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The attention of drug-dependent persons tends to be captured by stimuli associated
with drug consumption. This involuntary cognitive process is considered as attentional
bias (AB). AB has been hypothesized to have causal effects on drug abuse and drug
relapse, but its underlying neural mechanisms are still unclear. This study investigated
the neural basis of AB in abstinent heroin addicts (AHAs), combining event-related
potential (ERP) analysis and source localization techniques. Electroencephalography
data were collected in 21 abstinent heroin addicts and 24 age- and gender-matched
healthy controls (HCs) during a dot-probe task. In the task, a pair of drug-related image
and neutral image was presented randomly in left and right side of the cross fixation,
followed by a dot probe replacing one of the images. Behaviorally, AHAs had shorter
reaction times (RTs) for the congruent condition compared to the incongruent condition,
whereas this was not the case in the HCs. This finding demonstrated the presence of
AB towards drug cues in AHAs. Furthermore, the image-evoked ERPs in AHAs had
significant shorter P1 latency compared to HCs, as well as larger N1, N2, and P2
amplitude, suggesting that drug-related stimuli might capture attention early and overall
require more attentional resources in AHAs. The target-related P3 had significantly
shorter latency and lower amplitude in the congruent than incongruent condition in
AHAs compared to HCs. Moreover, source localization of ERP components revealed
increased activity for AHAs as compared to HCs in the dorsal posterior cingulate
cortex (dPCC), superior parietal lobule and inferior frontal gyrus (IFG) for image-elicited
responses, and decreased activity in the occipital and the medial parietal lobes for
target-elicited responses. Overall, the results of our study confirmed that AHAs may
exhibit AB in drug-related contexts, and suggested that the bias might be related to an
abnormal neural activity, both in early and late attention processing stages.
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INTRODUCTION

Drug-related attentional bias (AB), the effect for which substance-addicted patients involuntarily
orient their attention toward drug-related cues, has been considered a fundamental factor in
substance abuse, addiction development and maintenance (Mckay, 1999; Franken et al., 2003; Field
and Cox, 2008; Robinson and Berridge, 2008). AB has been observed in various types of addictions,
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including alcohol (Townshend and Duka, 2001), cigarette
(Chanon et al., 2010), heroin (Waters et al., 2012), and
cocaine (Mayer et al., 2016), even in abstinent individuals
(Noël et al., 2006; Rahmanian et al., 2006; Wang et al.,
2007). For example, previous studies have shown that abstinent
heroin addicts (AHAs) exhibit AB to heroin-related stimuli
(Marissen et al., 2006). However, few studies investigated the
underlying neural correlates of AB for heroin-related stimuli
in AHAs. The dot-probe task, developed by MacLeod et al.
(1986), is a widely used paradigm to investigate AB (Norman
et al., 2014; Ursache and Blair, 2015). It is based on the
observation that subjects tend to respond faster to a probe
stimulus that is presented in an attended rather than unattended
area (Franken et al., 2000). Recently, the task has been
extended to investigate AB in cigarette (Ehrman et al., 2002;
Spencer, 2015), alcohol (Klein et al., 2013; Mcateer et al., 2015;
Clerkin et al., 2016), as well as drug dependence (Lubman
et al., 2000; Bradley et al., 2003; Field et al., 2009; Gardini,
2009).

Electroencephalography directly measures neural activity,
which can be used to investigate information processing and
functional interactions in the human brain with millisecond
resolution (Liu et al., 2017). Particularly, the high temporal
resolution of event-related potentials (ERPs) allows us to examine
sequential cognitive processing states involved in a task. For
example, early visual components approximately 80–250 ms
after the stimuli onset, P1 or N1, are typically associated with
the lower-order visual processing (Omoto et al., 2010), such as
the identification of stimuli and their global encoding process
(Warbrick et al., 2014), whereas late components from 250
to 500 ms, P2, N2, and P3, are thought to reflect higher-
order cognitive processes (Michalewski et al., 1986; Kanske
et al., 2011; Ibanez et al., 2012; Kompatsiari et al., 2016),
such as selective attention processing, conflict processing,
stimulus categorizing, and inhibition processes (Luck et al.,
1990; Bocquillon et al., 2014). The P3 component is a positive
deflection with a peak around 300 ms after stimulus onset
(Herrmann and Knight, 2001), which is related to selective
attention processes. Overall, ERPs permit to explore the neural
basis of cognitive processes with high sensitivity and reliability,
and are complementary to behavioral analyses conducted, for
instance, by measuring reaction times (RTs) (Kappenman et al.,
2014).

Previous brain imaging studies, using positron-emission
tomography (PET) and functional magnetic resonance imaging
(fMRI) techniques, have reported that the brain regions that
are most vulnerable to heroin addiction are specific prefrontal,
parietal, occipital, and temporal regions and subcortical regions
(Kilts et al., 2001) linked with reward, motivation/drive,
memory/learning, inhibition as well as emotional control
(Pandria et al., 2016). AB to drug-related cues generally activates
parts of the prefrontal cortex that are relevant to attentional
processing (Goldstein and Volkow, 2011), such as dorsolateral
prefrontal cortex (dlPFC), the anterior cingulate cortex (ACC),
and the inferior frontal gyrus (IFG). However, the low temporal
resolution of PET and fMRI does not allow us to disentangle fast
cognitive processes underlying AB. In this regard, the EEG source

localization technique can be utilized to explore the underlying
neural changes of drug-related AB and the associated brain
regions (Field and Cox, 2008; Janes et al., 2010; Crunelle et al.,
2012).

The aim of this study is to investigate the neural abnormalities
of drug-related AB in heroin dependence using a dot-probe
task, combining ERP analyses, and source localizations. We
hypothesize that AHAs would respond faster than healthy
controls (HCs) to the dots that replace drug-related stimuli
compared to neutral stimuli. Furthermore, we expect that
source analysis of ERP components in AHAs would provide
electrophysiological evidences for abnormalities in cognitive
processing related to AB.

MATERIALS AND METHODS

Participants
We enrolled 45 participants (all males) in the study, including
21 AHAs and 24 HCs. The AHAs (age: M = 37.33 years,
SD = 7.18 years) were recruited from the Gansu Compulsory
Isolated Detoxification Center in China, meeting the criteria of
Diagnosis and Statistics of Mental Disorder 5th edition (DSM-V)
for heroin dependence. The AHAs who participated in our study
were abstinent from heroin and other dependent drugs for at least
1 month (abstinent period: M = 4.43 months, SD = 4.42 months).
The HCs (age: M = 35.29 years, SD = 8.11 years) were recruited
from the local community, and had no history of alcohol or
drug abuse. These two groups showed no significant difference
in the age [t(43) = 0.889, p = 0.379], but the educational level was
significantly lower in AHAs (M = 2.62, SD = 2.75 years) compared
to HCs (M = 6.71, SD = 3.7 years) [t(43) = −4.16, p < 0.05].
All the subjects were right-handed, had normal or corrected-to-
normal visual acuity, and no history of neurological problems.
None of the subjects were taking any psychotropic, neurological,
or psychiatric medications at the time of experiment. All
participants gave written informed consent before participating
in the study, which had been approved by the Ethics Commission
of Institute of Psychology of Chinese Academy of Sciences
(Approval Number: H15020).

Stimuli
We selected drug-related images and neutral scenic images
as stimuli to be used in the dot-probe task. We initially
selected 60 images from Institute of Psychology of the Chinese
Academy of Sciences, including 30 heroin-related images and
30 neutral images. The heroin-related stimuli were images of
drug paraphernalia and scenes of an unidentified addict injecting
drugs. All stimuli were matched for brightness, contrast, and
color. The images were rated on a scale from one to nine by
heroin addicts (N = 29) who met the addiction criteria of DSM-V
and had no history of neurological problems. The 10 images
with the highest scores (score: 7.91 ± 0.11) were selected as
drug-related cues, and 10 images with the lowest scores (score:
1.42 ± 0.23) were selected as neutral images. Notably, the scores
of the drug-related images were significantly higher than those of
the neutral images [unpaired t-test, t(18) = 79.5, p < 0.005].
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Procedure
The experiment was performed in a quiet, air-conditioned
laboratory with dimly natural light. The participants were seated
comfortably in front of a 21-inch computer screen. To reduce
excessive eye movements and blinks, participants were instructed
to keep fixation on the center of screen during experiment.

The dot-probe task was programmed and presented using
E-Prime 2.0 (Psychology Software Tools, Inc.). The experimental
paradigm was shown in Figure 1. Specifically, each trial began
with a fixation cross (1 cm × 1 cm) in the center of the screen
for 1000 ms. Immediately following offset of the fixation cross,
a pair of images was presented for 500 ms. Each pair contained
a drug-related image and a neutral image. In each pair, one of
the stimuli appeared to the left of the fixation cross and one
appeared to the right, with a visual angle of 10 degrees. The
location of the drug-related image was randomized across trials.
The images were immediately followed by the target stimulus,
which was either a horizontal pair of dots or a vertical pair. Each
dot had 5 mm center distance, with 1 mm radius. The target
stimuli remained 200 ms. The participants were asked to judge
whether the dots were oriented vertically or horizontally, and to
press the response key as soon as possible. They were instructed
to press the button by using the middle finger and the index finger
of the right hand. If the answer was incorrect or took longer
than 1000 ms, the screen showed a feedback warning (‘X’ or ‘?’),
whereas no feedback was present if the response was correct and
fast enough. During the intertrial interval, which lasted 1350 ms,
a black screen without fixation cross was presented.

There were four kinds of target stimuli: (1) drug-related cue
and target both in the left visual field, (2) drug-related cue and
target both in the right visual field, (3) drug-related cue in the
left, and target in the right visual field, and (4) drug-related cue
in the right, and target in the left visual field. Each condition was

presented 60 times, resulting in a total of 240 trials. The first two
conditions, in which the drug-related cue and target are in the
same side, are referred to as the congruent (CON) condition, and
the other two, in which the drug-related cue and target are in the
different sides, as the incongruent (INCON) condition.

Before the real experiment, the participant had one or more
practice runs (20 trials each), during which EEG was not
recorded, until he/she reached a response accuracy of 80%. The
real experiment was composed of three runs. Each of these had
80 trials, and lasted about 6 min.

EEG Recording and Processing
Procedures
EEG signals were recorded using a 64-channel electrode cap
(Brain Products, Gilching, Germany) with International 10/20
montage. The scalp impedance of each sensor was kept below
10 k�, as suggested by the manufacturer. The EEG signals were
recorded at a sampling rate of 5000 Hz with the vertex electrode
as reference, and filtered in the band 0.01–100 Hz.

Signal processing and analysis of the EEG data was performed
using BrainVision Analyzer 2.0 (Brain Products, Gilching,
Germany). The raw EEG signals were resampled at 1000 Hz and
then band-pass filtered at 1–40 Hz with a FIR filter. Independent
component analysis (ICA) was used to remove the ocular and
muscle artifacts (Delorme and Makeig, 2004). The cleaned EEG
signals were re-referenced using the average reference.

ERP Calculation
EEG data were segmented into epochs from 100 ms before
image onset to 500 ms after image onset. The pre-stimulus
was used for baseline correction. In addition, the EEG data
were segmented into epochs starting 700 ms before the dot
stimulus onset, which is 200 ms before image onset, and

FIGURE 1 | Experimental paradigm. Each trial began with a fixation cross with 1000 ms duration. Immediately following offset of the fixation cross, a drug-related
image and a neutral image were presented bilaterally for 500 ms. Next, a target stimulus, which was either a horizontal or a vertical pair of dots, was shown for
200 ms. The trial ended with a 1350 ms intertrial interval.
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ending 1000 ms after dot stimulus onset. In the latter case,
epochs were baseline corrected in the time window from 700
to 500 ms before dot stimulus onset. Due to the carryover
effects of image stimulus, the average voltage of 200–0 ms
before dot stimulus onset biased, was thus not suitable for
the baseline (Supplementary Figure S2). Trials with a feedback
warning, which was present in the case of incorrect behavioral
response, were excluded. The EEG epochs with absolute voltage
value exceeding 100 µV were also excluded from analyses. The
trials of single ERP waveforms superimposed were not less
than 40 for each condition and per subject (57.43 ± 0.42 for
image-locked P1, N1, P2, and N2; 114.38 ± 0.79 for target-
locked P3).

Analysis of ERP Components
In this study, we investigated ERP components and the
corresponding source-space activity to clarify the neural
correlates of drug-related AB in heroin dependence. Specifically,
we examined five ERP components associated with different
stages of attention processing: image-elicited P1, N1, P2, and N2,
and target-elicited P3 (Carretié et al., 2004; Thai et al., 2016).
Since the image-elicited response lasted relatively long, the early
components for target-elicited response were severely distorted
by the image-elicited response. Therefore, early ERP components
elicited by target (dot) stimulus were not considered in this study.

We calculated image-elicited P1, N1, P2, and N2 in two
conditions, referring to drug-related cue either on the left or
on the right. P1 was defined as the first positive peak within a
20 ms time window around the P1 peak (the ‘peak window’)
after picture onset for each subject. N1 was defined as the first
negative peak within 50 ms around the peak identified in the time
window from 170 to 220 ms. P1 and N1 were examined at the
electrode O1, PO3, PO7 or O2, PO4, PO8, in the hemisphere
contralateral to the drug-related cue, considering the effect of
optic chiasm in the early visual response. In addition, P2 was
measured by averaging activity in the time window 240–320 ms
after image onset at O1, O2, Oz, PO3, PO4, PO7, and PO8
electrodes. N2 was defined as the second negative peak in the time
window 250–350 ms after the image onset at FC1, FC2, FC3, FC4,
FCz, C1, C2, C3, C4, and Cz electrodes. We also examined the
target-related P3, the most prominent ERP component related
to attentional processes (Verleger, 1988). P3 was defined by the
average activity in a 100 ms time window between 300 and 400 ms
at CP1, CP2, CP3, CP4, CPz, P1, P2, P3, P4, and Pz electrodes, for
congruent and incongruent conditions.

ERP Source Localization
To identify the brain regions involved in AB and their specific
role in attentional processing, we reconstructed the ERP sources
(Pascualmarqui et al., 2011) and compared neuronal activity
between two groups in the same condition (between-subject
comparison) or between different conditions in the same group
(within-subject comparison). A forward head model was built
by using the boundary element method (BEM), using a MNI152
template (Fuchs et al., 2002; Pascual-Marqui, 2002) and standard
electrode positions. Then, the activity at each brain voxel
was estimated by exact low-resolution brain electromagnetic

tomography (eLORETA) using the sLORETA and eLORETA
software package (Pascual-Marqui, 2002; Pascualmarqui et al.,
2011). eLORETA has been demonstrated to have lower
localization error compared to LORETA (Jatoi et al., 2014) and
to be suitable for accurate EEG source localizations (Zhao et al.,
2017). The brain sources were constrained to be in the cortical
gray matter, resulting in 6239 voxels at 5 mm resolution.

To enhance the spatial sensitivity of the ERP procedure, we
used the following time windows on the EEG source analysis: P1
(the 20-ms peak window), N1 (170–220 ms), P2 (240–320 ms),
N2 (250–350 ms), and P3 (the 100-ms peak window). Source
reconstruction was performed for each experimental condition
(image stimulus and target stimulus) and group (AHA and HC),
respectively. To be noted, the sources were computed in the
frequency range 1–40 Hz. It is important to note that, given the
ill-posedness of EEG source localizations, the maps presented
in this study should be considered rough estimates of the brain
sources during the dot-probe task.

Statistical Analysis
For the behavioral results, a 2 × 2 Analysis of variance (ANOVA)
was performed on the RTs for correct responses, with the group
(AHA vs. HC) as between-subjects factor and target-stimuli
condition (congruent vs. incongruent) as within-subjects factor.

Statistical analyses of ERP components were performed
with SPSS 19.0 (IBM, Armonk, NY, United States). We used
an ANOVA to investigate if there were differences between
AHA and HC. We performed a test of homogeneity of
variances, and adjusted F values using Brown–Forsythe’s and
Welch’s corrections if necessary. For repeated-measure ANOVA,
the Mauchly’s test was used to test for sphericity, and the
Greenhouse-Geisser correction was applied if necessary.

For the image-elicited P1, N1, P2, and N2 components, we
performed a 2 × 2 repeated-measure ANOVA with group (AHA
vs. HC) as a between-subjects factor and position of the drug-
related cues (left vs. right) as within-subjects factors. For the
target-elicited P3 component, repeated measures ANOVA were
performed with target-stimuli (congruent vs. incongruent) as
within-subjects factor and group (AHA vs. HC) as between-
subjects factor. The statistical significance was set to p = 0.05 with
family-wise error (FWE) correction for multiple comparisons.

Group-level source images were generated by using group as
between-subject factor in each condition. ANOVA was calculated
to examine significance differences per time period and per
condition within each group (AHA or HC) and between groups
(AHA vs. HC). The statistical significance level was set to p = 0.05.
In addition, voxel-wise t-tests (two-tailed) were performed to
compare current density between conditions in each group and
between groups.

RESULTS

The task performance, measured by accuracy rate, for AHAs
(92.64 ± 4.61%) and HCs (92.82 ± 4.02%) showed no
significant difference [t(43) = 0.0283, p = 0.9776], implying
that the difference in the educational level between AHAs
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and HCs did not affect task performance. A 2 × 2 ANOVA
on the RTs showed no significant main effect for group
or condition (congruent, incongruent), respectively [group:
F(1,43) = 0.107, p = 0.745; condition: F(1,43) = 0.004, p = 0.95],
whereas the group × condition interaction was significant
[F(1,43) = 8.03, p = 0.007]. Moreover, RTs in different conditions
were significantly different both for AHAs [F(1,43) = 3.61,
p = 0.044] and for HCs [F(1,43) = 4.448, p = 0.04]. Specifically,
AHAs tended to have quicker response to targets preceded
by drug-related cues compared to targets preceded by neutral
images, whereas the opposite pattern was observed in HCs
(Figure 2).

To investigate the effects of drug-related cues on the allocation
of attentional resources, we compared the ERP components
between AHAs and HCs. In particular, we investigated the
image-elicited P1 (Supplementary Figure S1), N1, P2, and N2
(Figure 3), and target-elicited P3 (Figure 4 and Supplementary
Figure S2). Using a repeated-measure ANOVA, we observed a
main effect of group on P1 latency [F(1,43) = 15.246, p < 0.001],
N1 amplitude [F(1,43) = 4.418, p = 0.041], P2 amplitude
[F(1,43) = 5.336, p = 0.026], N2 amplitude [F(1,43) = 19.486,
p < 0.001], and P3 latency [F(1,43) = 25.683, p < 0.001],
but not on P1 amplitude [F(1,43) = 0.423, p = 0.519] or P3
amplitude [F(1,43) = 0.676, p = 0.416]. Condition (congruent
vs. incongruent) and group (AHA vs. HC) had a significant
interaction effect on P3 amplitude [F(1,43) = 7.140, p = 0.011],
but not on P3 latency [F(1,43) = 0.489, p = 0.488]. For P3
amplitude, the congruent or incongruent condition showed
a significant effect on P3 amplitude for the AHA group
[F(1,43) = 8.08, p = 0.007], but not the HC group [F(1,43) = 0.76,
p = 0.388] (Figure 4C). Importantly, the amplitudes of target-
elicited P3 showed significantly positive correlation with RTs
in both congruent (r = 0.5634, p < 0.01) and incongruent

conditions (r = 0.5561, p < 0.01) for HCs (Figure 5A).
Surprisingly, anti-correlations were obtained in both congruent
condition (r = −0.2450, p = 0.2844) and incongruent condition
(r = −0.1303, p = 0.5734) for AHAs, although they did not reach
significance (Figure 5B). Notably, we did not find any significant
correlation between RT and withdrawal time (r = −0.063,
p = 0.787 for congruent condition; r = 0.117, p = 0.612
for incongruent condition), neither between P3 amplitude and
withdrawal time (r = −0.040, p = 0.865 for congruent condition;
r = −0.132, p = 0.570 incongruent condition).

Source localization revealed several brain regions for image-
related ERP components (i.e., P1, N1, P2, N2) of interest
(Figure 6, Table 1, and Supplementary Table S1). During the
P1 time window, dorsal posterior cingulate cortex (dPCC) and
superior parietal lobe (SPL) were significantly more active in
AHAs than in HCs, whether the drug-related cue was presented
in the left or right hemi-spatial field. Also, strong neuronal
activity in dPCC in AHAs was maintained until the N1 response.
For the P2 and N2 time windows, we found significant clusters
of differential activation in the SPL and IFG for drug-related
cue both in the left or right hemi-spatial fields. We then
examined the neural sources associated with target-related P3
activity (Figure 7, Table 1, and Supplementary Table S1). We
observed the medial parietal lobe and occipital lobe in AHAs to
be significantly less active both in congruent and incongruent
conditions, whereas brain activity in MTG was reduced for
AHAs in the incongruent condition, but not the congruent
condition. A within-subject comparison showed reduced activity
in superior frontal gyrus (SFG), dorsolateral prefrontal lobe,
dorsal anterior cingulate cortex (dACC) and IPL for AHAs in the
incongruent compared to the congruent condition, whereas no
brain regions showed differential activity between two conditions
for HCs.

FIGURE 2 | Reaction time (RT) for abstinent heroin addict (AHA) and healthy control (HC) groups in congruent and incongruent conditions, respectively. The reaction
times (RTs) in the congruent condition, as compared to the incongruent condition, was significantly shorter for AHAs (p = 0.044) and significantly longer for HCs
(p = 0.040). Error bars denote standard error. ∗p < 0.05.
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FIGURE 3 | Event-related potential (ERP) analysis for the image-related responses. (A) The grand average ERP waveforms for the image-related responses from the
selected electrode for the drug cues in the left (Left), drug cues in the right (Middle), and the averaged across left and right cases (Right). The N1 and P2 ERPs for the
drug cues presented in the left are from the O2 electrode, whereas the ERPs for the drug clues in the right are from the O1 electrode. The N2 waveforms are
extracted from the FCz electrode. The time windows for N1, P2, and N2 are marked by the gray shadow, where were 170–220 ms, 240–320 ms, and 250–350 ms,
respectively. The red and blue lines refer to AHA and HC group, respectively. (B) Scalp topography of the N1 (Left), P2 (Middle), and N2 (Right) components for left
and right drug cues, for AHA and HC groups, respectively. The components are averaged across subjects and time windows. (C) Bar plots show mean and
standard error of the intensity of N1 (Left), P2 (Middle), and N2 (Right) components for AHA group (red) and HC group (blue), respectively. Error bars denote standard
error. ∗p < 0.05.

DISCUSSION

The present study explored the neural correlates of drug-related
AB in AHAs by examining ERP components in a dot-probe
task. Our behavioral results confirmed the hypothesis that AHAs
respond faster than HCs to dots that replace drug-related stimuli,
as compared to neutral stimuli. More importantly, the influence
of the drug-related cue on attentional processing was reflected by
altered neural responses in the early (sensory) stage, as indexed by
the P1, N1, P2 responses, but also the late (cognitive) processing
stage, as indexed by the N2 and P3 responses. These findings

provided novel insights into the neural mechanisms underlying
AB toward the drug-related cues in AHAs.

In line with a previous study (Constantinou et al., 2010),
we found behavioral evidence of an AB to drug in the AHA
group using the traditional RT measure of drug-related bias
in a dot-probe task (i.e., the difference in RT on congruent
and incongruent trials). Specifically, we observed faster RTs in
congruent as compared to incongruent conditions in AHAs,
suggesting that the attention of heroin addicts was attracted
by drug-related images even after a certain withdrawal period
(Figure 2). Previous studies showed that drug-related cues could
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FIGURE 4 | P3 component for the target-related responses. (A) The grand average ERP waveform in congruent (Left) and incongruent condition (Right). The P3 time
window is marked by a gray shadow. The AHA group is depicted in red, and the HC group in blue. (B) Scalp topography of P3 component per group per condition.
The P3 component is averaged across subjects and time windows. (C) Bar plots for P3 latency (Left) and amplitude (Right) per group per condition. Error bars
denote standard error. ∗p < 0.05.

produce a strong subjective craving in AHAs, which may result in
AB (Franken, 2003; Lubman et al., 2008). On the contrary, HCs
showed longer RTs in the congruent compared to the incongruent
condition, which might be due to an intrinsic avoidance response
to drugs (Banerjee, 1971).

The ERP analysis permitted to identify distinct neural
responses associated with drug-related AB in AHAs. Visual

information processing may be characterized by four different
ERP components, related to sensory encoding (around about
80 ms), early categorization (around about 100 ms), and
stimulus recognition (around about 150 ms) (Richards, 2003;
Lithfous et al., 2014; Oren et al., 2016), and spatial orienting
and visual short-term memory (VSTM) (Nobre et al., 2008;
Kuo et al., 2014) (around about 250 ms). We observed a
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FIGURE 5 | Relationship between P3 amplitude and RT. The P3 amplitude is significantly correlated with RT in both congruent and incongruent conditions for HCs
(A). In contrast, it was anticorrelated with RT for AHAs (B). Three HCs (marked with a gray shadowed circle) were excluded from the analysis as they were
considered outliers.

significantly smaller P1 latency in AHAs than HCs, suggesting
that the manifestation of AB started from an early stage of
stimulus categorization and drug contexts might be encoded
more quickly in AHAs (Supplementary Figure S1A). However,
we did not find significant differences in the contralateral
P1 amplitude between AHAs and HCs. This result might be
explained by the presence of drug-related image and neutral
scenery image bilaterally. Moreover, the source localization
for P1 mainly identified dPCC and SPL (Figure 6). This is
in good agreement with other studies showing that dPCC is
associated with stimulus encoding (Tucker et al., 2011), and SPL
is involved in maintaining a spatial reference system for goal
oriented behavior. It may be associated with spatial integration
of visual features (Wilkinson et al., 2002; Cornette et al., 2006;
Molenberghs et al., 2016) and be also related to attentional
shifting (Molenberghs et al., 2007; Vandenberghe et al., 2012).
More generally, it is involved in the compilation of an attentional
priority map (Gillebert et al., 2012). Unlike the P1 amplitude
reflecting the inhibition, the N1 amplitude reflects the amount
of initial input to attentional resources to the cues (Li et al.,
2014). Our study showed significantly larger N1 amplitude in
AHAs than in HCs, especially at parietal and occipital electrodes
(Figures 3A,B). Visual spatial attention signals from parietal to
occipital cortex enable top-down attention processing (Lauritzen
et al., 2009). Accordingly, more attention may be allocated to
drug-related cues in AHAs in bottom-up attention process. In
line with previous studies (Rosazza et al., 2009), we found
the N1 topography to be characterized by a typical bilateral
posterior negativity, which is consistent with sources located in
bilateral occipital–temporal regions (Figure 3B, left panel). More
specifically, we found dPCC to be hyperactive in AHAs in the N1
time window (Figure 6B). dPCC is functionally connected with
dorsal attention regions (Campbell et al., 2013) and involved in
memory loading for the stimulus processing (Oren et al., 2016)

and selective processing of external task-relevant information
(Campbell et al., 2013).

The parieto–occipital P2, which was evoked at the latency
of around 280 ms by image cues, has been considered to be
related to memory performance (Dunn et al., 1998) and working
memory (Lefebvre et al., 2005). In turn, N2 is typically associated
with response to previous memorized stimuli (Hu et al., 2013)
and cognitive control of response inhibition. Its neural sources
are most likely located in dACC (Nieuwenhuis et al., 2003;
Botvinick et al., 2004). In line with previous studies (Howard
and Chaiwutikornwanich, 2006; Pinal et al., 2014; Gajewski and
Falkenstein, 2015), we observed larger P2 amplitude and N2
amplitude in AHAs, possibly indicating the reinforcement of the
memory related to drugs and an increased allocation of attention
to drug-related stimulus in AHAs. Source localization for P2 and
N2 period mainly identified SPL and IFG (Figure 6C). IFG, a
region involved in ventral attention network, is thought to play
an important role in stimulus-driven orientation of covert visual
spatial attention (Corbetta et al., 2000; Serences et al., 2005).
Concurring with previous studies (Luedke et al., 2013), stronger
activity in SPL and IFG areas of AHAs during N2 and P2 periods
might relate to filtering of irrelevant stimuli.

The analysis of ERPs following the presentation of dot stimuli
permitted to investigate how drug-related attention bias affected
cognitive processing (Field et al., 2009; Lobben and D’Ascenzo,
2015). Previous studies considered the P3 as an endogenous
psychological component, a sign of processes of memory access
evoked by evaluation of stimuli in tasks requiring a covert or an
overt response (Donchin, 1979, 1981; Polich, 2007). In particular,
the latency of P3 is associated with the evaluation of stimuli and
strategy adjustment for subsequent processing steps (Donchin,
1979, 1981). Our results showed shorter P3 latency in AHA
compared to HC (Figures 4A,C left panel), reflecting a shorter
time required for the evaluation or classification of the stimulus
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FIGURE 6 | Between-subject comparisons for image-elicited ERP sources. The t-score maps for the comparison between AHAs and HCs for P1 component (A),
N1 component (B), and P2 and N2 component (C) are shown for drug-related cues presented in the left and right visual fields, respectively. The brain regions with
yellow/red color indicate AHAs > HCs, whereas green/blue color indicates AHAs < HCs. The time periods for different components are indicated as well. To be
noticed, the time window for P2 and N2 components are overlapping. Significant brain regions (p < 0.05, FWE corrected) were indicated on the map. The peak MNI
coordinate regions for each comparison are reported in Table 1. dPCC, dorsal posterior cingulate cortex; IFG, inferior frontal gyrus; SPL, superior parietal lobule.

TABLE 1 | Peak MNI coordinates for between-subject factor comparison of between abstinent heroin addicts (AHAs) and healthy controls (HCs).

Component Time (ms) Condition Coordinate region Peak MNI coordinate P-value

P1 90–160 LEFT dPCC 0 −57 26 0.0256∗

SPL 0 −57 30

RIGHT dPCC 5 −52 35 0.0172∗

SPL 0 −57 30

N1 150–220 LEFT dPCC 10 −52 30 0.0446∗

RIGHT dPCC −15 −57 30 0.0386∗

P2| N2 260–350 LEFT SPL 40 −61 49 0.0396∗

RIGHT IPFG −30 19 −5 0.0438∗

P3 380–550 CON OL −5 −80 25 0.0132∗

MPL −5 −75 25

INCON MOL 0 −100 −5 0.0264∗

OL −5 −100 0

MTG −65 −50 0

Clusters surviving threshold of p < 0.05 family-wise error (FWE)-corrected. Abbreviations: dPCC, dorsal posterior cingulate cortex; IPFG, inferior prefrontal gyrus;
MPL: medial parietal lobe; MOL: medial occipital lobe; OL: occipital lobe; MTG: middle temporal gyrus; SPL, superior parietal lobule; CON: congruent; INCON: incongruent.
∗p < 0.05.
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FIGURE 7 | P3 Source analysis. (A) The t-score maps for the comparison between AHAs and HCs are shown in the congruent (Up) and incongruent condition
(Bottom), respectively. The brain regions with green/blue color indicate AHAs < HCs. The significant differences between brain regions [p < 0.05, family-wise error
(FWE) corrected] were indicated in the map. The peak MNI coordinates for the contrast between groups are reported in Table 1. (B) T-score maps for the
comparison between congruent and incongruent conditions for AHA group (Up) and HC group (Bottom), respectively. The brain regions with red color indicate
CON > INCON, whereas those with blue color indicate CON < INCON. The peak MNI coordinates for the contrast between conditions are reported in
Supplementary Table S1. dACC, dorsal anterior cingulate cortex; dlPFL, dorsal-lateral prefrontal lobe; IPL, inferior parietal lobe; MOL, medial occipital lobe; MPL,
medial parietal lobe; MTG, middle temporal gyrus; OL, occipital lobe; SFG, superior frontal gyrus; CON, congruent; INCON, incongruent.

in AHAs, and lower P3 amplitude in AHAs in the congruent
compared to the incongruent (Figures 4C right panel, 5B). This
suggests that working memory in AHAs is slowly updated in
the congruent condition (Donchin, 1979, 1981). P3 amplitudes
were found to be positively correlated with RTs (Figure 5A)
for HCs, which is well in line with the concept that larger
P3 amplitude reflects greater perceptual load (Wu et al., 2009;
Wang et al., 2014) and higher distribution of psychological
resources (Polich, 2007). This positive correlation was lost in
AHAs (Figure 5B). This might be caused by altered attention
processes in AHAs (Wang et al., 2014). Previous EEG studies
showed that the neurophysiological activity of P3 wave emerge
from bilateral occipital areas during visual attention and visual
memory cognitive tasks (Coullaut-Valera García et al., 2007),
and fMRI studies indicated that the medial wall of the SPL may
contribute to bottom-up visual integration (Pflugshaupt et al.,
2016). Concurring with previous studies, our P3 results suggested
that the drug-related AB in AHAs might largely affect bottom-up
attention processes and memory cognitive responses relevant to
the dot stimulus. Importantly, the effects of withdrawal treatment
on the bottom-up attention processes (indexed by P3 amplitude
or by RT) might not be simply dependent on the withdrawal
time, since neither RT nor P3 amplitude was correlated with
withdrawal time. Notably, significant differences in the SFG,
dorsal-lateral prefrontal cortex (dlFPC), dACC, and IPL were
found between the congruent and incongruent conditions in

AHAs, but not in HCs (Figure 7). This indicates differences in
AHAs between congruent and incongruent conditions. Previous
fMRI studies showed that the response inhibition process in
heroin addiction is associated with abnormal brain activity in
dACC and SFG (Lee et al., 2005; Fu et al., 2008; Schmidt et al.,
2014). dlPFC is known to be involved in the generation of the
P3 component, which reflects top-down processes as stimulus
categorization and voluntary decision-making (Bocquillon et al.,
2014; Kuo et al., 2014). These results may help explaining why
AHAs easily relapse again.

Although our study led to a series of findings that might
contribute to a better understanding of attention bias in heroin
dependence, some limitations need to be noted. First, the low
educational level of subjects, in particular for AHAs, might have
an impact on their performance in the task. Second, for the
experiment protocol, we did not use a varying time for image
presentation, neither a jittered intertrial interval. This may raise
questions regarding the extent to which neural and behavioral
effects that are attributed to attention are confounded by
perceptual expectations. Third, we did not track eye-movements
during the experiment. Eye-tracking technology, a non-invasive
method for measuring gaze, has been proven to be a useful tool
to investigate the visual AB (Shechner et al., 2013; Garcíablanco
et al., 2014; Fashler and Joel, 2016), which can be considered
in future studies. Fourth, the low-density EEG montage and
the use of a volume conduction template might have limited
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the spatial resolution and the accuracy of source reconstruction
(Liu et al., 2017). Finally, we found that early visual stimulus
processing affects subsequent cognitive processing, as measured
by RT. Future studies are therefore warranted to disentangle
effects of attention and prediction on early stimulus processing.

CONCLUSION

In this study, we investigated the neural correlates of drug-
related attention bias in AHAs. We revealed that primary
differences compared to healthy individuals are already coded
in early stimulus encoding and recognition. Moreover, late
responses were also aberrant, and possibly related to impaired
stimulus evaluation and inhibition. Together, these findings may
contribute to a better understanding of the neural basis of
attention bias.
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