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This study analyzed and compared the potential role of fatty acid metabolism pathways in three subtypes of renal cell carcinoma.
Biological pathways that were abnormally up- and downregulated were identified through gene set variation analysis in the
subtypes. Abnormal downregulation of the fatty acid metabolism pathway occurred in all three renal cell carcinoma subtypes.
Alteration of the fatty acid metabolism pathway was vital in the development of pan-renal cell carcinoma. Bioinformatics
methods were used to obtain a panoramic view of copy number variation, single-nucleotide variation, mRNA expression, and
the survival landscape of fatty acid metabolism pathway-related genes in pan-renal cell carcinoma. Most importantly, we used
genes related to the fatty acid metabolism pathway to establish a prognostic-related risk model in the three subtypes of renal cell
carcinoma. The data will be valuable for future clinical treatment and scientific research.

1. Introduction

Renal cell carcinoma (RCC) is one of the most common
malignancies in the urinary system [1]. The incidence of kid-
ney cancer has been increasing worldwide in recent years [2].
In the United States, nearly 64,000 patients were diagnosed as
having RCC in 2017, with an annual increase of 2-4% [3, 4].
The primary treatment for RCC is radical resection of the
kidney. However, there is no effective treatment for patients
with metastatic and recurrent kidney cancer. Increasing evi-
dence suggests that metabolic gene perturbations are a signif-
icant feature of RCC [5–7]. Epigenetic interference genes in
RCC are good candidate targets for the development of pow-
erful prognostic and diagnostic tools and novel therapies [8,
9]. The common pathological types of RCC mainly include

kidney renal clear cell carcinoma (KIRC), kidney renal papil-
lary cell carcinoma (KIRP), and kidney chromophobe
(KICH).

It is unclear whether there are differences in fatty acid
metabolism pathways between these three RCC subtypes.
To explore this, we used gene set variation analysis (GSVA)
to perform pathway analysis in pan-RCC. The approach sen-
sitively detected subtle changes in pathway activity between
tumor tissue and normal tissue [10].

The present data indicate that fatty acid metabolism
pathways may be essential in the three RCC subtypes, with
significant differences between subtypes. Metabolism is influ-
ential in RCC. Changes in fatty acid metabolism pathways
may have an essential role in the development of RCC [11,
12]. A characteristic feature of cancer cells is that they can
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Figure 1: Continued.
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Figure 1: Overview of GSVA in pan-renal cell carcinoma. (a) KIRC, (b) KIRP, and (c) KICH. The redder the color, the stronger the activation
of the corresponding pathway. The greener the color, the stronger the suppression of the relevant pathway.
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readjust their metabolism to maintain ATP production and
the growth, division, and survival of the cancer cells. Notably,
abnormally, fatty acid metabolism occurs in the development
of RCC and in most tumors. The importance of abnormal
changes in fatty acid metabolism in cancer has attracted the
attention of many researchers, since these metabolites can
be used as structural components of the cell membrane
matrix and critical secondary messengers and as fuel sources
for energy production [13–15].

In this study, to fully understand the genetic variation
and clinicopathological correlation of these fatty acid meta-
bolic genes in pan-RCC, we obtained a panorama of copy
number variation (CNV), single-nucleotide variation
(SNV), messenger RNA (mRNA) expression, and the sur-
vival landscape. Subsequently, we used the R language to gen-
erate heat maps of these genes in the three RCC subtypes and

explored the correlation between these molecules. In particu-
lar, the fatty acid metabolism genes were used to establish
three risk signatures related to patient prognosis in the three
RCC subtypes. The findings should be valuable information
for future scientific research and clinical diagnosis and treat-
ment of RCC.

2. Materials and Methods

2.1. Data Acquisition. The Cancer Genome Atlas (TCGA)
program is sponsored by the National Cancer Institute and
National Human Genome Research Institute and was jointly
launched in 2006. TCGA uses a large-scale gene sequence
analysis technology to build a complete set of maps related
to all cancer genome changes. In February 2020, we down-
loaded the CNV, SNV, and mRNA expression data of the
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Figure 2: Overview of the fatty acid metabolism pathway in pan-renal cell carcinoma. (a) Venn diagrams of downregulated pathways in pan-
renal cell carcinoma. (b) Venn diagrams of upregulated pathways in pan-renal cell carcinoma. (c) Interaction diagram between fatty acid
metabolism genes. (d) The weight of each fatty acid metabolism gene in all the biological processes. The larger the value, the more critical
is its biological role. (e) Inhibition or activation of related biological processes on fatty acid metabolism pathways in KIRC. (f) Inhibition
or activation of relevant biological processes on fatty acid metabolism pathways in KIRP. (g) Inhibition or activation of related biological
processes on fatty acid metabolism pathways in KICH. The redder the color, the more potent is the activation. The greener the color, the
more influential is the inhibition.
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KIRC, KIRP, and KICH datasets in the TCGA database. Clin-
ical parameters and survival data of the corresponding cases
were extracted. The KIRC database contains 539 tumor tis-
sues and 72 normal tissues. The KIRP database contains
289 tumor tissues and 32 normal tissues. The KICH database
contains 65 tumor tissues and 24 normal tissues.

2.2. GSVA. GSVA is an open-source software package for R
[10]. GSVA can sensitively detect subtle pathway activity
changes in samples and can be used to build path-centric bio-
logical models. We used this data packet for the three RCC
subtypes.

2.3. Protein-Protein Interaction (PPI) Network Analysis.
Genes related to fatty acid metabolism were identified
through the GSEA website [16, 17]. STRING is a high-cover-
age, high-quality PPI network platform with a wide range of
applications in interpreting large-scale biomedical data and
visualization in the context of systems biology [18]. The

STRING online database was used to map these fatty acid
metabolism genes on the PPI network. Cytoscape visualiza-
tion software was used to draw the PPI network [19].

2.4. Data Processing and Analysis. The R language has power-
ful data analysis processing and visual drawing functions. It
can be used on Windows, Linux, and Mac systems. Writing
a new code or adjusting an existing code can quickly achieve
the requirements of data presentation and graphic drawing in
scientific research. The R language was used to draw a heat
map of the path changes in KIRC, KIRP, and KICH, where
the defining criteria were P < 0:05 and logFC > 0:2. We then
plotted Venn diagrams of the upregulated and downregu-
lated pathways between the three subtypes of RCC and found
pathways common to all three. The R language was addition-
ally used to map the activation or inhibition of genes related
to fatty acid metabolism pathways in KIRC, KIRP, and
KICH. We plotted the heat maps of CNV, SNV, mRNA
expression, and the survival landscape of fatty acid
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Figure 3: Overview of fatty acid metabolism genes in pan-renal cell carcinoma. (a) CNV in pan-renal cell carcinoma. The lower half of the
rectangle represents the CNV gain. The redder the color, the higher the frequency of variation. The upper part represents the CNV loss. The
yellower the color, the higher the frequency of variation. (b) SNV in pan-renal cell carcinoma. The redder the color, the higher the frequency
of variation. (c) The mRNA expression of fatty acid metabolism genes in pan-renal cell carcinoma. Red indicates that the corresponding gene
is upregulated in the tumor tissue. Blue indicates that the corresponding gene is downregulated in the tumor tissue. (d) The survival landscape
of fatty acid metabolism genes in pan-renal cell carcinoma. Blue represents protective factors, red represents risk factors, and white represents
a P value> 0.05, which is not statistically significant.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Continued.
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metabolism genes in these three RCC subtypes. Next, to
reveal the changes in mRNA levels more clearly, the R lan-
guage was used to draw a heat map of the expression of these
fatty acid metabolic genes in KIRC, KIRP, and KICH. Uni-
variate Cox analysis of these genes was performed in the
three RCC subtypes to explore the gene correlations. Finally,
these fatty acid metabolism genes were used to establish risk
signatures related to prognosis. Multiple data packages were
used coordinately. The limma software package performed
different analyses of the data. The corrplot software package
performed the coexpression analysis. The pheatmap software
package was used to construct heat maps. The survival soft-
ware package was used to analyze and construct survival
curves. The survivalROC software package was used to
explain and illustrate the receiver operating characteristic
(ROC) curve. In addition, in order to verify the results that
we obtained by analyzing the TCGA database, we used the

data in the GEO database to verify the expression levels of
fatty acid metabolism-related genes in KIRC, KIRP, and
KICH and drew the corresponding heat map (Supplemen-
tary materials Fig. S1A-C). Among them, the GEO chip
number of KIRC is GSE11151 and the GEO chip number
of KIRP and KICH is GSE15641 [20–23]. Because chip
GSE15641 contains both KIRP data and KICH data, there-
fore, we will select the KIRP and KICH data contained in this
chip for subsequent verification. A P value< 0.05 denoted
statistical significance.

3. Results

3.1. A Panoramic View of GSVA in Pan-RCC. The R language
was first used to perform GSVA on pan-RCC and the corre-
sponding heat map was generated. In KIRC, the pathways
that were inhibited included folate biosynthesis, oxidative
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Figure 4: Correlation between two fatty acid metabolism genes in pan-renal cell carcinoma. (a, d, g) Expression of fatty acid metabolism-
related genes between cancer tissues and normal tissues in KIRC, KIRP, and KICH. The redder the color, the higher the expression. The
greener the color, the lower the expression. (b, e, h) Univariate analysis of fatty acid metabolism-related genes in KIRC, KIRP, and KICH.
When the hazard ratio of this gene is >1, it means that the gene is a risk factor in the corresponding tumor and vice versa. (c, f, i)
Correlation analysis of fatty acid metabolism-related genes in KIRC, KIRP, and KICH. Red represents a positive correlation and blue
represents a negative correlation. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 5: Continued.
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phosphorylation, steroid biosynthesis, citrate cycle, tricar-
boxylic acid (TCA) cycle, and fatty acid metabolism. Acti-
vated pathways included apoptosis, DNA replication, cell
cycle, Notch signaling pathway, JAK/STAT signaling path-
way, and P53 signaling pathway (Figure 1(a)). In KIRP, the

inhibited pathways included citrate cycle, TCA cycle, fatty
acid metabolism, peroxisome proliferator-activated receptor
signaling pathway, transforming growth factor-beta (TGF-
β) signaling pathway, calcium signaling pathway, and adipo-
cytokine signaling pathway. Activated pathways included
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Figure 5: Establishment of the risk signature in KIRC and its correlation with clinical characteristics. (a–c) The process of building the risk
signature containing 11 genes in KIRC. (d) Survival curve drawn based on the model. (e) Five-year ROC curve. Results of (f) univariate Cox
analysis and (g) multivariate Cox analysis.
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nucleotide excision repair, DNA replication, P53 signaling
pathway, cell cycle, proteasome, and RNA degradation
(Figure 1(b)). In KICH, the inhibited pathways included
folate biosynthesis, hedgehog signaling pathway, tight junc-
tion, fatty acid metabolism, and drug metabolism cyto-
chrome p450. Activated pathways included oxidative
phosphorylation, citrate cycle, TCA cycle, protein export,
RNA degradation, and mammalian target of rapamycin sig-
naling pathway (Figure 1(c)).

3.2. Panoramic View of Genes Related to Fatty Acid
Metabolism Pathways in RCC. Venn diagram construction
identified up- and downregulated pathways in the three
RCC subtypes. The homologous recombination and RNA
polymerase pathways were upregulated (Figure 2(a)). The
cysteine and methionine metabolism, primary bile acid bio-
synthesis, glycine serine and threonine metabolism, folate
biosynthesis, taurine and hypotaurine metabolism, arginine
and proline metabolism, butanoate metabolism, tryptophan

metabolism, beta-alanine metabolism, proximal tubule bicar-
bonate reclamation, and fatty acid metabolism pathways
were downregulated (Figure 2(b)). Fatty acid metabolism
has an essential role in RCC. We identified genes related to
fatty acid metabolism using the GSEA website. These genes
were used to draw a PPI network map and quantify the data
(Figures 2(c) and 2(d)). The findings revealed potentially
critical roles of the acyl-CoA dehydrogenase medium chain
(ACADM), acyl-CoA oxidase 1 (ACOX1), and enoyl-CoA
hydratase and 3-hydroxyacyl-CoA dehydrogenase
(EHHADH) genes in the biological process. We then
assessed the expression of the fatty acid metabolism genes
in three RCC subtypes and plotted a panoramic view. The
plot revealed significant differences in the expression of these
genes in the different RCC subtypes (Figures 2(e)–2(g)). The
data highlighted the heterogeneity between the genes.

3.3. Molecular Changes in Fatty Acid Metabolism Genes in
Pan-RCC. The R language was used to generate CNV, SNV,
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Figure 6: Risk signature in KIRP and its correlation with clinical characteristics. (a–c) The process of building the risk signature containing
eight genes in KIRP. (d) Survival curve drawn based on the model. (e) Five-year ROC curve. Results for (f) univariate Cox analysis and (g)
multivariate Cox analysis.
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mRNA expression, and survival landscape panoramas of the
fatty acid metabolism genes in the three RCC subtypes. The
survival landscape was drawn by TBtools (http://cj-chen
.github.io/tbtools/). In CNV, the related genes in KICH dis-
played higher acquired and deletion mutation frequencies
than KIRC and KIRP (Figure 3(a)). In SNV, related genes

displayed higher mutation frequencies in KIRP than KIRC
and KICH (Figure 3(b)). Concerning subsequent mRNA
expression, ADH7 and CPT1B were upregulated in all three
RCC subtypes. In contrast, ADH1B, CYP4A11, and
CYP4A22 are downregulated (Figure 3(c)). Finally, in the
survival landscape panorama, blue denoted a protective
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Figure 7: Risk signature in KICH and its correlation with clinical characteristics. (a–c) The process of building the risk signature containing
six genes in KICH. (d) Survival curve drawn based on the model. (e) Five-year ROC curve. Results of (f) univariate Cox analysis and (g)
multivariate Cox analysis.
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factor and red denoted a risk factor. Many fatty acid metab-
olism genes have a protective role in KIRC. The vast majority
of statistically significant genes were risk factors in KICH
(Figure 3(d)). Interestingly, ACCA1 and HADHwere protec-
tive factors in KIRC and KIRP but were risk factors in KICH.

3.4. Clinical Relevance of Fatty Acid Metabolism Genes in
Pan-RCC. To understand whether these genes were protec-
tive or a risk factor in tumorigenesis and development, the
R language was used to generate heat maps of the expres-
sion of these fatty acid metabolic genes in the three RCC
subtypes (Figures 4(a), 4(d), and 4(g)). In the figure, pro-
gressively redder and greener color indicated progressively
higher and lower expression levels, respectively. To verify
these results, we chose to use the data in the GEO data-
base to verify our results. In the GEO database, we
selected chips corresponding to KIRC, KIRP, and KICH.
Among them, KIRC’s GEO chip number is GSE11151
and KIRP and KICH’s GEO chip number is GSE15641
[20–23]. Because chip GSE15641 contains both KIRP data
and KICH data, therefore, we will select the KIRP and
KICH data contained in this chip for subsequent verifica-
tion. We use the information on these GEO chips to
explore the expression of fatty acid metabolism-related
genes in KIRC, KIRP, and KICH and draw the corre-
sponding heat maps (Supplementary materials Fig. S1A-
C). Subsequently, we carefully compared the expression
of these fatty acid metabolism-related genes in the GEO
database with the expression in the TCGA database and
found that the results of the two databases are basically
consistent with each other. And then, univariate Cox
regression analysis of these fatty acid metabolic genes
was performed in the three RCC subtypes. The hazard
ratios of ACOX3, CPT1B, and CPT1C in KIRC exceeded
1, implicating the genes as risk factors in the development
of KIRC (Figure 4(b)). Similarly, CPT1C and ADH1B
were risk factors in the occurrence and development of
KIRP (Figure 4(e)). CPT1C, ACSL3, ACAA1, CPT2,
HADH, and ACAT2 were identified as risk factors in the
development of KICH (Figure 4(h)). To understand the
correlation between these genes, we drew a panoramic
view of the relationship between the two molecules. In
the upper right of these panoramic pictures, progressively
bluer colors and progressively larger bubble sizes indicated
increasingly stronger positive correlations between the two
molecules. Progressively redder colors and progressively
larger bubble sizes indicated stronger negative relation-
ships between the two. The bottom left of these pano-
ramas displays a quantitative value of the correlation. A
value closer to 1 and −1 indicated a progressively stronger
positive correlation and negative correlation, respectively.
Strong positive correlations were evident between ADH4
and ADH1C in KIRC (Figure 4(c)), between HADHA
and HADHB in KIRP (Figure 4(f)) and between ADH6
and ADH1A in KICH (Figure 4(i)).

3.5. The Prognostic Risk Signature in KIRC. In order to
explore the potential clinical application value of fatty acid
metabolism genes in KIRC, we use fatty acid metabolism

genes to establish a prognostic-related risk signature in KIRC
(Figures 5(a) and 5(b)). This risk signature consisted of
ADH6, CPT1B, ACADL, ACSL1, ALDH9A1, HADHB,
ACADM, HADH, ALDH2, CPT1A, and ALDH3A2
(Figure 5(c)). This risk signature was used to divide KIRC
patients into high-risk and low-risk groups. A statistically
significant difference was evident between the risk signature
and overall survival (P = 1:354e − 14; Figure 5(d)). An ROC
curve was drawn. The area under the ROC curve (AUC)
was 0.746 (Figure 5(e)). Subsequently, we used RT-qPCR to
detect the mRNA expression of the ADH6 gene in three
KIRC tumor samples and three normal kidney samples and
plotted relative histograms (Supplementary materials Fig.
S2). The results showed that the expression level of the
ADH6 gene in KIRC tumor tissue was significantly lower
than that in normal kidney tissue. Finally, univariate and
multivariate Cox regression analyses were performed. The
age, grade, stage, and risk score were independent risk factors
in KIRC (Figure 5(f) and 5(g)).

3.6. The Prognostic Risk Signature in KIRP. Similarly, a prog-
nostic risk signature was established in KIRP (Figures 6(a)
and 6(b)). This risk signature consisted of CPT1C, ADH1B,
ACAT1, ACAA2, ACOX3, ACSL4, GCDH, and CPT2
(Figure 6(c)). The allocation of KIRP patients into high-
and low-risk groups also proved to be statistically significant
with overall survival (P = 3:834e − 04; Figure 6(d)). The AUC
of the ROC curve was 0.757 (Figure 6(e)). The univariate and
multivariate Cox regression analyses revealed that the stage
and risk score were independent risk factors in KIRP
(Figures 6(f) and 6(g)).

3.7. The Prognostic Risk Signature in KICH. The similarly
constructed prognostic-related risk signature in KICH
(Figures 7(a) and 7(b)) consisted of CPT1C, ADH7, ECI1,
HADH, ACAA1, and ALDH2 (Figure 7(c)). The allocation
of KICH patients into high- and low-risk groups also was sta-
tistically significant with overall survival (P = 2:076e − 03;
Figure 7(d)). Then, AUC of the ROC curve was 0.934
(Figure 7(e)). Finally, univariate and multivariate Cox regres-
sion analyses determined that the risk score was an indepen-
dent risk factor in KICH (Figures 7(f) and 7(g)).

4. Discussion

RCC is a common malignant tumor in the urinary system.
RCC accounts for approximately 3% of all adult cancer
patients [24, 25]. Once RCC has metastasized, the five-year
survival rate is only 12% and approximately 20-40% of
patients with primary kidney cancer experience distant
metastases [26, 27]. Understanding the molecular mecha-
nisms of the development and progression of RCC is increas-
ingly important, and detailed and comprehensive data on the
three RCC subtypes are urgently needed. Big data analysis by
a high-throughput sequencing technology has identified
potential diagnostic and therapeutic targets in disease pro-
gression [28, 29].

This study analyzed TCGA sequence data to discover
effective prognostic models of pan-RCC. The findings could
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potentially guide future clinical and basic medical research.
First, GSVA was used to analyze the three RCC subtypes.
This analysis revealed the joint downregulation of fatty acid
metabolism pathways in the three subtypes. The finding
highlighted the important role of fatty acid metabolism in
the three RCC subtypes. Tumor cells usually use aerobic gly-
colysis (Warburg effect) to meet their energy and membrane
structure needs. These are precisely the key factors that drive
cancer growth, immune escape, survival, and disease devel-
opment. These glycolysis products are used to synthesize
lipids and provide a material basis for cell proliferation. Tar-
geted fatty acid metabolism pathways can play a substantial
role in RCC [12, 30, 31]. Focusing on the fatty acid metabo-
lism pathways, we explored the genetic variation and clinical
relevance in the three RCC subtypes.

In univariate Cox regression, ACOX3, CPT1B, CPT1C,
and five clinical characteristics (age, grade, stage, T, and
M) were significant predictors of survival in KIRC patients.
Multivariate Cox regression suggested that three clinical
characteristics (age, grade, and stage) were independent
prognostic factors for KIRC. Similarly, in KIRP, univariate
Cox regression showed that CPT1C, ADH1B, and two clin-
ical characteristics (stage and T) were significant predictors
of survival. Multivariate Cox regression suggested that the
clinical stage was an independent prognostic factor. Univar-
iate Cox regression in KICH showed that CPT1C, ACSL3,
ACAA1, CPT2, HADH, ACAT2 and two clinical character-
istics (stage and T) were significant predictors of survival.
However, the multivariate Cox regression did not reveal
any independent prognostic factors. The collective findings
revealed that the three RCC subtypes have common and dif-
ferent risk factors. Thus, while the subtypes are all RCC,
they are heterogeneous. CPT1C was identified as having a
risk factor role in all three RCC subtypes. CPT1C is the last
member of the CPT1 family to be identified. The protein is
mainly expressed in the endoplasmic reticulum of cells and
can interact with different proteins to produce a wide range
of biological effects. The most important is the interaction
with Atlasin-1, which maintains the endoplasmic reticulum
integrity of sex-related proteins. There is increasing evi-
dence for the role of CPT1C in regulating lipid metabolism.
The protein is highly expressed in specific tumor cells,
which confers resistance to low glucose and hypoxia [32,
33]. Therefore, CPT1C may be a promising target for the
treatment of cancer [34].

Finally, we used the fatty acid metabolism genes to estab-
lish prognostic risk signatures in the three RCC subtypes.
The risk signature constructed in KIRC patients consists of
eleven genes: ADH6, CPT1B, ACADL, ACSL1, ALDH9A1,
HADHB, ACADM, HADH, ALDH2, CPT1A, and
ALDH3A2. The risk signature constructed in KIRP patients
consists of eight genes: CPT1C, ADH1B, ACAT1, ACAA2,
ACOX3, ACSL4, GCDH, and CPT2. The risk signature cre-
ated in KICH patients consists of six genes: CPT1C, ADH7,
ECI1, HADH, ACAA1, and ALDH2. The possible underly-
ing mechanisms of ADH6 in pancreatic cancer have been
discovered in previous studies. These include fatty acid
metabolism, retinol metabolism, primary alcohol metabolic
processes, and drug metabolism cytochrome P450 [35]. Fatty

acid oxidation may affect tumor progression by affecting
lymphangiogenesis, and CPT1B may participate [36]. Inter-
est in ACADL in tumor biology has focused mainly on pros-
tate cancer, breast cancer, and esophageal squamous cell
carcinoma, primarily to study its influence on the occur-
rence, development, and treatment of tumors. However,
many potential functions are still unclear and require further
research [37–39]. Studies in hepatocellular carcinoma have
shown that long-chain noncoding RNA HULC can activate
ACSL1 by upregulating the transcription factor PPARA to
affect the proliferation of liver cancer cells [40]. Mutations
in the ALDH9A1 gene may be a potential risk factor in
RCC [41]. The ACADM gene can be regulated by
microRNA-224 to affect the apoptosis of breast epithelial
cells through the production of triglycerides [42]. After the
downregulation of HADH, β-oxidation was inhibited in gas-
tric cancer cells, which led to the accumulation of fatty acids.
This inhibited the transcription of phosphatase and tensin
homolog and promoted the proliferation and invasion of gas-
tric cancer cells [43–45]. ALDH2 is related to the occurrence
and development of liver cancer, gastric cancer, and colon
cancer [46]. As a critical rate-limiting enzyme for fatty acid
oxidation, CPT1A plays a role in transporting fatty acids into
the mitochondria for oxidative phosphorylation. CPT1A has
also been associated with the occurrence and very early
development of various tumors [47–50]. ADH1B mutations
have also been extensively studied and have been associated
with esophageal, head and neck, ovarian, and colorectal can-
cer [51–54]. Acsl4 may induce ferroptosis by altering the
lipid composition [55]. From previous research, it is clear
that we can see that the vast majority of genes used to estab-
lish risk signatures are related to cancer research and to some
extent support our findings.

In many cancers, gene expression signatures and
prognostic-related risk signatures have proven to function
based on their roles in driving pathogenesis, which is useful
for predicting the clinical outcome and prognostic value
[56–60]. The multiple models that we constructed using
genes related to fatty acid metabolism can effectively predict
the survival of kidney cancer patients. Even so, data from
large-scale, multicenter, evidence-based medical studies are
needed for verification.

5. Conclusions

In summary, we used TCGA data to draw a panoramic
view of CNV, SNV, mRNA expression, and survival land-
scape of fatty acid metabolism genes in KIRC, KIRP, and
KICH patients. Based on the fatty acid metabolism genes,
we identified a variety of prognostic risk signatures for
KIRC, KIRP, and KICH. But it must be admitted that there
are still some shortcomings in this research. There is a lack
of exploring the functions and molecular mechanisms of
these new mRNAs in vivo and in vitro. In the future, we
will continue to explore in depth along these important
clues. We believe that the current data can provide help
for future scientific research and the clinical diagnosis and
treatment of RCC.
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