, eGFR—glomerular filtration rate.

In our study, we determined the expression of selected suppressor genes (ATM, BRCA1,
BRCA2), proto-oncogenes (KRAS, c-JUN, c-FOS), pro-apoptotic genes (NOXA, PUMA),
genes related to chromatin remodeling (MEN1), and genes related to carcinogenesis (NOD2,
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CHEK2, EGFR) using the real-time PCR method. The analysis of the mRNA level of the
ATM gene did not show a significant change in its expression in patients with ovarian
cancer compared with the control group (75.45% ± 5.56 vs. 100% ± 4.26; p > 0.05) (Table 3).
As shown in Figure 1, no significant changes in transcriptional levels were observed for
BRCA1, BRCA2, NOD2, or CHEK2. In patients with ovarian cancer, the mRNA level of
MEN1 and ATM1 was reduced by 31% (p > 0.05) and 25% (p > 0.05), respectively.

Table 3. Summary of mRNA expression analysis of selected genes in patients with ovarian cancer in
comparison to the control group.

Gene Patients with Ovarian Cancer p-Value

ATM 75.45 ± 5.56 0.056
BRCA1 107.69 ± 9.42 0.231
BRCA2 120.00 ± 12.24 0.084
CHEK2 97.50 ± 8.45 0.142
KRAS 195.55 ± 18.32 0.012
NOXA 51.96 ± 7.34 0.024
PUMA 184.97 ± 18.42 0.026
c-FOS 228.57 ± 21.44 0.008
EGFR 186.66 ± 17.54 0.006
NOD2 84.61 ± 9.32 0.164
MEN1 69.01 ± 8.64 0.118
c-JUN 34.14 ± 6.42 0.001

Values are presented as ratios against mRNA GAPDH/β-ACTIN expression. The control group was defined as
100%. Data are presented as mean%± SD, p < 0.05 compared with the control group. ATM-ATM Serine/Threonine
Kinase, BRCA1-BRCA1 DNA Repair Associated, BRCA2-BRCA2 DNA Repair Associated, KRAS-Kirsten rat
sarcoma viral oncogene homolog, c-JUN-Jun proto-oncogene (AP-1 transcription factor subunit), c-FOS-Fos
proto-oncogene (AP-1 transcription factor subunit), NOXA-phorbol-12-myristate-13-acetate-induced protein 1,
PUMA-p53 upregulated modulator of apoptosis, MEN1-menin 1, NOD2-nucleotide binding oligomerization
domain containing, CHEK2-checkpoint kinase 2, EGFR-epidermal growth factor receptor.

Figure 1. Analysis of mRNA expression of selected genes in patients with ovarian cancer compared
with the control group. The control group was defined as 100%. Data are presented as mean% ± SD,
* p < 0.05 compared with the control group.

A significant decrease in mRNA expression level was observed for NOXA (51.96% ± 7.34
vs. 100%± 8.32; p = 0.024) and c-JUN (34.14%± 6.42 vs. 100%± 9.44; p = 0.001). A statistical
increase in the expression level of selected genes in women with ovarian cancer was
observed for KRAS (195.55% ± 18.32 vs. 100% ± 15.24; p = 0.012), c-FOS (228.57% ± 21.44
vs. 100% ± 12.36; p = 0.008), PUMA (184.97% ± 18.42 vs. 100% ± 14.82; p = 0.026), and
EGFR (186.66% ± 17.54 vs. 100% ± 10.35; p = 0.006) (Table 3).

In the study, the analysis of the protein level showed a statistically significant decrease
in expression for NOXA (60.62%± 6.56 vs. 100%± 7.32; p < 0.05) and c-JUN (54.43%± 9.82
vs. 100% ± 8.44; p < 0.05) compared with the control group (Table 4, Figure 2). Similarly,
a decrease in mRNA expression was observed for these genes (Table 3). We observed an
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increase in protein levels for KRAS (141.11% ± 8.65 vs. 100% ± 9.68; p < 0.05), c-FOS
(145.52% ± 10.48 vs. 100% ± 9.46; p < 0.05), and EGFR (178.89% ± 7.32 vs. 100% ± 8.98;
p < 0.05), respectively (Table 4).

Table 4. Analysis of the protein level for ATM, BRCA1, BRCA2, KRAS, c-JUN, c-FOS, NOXA, PUMA,
MEN1, NOD2, CHEK2, and EGFR in the tissue homogenates in patients with ovarian cancer in
comparison to the control group.

Gene Patients with Ovarian Cancer p-Value

ATM 89.64 ± 9.32 0.086
BRCA1 98.67 ± 6.41 0.224
BRCA2 92.28 ± 9.45 0.196
CHEK2 88.26 ± 11.24 0.252
KRAS 141.11 ± 8.65 0.044
NOXA 60.62 ± 6.56 0.042
PUMA 115.73 ± 9.66 0.052
c-FOS 145.52 ± 10.48 0.032
EGFR 178.89 ± 7.32 0.046
NOD2 86.08 ± 10.11 0.262
MEN1 82.35 ± 7.44 0.275
c-JUN 54.43 ± 9.82 0.024

The control group was defined as 100%. Data are presented as mean% ± SD, p < 0.05 compared with the
control group. ATM-ATM Serine/Threonine Kinase, BRCA1-BRCA1 DNA Repair Associated, BRCA2-BRCA2
DNA Repair Associated, KRAS-Kirsten rat sarcoma viral oncogene homolog, c-JUN-Jun proto-oncogene (AP-1
transcription factor subunit), c-FOS-Fos proto-oncogene (AP-1 transcription factor subunit), NOXA-phorbol-
12-myristate-13-acetate-induced protein 1, PUMA-p53 upregulated modulator of apoptosis, MEN1-menin 1,
NOD2-nucleotide binding oligomerization domain containing, CHEK2-checkpoint kinase 2, EGFR-epidermal
growth factor receptor.

Figure 2. Analysis of protein level of selected genes in patients with ovarian cancer compared with
the control group. The control group was defined as 100%. Data are presented as mean% ± SD,
* p < 0.05 compared with the control group.

4. Discussion

Taking into account the current data on ovarian cancer, it appears that approximately
65% of all cases are diagnosed at an advanced stage [3]. It is believed that new biomark-
ers may be beneficial in improving patient prognosis. Therefore, the discovery of new
molecular targets remains a significant clinical challenge in treatment decision-making.
In recent years, mRNA assessment has been widely used to identify and develop new
molecular biomarkers for the diagnosis and treatment of many types of cancer [19]. Such
biomarkers can offer early and more accurate prediction and prognosis of the disease
and its progression, allowing the identification of those potentially at risk. Moreover, the
assessment of the patient’s mRNA profile additionally enables the identification of not only
unique biomarkers but also the association between them [10].
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Our study identified genes using real-time PCR and ELISA that are expressed differ-
ently in ovarian cancer tissue samples compared to normal ovarian tissue samples. The
analysis of the mRNA and protein levels of the ATM and MEN1 showed no change in
the expression level in patients with ovarian cancer compared with the control group. An
increase in the expression level of mRNA and protein in women with ovarian cancer was
observed for KRAS, c-FOS, and EGFR. No significant changes in the transcriptional levels
we observed for BRCA1, BRCA2, NOD2, and CHEK2.

Our study design has several advantages in identifying potential ovarian cancer
markers over many previous ovarian cancer gene expression studies because a relatively
large number of ovarian tissues (30 normal ovaries and 60 ovarian tumors) were used to
analyze mRNA and protein expression. By analyzing a large number of tissues, a more
accurate expression profile of ovarian cancer genes can be obtained [20–22].

Tumor suppressor genes, such as BRCA1 and BRCA2, are involved in inhibiting cell
growth and apoptosis, regulating gene transcription, and repairing DNA damage. BRCA
mutations are believed to be associated with the risk of developing cancers, especially
ovarian and breast cancer [23,24]. Studies conducted by Tsibulak showed higher BRCA1
and BRCA2 mRNA expression in ovarian cancer tissues compared with non-cancerous
tissue. The authors explained that the increase in the level of transcription of these genes
may be associated with a higher rate of proliferation in malignant tissues and with the
process of genetic instability, which may increase the need to repair DNA damage [25].
This suggestion was supported by Gudas et al., who suggested that steroid hormones
upregulating BRCA1 expression may be due to increased cell proliferation in breast can-
cer [26]. Our study did not confirm the results obtained by Tsibulak et al.; however, a slight
increase in expression could be observed for the BRCA2 gene. Such a relationship has not
been confirmed at the protein level. Another study found that breast cancers with low
levels of BRCA2 mRNA expression showed a significantly higher 5-year survival rate [27].
Moreover, Tsibulak et al. showed that in breast cancer with the BRCA1 mutation, mRNA
expression for the BRCA1 gene was lower, while BRCA2 expression was significantly
higher compared with wild-type BRCA1 cancer [25]. The reason for the “compensatory”
upregulation of BRCA2mRNA in tumors with low BRCA1 expression is still speculated, as
there is no precise knowledge about the regulation of BRCA protein expression in normal
or malignant tissues. The authors explain that high BRCA expression may define a distinct
phenotype with high constitutive expression or may reflect transient upregulation induced
by various situations (e.g., proliferative or genomic stress) [25].

ATM (ataxia-telangiectasia mutated) is a crucial protein involved in DNA repair in
response to DNA-damaging chemotherapy. ATM deficiencies may result in increased
susceptibility to DNA damage and a predisposition to cancer [28]. A study by Feng et al.
showed that low ATM protein expression in malignant tumor compartments contributed to
the aggressive nature of breast cancer and was an independent prognostic factor associated
with worse survival in patients with hormone-negative breast cancer [29]. In our study,
we also observed a decrease in mRNA and protein expression for ATM in patients with
ovarian cancer, which may indicate a worse prognosis for their survival.

The p53 upregulated modulator of apoptosis (PUMA), also known as Bcl-2-binding
component 3 (BBC3), is a pro-apoptotic protein induced by the p53 tumor suppressor and
other apoptotic stimuli [30]. As shown in studies, PUMA expression independent of p53
can also be activated, for example, by oncogenic stress [31], inhibition of kinases including
FOXO [30], and altered redox [32] as well as infection [33]. Moreover, activation of both p53
and PUMA may occur following chemical-induced DNA damage and/or genotoxicity for
example conventional chemotherapeutic drugs [34]. In our study, we showed an increase
in mRNA and protein expression for PUMA in patients with ovarian cancer, which may be
the result of oncogenic stress.

NOXA is also a BCL2 family protein that promotes apoptosis. A study by Shibue et al.
showed that NOXA can selectively induce apoptosis in cancer cells [35]. Although the
mechanism regarding the selectivity of apoptosis induction in cells expressing oncogenes
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has not yet been elucidated, it has been proposed that NOXA may require a cellular state in
which cells are more sensitive to induction of apoptosis by increased expression of other
pro-apoptotic factors, such as Bax [35]. Our research results do not support this suggestion
because we observed a decrease in the level of NOXA gene expression in the neoplastic
tissue of ovarian cancer. This suggests that the NOXA gene may also be a biomarker of
worse prognosis for patient survival.

In our study, the analysis of the mRNA and protein levels showed a statistically
significant decrease in c-JUN. We observed an increase in mRNA and protein levels for
KRAS and c-FOS, suggesting that these oncogenes may also be biomarkers of a worse
prognosis for patient survival.

As shown, members of the Fos family bind to Jun proteins and form a complex with
the transcription factor AP-1, participating in the proliferation and differentiation of normal
tissue, as well as oncogenic transformation and tumor progression [36]. Controversial
results were obtained by Mahner et al., who showed a loss of c-FOS expression in patients
with epithelial ovarian cancer, indicating that c-FOS may play a role in tumor suppression
in ovarian cancer [36].

The tumor suppressor gene MEN1 encodes a protein called menin, which is related to
many biological processes, including cell proliferation, migration, gene expression, and
repair of DNA damage. The MEN1 gene is responsible for the occurrence of multiple
proliferative changes (hyperplasia, adenomas, and carcinomas) [37]. In our study, we
showed a decrease in the mRNA and protein level for MEN1 in patients with ovarian
cancer compared with healthy controls. So far, the analysis of MEN1 gene expression has
not been analyzed in ovarian cancer, so it is difficult to relate our results to other studies.
However, our results may indicate that a decrease in MEN1 expression levels may result in
increased susceptibility to DNA damage and a predisposition to cancer.

Moreover, it is believed that immune pathways are often associated with carcinogen-
esis. NOD1 and NOD2 are innate immune receptors that can initiate a potent immune
response against pathogens. However, the role of nucleotide-binding oligomerization
domain 2 (NOD2) in cancer is not well understood [38]. A study by Xu et al. showed that
NOD2 maybe a biomarker for the survival of kidney cancer patients [39]. Our analysis
does not confirm such a relationship because no significant changes in the transcriptional
levels were observed for NOD2 and CHEK2. The CHEK2 gene encodes checkpoint kinase
2 protein (CHK2), which is initially recognized as an effector kinase in the ATM–CHK2–p53
pathway responsible for a barrier preventing early carcinogenesis, including the inhibition
of the cell cycle or apoptosis [40].

Moreover, we also observed an increase in the expression level of mRNA and protein
for EGFR in women with ovarian cancer. The epidermal growth factor receptor (EGFR) is
one of the key signaling molecules involved in the process of cell proliferation, migration,
and invasion [41]. A study by Teplinsky and Muggia also found high expression of EGFR
in women with ovarian tumors, which may be associated with tumor progression [42]. In
another study, Cirstea et al. showed that EGFR overexpression was associated with the
stage of the tumor, but their examination had limitations [43]. Similarly, Farrag et al. found
no significant association between EGFR overexpression and a residual tumor or a high
rate of cell proliferation [44].

5. Conclusions

In summary, we provided evidence that KRAS, NOXA, PUMA, c-FOS, and c-JUN
could be promising biomarkers in ovarian cancer. The results of our study emphasize
the usefulness of expression analysis in elucidating the genetic profiles of ovarian carci-
noma. By comparing the gene expression profiles of ovarian cancer tissues with those
of various other normal and malignant tissues, genes that are specific too varian cancer
can be identified. These genes can be further analyzed to obtain important insight into
the molecular mechanisms involved in ovarian carcinogenesis. Moreover, these genes can
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also be tested as potential markers of ovarian cancer and may contribute to the diagnosis
and/or treatment of ovarian cancer.

Therefore, there are some limitations to our study. First of all, the study group was,
in most cases, diagnosed with advanced ovarian cancer, so it is worth extending the
study group to early cases of ovarian cancer development. This will make it possible to
compare the expression level of the analyzed genes between women with advanced ovarian
cancer and patients in the early stages of the disease. Moreover, it will be interesting to
investigate whether these reported markers in ovarian cancer tissue show a similar effect
in serum samples, potentially providing a better, mildly invasive patient approach. This
could provide valuable information for ovarian cancer patients with regard to diagnosis,
treatment, and prognosis.
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