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Abstract
Background: Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein
which has an important role in tumor progression.

Findings: In this study, we have utilized suppressive subtractive hybridization (SSH) to evaluate
OPN regulated gene expression, using the Rama 37 benign non-invasive rat mammary cell line and
a subclone, Rama 37-OPN. Rama 37-OPN was produced by stably transfecting Rama 37 with an
OPN expression vector and it demonstrates increased malignant properties in vitro. Sequence and
expression array analysis of the respective cDNA libraries of over 1600 subtracted cDNA
fragments revealed 982 ESTs, 45 novel sequences and 659 known genes. The known up-regulated
genes in the Rama 37-OPN library code for proteins with a variety of functions including those
involved in metabolism, cell adhesion and migration, signal transduction and in apoptosis. Four of
the most differentially expressed genes between the benign and in vitro malignant rat mammary cell
lines are tumor protein translationally controlled I (TPTI), aryl hydrocarbon receptor nuclear
translocator (ARNT), ataxia telangiectasia mutated (ATM) and RAN GTPase (RAN). The largest
difference (ca 10,000 fold) between the less aggressively (MCF-7, ZR-75) and more aggressively
malignant (MDA MB 231, MDA MB 435S) human breast cancer cell lines is that due to RAN, the
next is that due to osteopontin itself.

Conclusion: The results suggest that enhanced properties associated with the malignant state in
vitro induced by osteopontin may be due to, in part, overexpression of RAN GTPase and these
biological results are the subject of a subsequent publication [1].

Background
Metastasis is the major cause of treatment failure in breast
cancer patients [1]. The extracellular matrix glycophos-
phoprotein osteopontin (OPN) is normally secreted by
osteoblasts and is utilized as an extracellular adhesion

molecule [1]. Osteopontin has also been associated with
certain aspects of malignant transformation [2] by
enhancing malignant cell attachment contributing to
anchorage-independent growth and the migration of
tumor cells [3,4]. Moreover, transfection of benign, non-
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metastatic rat mammary cells with the cDNA for OPN in
an expression vector endows the transfectants with the
ability to overproduce OPN in vitro and to metastasize in
vivo [5]. Furthermore, we and others have shown that
OPN overexpression is associated with poor prognosis in
human primary breast cancer [6,7]. Recently, OPN has
been shown to be the single most powerful prognostic fac-
tor in a multivariate analysis against outcome, in a large
prospective study of breast cancer patients [8]. Circulating
plasma levels of OPN are also higher in metastatic breast
cancer patients [9]. However, the precise molecular mech-
anisms of how OPN regulates metastasis remain unclear.

To obtain a better understanding of this phenomenon
and, in particular, the downstream target genes in the
OPN signaling pathway, the technique of suppression
subtractive hybridization (SSH) has been employed. SSH
is an efficient method that uses widely available facilities
to identify sequences of known and unknown genes [10].
SSH has been used in the present study to determine dif-
ferential gene expression between the benign rat mam-
mary cell line Rama 37 (R37) and R37 cells stably
transfected with an expression vector for OPN, termed
R37-OPN cells.

Using the SSH method combined with reverse Northern
hybridization, we have identified genes that are differen-
tially expressed between the benign non-invasive rat
mammary cell line and the invasive and malignant meta-
static Rama 37-OPN. Some of the differentially expressed
genes were then tested further by Real Time PCR for the
relative level of their expressed mRNAs in a series of cell
lines established from human breast cancer and the
mRNA species which changes the most has been identi-
fied as RAN GTPase. The biological relevance of these
changes are the subject of a subsequent paper [1].

Results
Stable transfection of osteopontin gene
To ascertain if OPN expression was related to invasion
and other properties associated with the malignant state
in vitro, we raised various stable cell lines from R37 cells.
These were stably transfected by empty vector pBK-CMV
(R37-pBK-CMV) or by the constitutively-active expression
vector OPN-pBK-CMV (R37-OPN cells), as described in
Methods. Individual clones of the transfectants were com-
bined for subsequent analysis to generate pooled cell
lines. Immunoblot analysis using a monoclonal (MAb)
antibody to OPN, which recognizes both human and rat
OPN (Materials and Methods), showed that the OPN pro-
tein was expressed at a low level in R37 and R37-pBK-
CMV cells (Fig. 1A). OPN protein expression was
increased 10 fold in R37-OPN compared to R37 and R37-
pBK-CMV cell lines (Fig. 1A). In R37, R37-pBK-CMV and
R37-OPN cell lines, the MAb to OPN recognized a protein

of Mr 65,000 (Fig. 1A, Lanes 1–3), consistent with the size
of OPN from the original rat cell lines [8,11]. The increase
in OPN protein in the R37-OPN pooled cell line suggests
that the OPN-pBK-CMV vector consistently overexpresses
OPN, the empty vector pBK-CMV having no effect on
OPN expression in R37 cells.

Effect of OPN on cellular adhesion, anchorage-
independent growth and invasion
Adhesion of cells to fibronectin-coated surfaces was
assayed using a dye-based system. R37-OPN cells showed
a 9.2 and 8 fold increase in cell adhesion to fibronectin-
coated dishes, in comparison with R37 and R37-pBK-
CMV cells, respectively (Student's t-test, p < 0.01) (Fig.
1B). Colony formation was assayed in soft agar, R37-OPN
cells induced a 1.8 and 2.3 fold increase in colony number
per plate compared to R37 and R37-pBK-CMV cells,
respectively (p < 0.01) (Fig. 1C). The ability of cells to
migrate through a reconstituted three dimensional colla-
gen gel (Matrigel) and appear on the underside of a poly-
carbonate membrane was tested as an assay for cell
invasion. The cells on the underside of the membrane
were stained, scanned and counted using a digital imaging
system described in Methods [12]. Migration of R37-OPN
transformants was 913 and 1006 fold greater than the
parental R37 and R37-pBK-CMV cells, respectively (p ≤
0.002) (Fig. 1D). These results suggest that high levels of
OPN induce cell adhesion, anchorage-independent
growth and invasion in vitro, properties consistent with
the malignant metastatic state in vivo [5,13].

cDNA library construction by suppression subtractive 
hybridization
A cDNA library was constructed from the two cell lines. In
the forward SSH library, the benign noninvasive R37 was
used as the driver and the malignant invasive R37-OPN
cell line as the tester. In the reverse suppression subtrac-
tive hybridization library, the benign, noninvasive R37
was used as the tester and the malignant invasive R37-
OPN cell line as the driver. The forward and reverse sub-
tracted libraries represent genes that are preferentially up
and down-regulated in relation to OPN-mediated trans-
formation in mammary cells. To evaluate the efficiency of
cDNA subtraction, we compared the transcript levels of
the housekeeping gene glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) by RT-PCR in subtracted and unsub-
tracted cDNA libraries from R37 and R37-OPN cells,
respectively. Detection of GAPDH sequences for both sub-
tractions required 26 PCR cycles with subtracted cDNA as
template, whereas only 10 cycles were required to amplify
GAPDH from control cDNAs. Thus the commonly
expressed gene GAPDH was significantly depleted from
the subtracted cDNA libraries. Overall, 90% of the ran-
domly-picked cloned cDNAs yielded sequence informa-
tion. We have obtained 291 sequences (comprising 108
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Figure 1 (see legend on next page)
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different known cDNAs (see Additional file 1), 178
expressed-sequence-tags (ESTs) (see Additional file 2) and
5 unmatched sequences) and 1394 sequences (compris-
ing 550 different known cDNAs (see Additional file 3),
804 expressed-sequence-tags (ESTs) (see Additional file 4)
and 40 unmatched sequences) from R37 and R37-OPN
subtracted libraries, respectively. In total, 327 subtractive
cDNA clones (303 in the R37-OPN and 24 in the R37),
after excluding redundant and false-positives, were
obtained by performing a BLAST (Basic Local Alignment
Search Tool) search for comparison with NCBI RefSeq,
GenBank, and dbEST. The known and novel genes in R37
(see Additional files 1 &2) and R37-OPN (see Additional
files 3 &4) libraries are listed according to the function of
their proteins. Sequence analysis of the colonies from
R37-OPN and R37 libraries yielded a complex of previ-
ously identified cancer-associated genes, tumor suppres-
sor genes as well as a set of previously uncharacterized
genes with no level of redundancy. These data are consist-
ent with a significant enrichment for invasion-associated
and suppressor genes from the R37-OPN and R37 librar-
ies, respectively.

Differential screening of the subtracted libraries
The relative levels of mRNAs corresponding to the
sequenced cloned cDNAs, isolated from the subtracted
benign, non malignant and invasive, malignant libraries,
were estimated in R37 and R37-OPN cells by reverse
Northern hybridization, using cDNA produced from
mRNA from either the R37 or R37-OPN cells as probes.
The hybridization results were normalized using cDNAs
corresponding to mRNAs for GAPDH, which showed sim-
ilar expression between the R37 and R37-OPN cell lines.
Using an expression ratio of over three-fold as cut-off, 18
of 24 cDNA clones and 83 of the 303 cDNA clones, exam-
ined by reverse Northern screening were identified in the
benign, non-invasive and malignant, invasive subtracted
libraries, respectively (see Additional files 1 &2 and 3 &4).
Eighteen % and 38% cDNAs were differentially expressed
by over 15-fold in the benign and malignant breast tumor

cell lines, respectively. Amongst the cDNAs expressed at a
higher level in the R37-OPN cells than in the R37 cells
were previously characterized breast cancer-associated
genes such as TPTI [14], ARNT [15], CSFIR [16], MDM2
[17], CD44 [18], Cxcr4 [19], RAN GTPase [20], cytokera-
tin 20 (CK20) [21], Ki67 [22], with fold increases of 8, 8,
9, 9, 11, 23, 25, 32, and 45, respectively. Amongst the
cDNAs expressed at a lower level in R37-OPN cells were
previously characterized cancer suppressor genes PTEN
[23], ATM [24] and BRCA1 associated protein 1 [24] with
decreases of 19, 23 and 23 fold, respectively. These results
are consistent with changed levels of expression of mole-
cules implicated in breast and other cancers.

Quantitative Real Time PCR
Four of the highest differentially expressed genes that were
also associated with invasion and/or malignancy were
chosen from the total number of 1685 for validation by
quantitative real-time PCR analysis (QPCR) (see Addi-
tional file 5) using the relatively non-invasive MCF-7 and
the highly invasive MDA-MB-231 and MDA-MB-435S
human breast cancer cell lines [25]. The four genes encode
for tumor protein translationally-controlled (TPTI), aryl
hydrocarbon receptor nuclear translocator (ARNT), ataxia
telangiectasia mutated (ATM) and RAN GTPase (RAN).
MCF-7 cell: other cell ratios were calculated using the
comparative threshold cycle (Ct) method [26] after nor-
malization to a control housekeeping gene for ribosomal
RNA S18. The highly invasive malignant cell lines MDA-
MB-231 and MDA-MB-435S showed a 269 and 159 fold
increase in TPTI expression, respectively, in comparison
with the relatively non-invasive malignant cell line MCF-
7. MDA-MB-231 and MDA-MB-435S cells showed a 16.6
and 4.1 fold increase in ARNT expression, respectively, in
comparison with MCF-7 cells. ATM was undetectable in
both MCF-7 and MDA-MB-435S, but a small amount was
detected in MDA-MB-231 cells (see Additional file 5).
However, the most differentially expressed gene of the
four was RAN GTPase. Thus the invasive cell lines MDA-
MD-435s and MDA-MB-231 showed a 13191 and 765

The biological effect of introduction of OPN into benign R37 cellsFigure 1 (see previous page)
The biological effect of introduction of OPN into benign R37 cells. A Immunoblot showing OPN protein levels in R37, 
R37-pBK-CMV and R37-OPN cells. Cell lysates were diluted and 20 μg loaded onto a SDS 10% (w/w) polyacrylamide gel as fol-
lows: lane 1 R37; lane 2; R37-pBK-CMV; lane 3 R37-OPN. Specific proteins were detected using antibodies to OPN and β-
actin. Bands were quantified using densitometric analysis and normalized against β-actin. The average fold increase for three 
different experiments are: lane 1 = 1, lane 2 = 1 ± 0.2 and lane 3 = 10 ± 1.7. B Ability of transfected cell lines to adhere to a 
fibronectin-treated surface was assessed over a 30 min period and the number of adherent cells quantified. Results of the mean 
± standard error from three independent experiments are shown. C Soft agar assay was carried out to assess the ability of sta-
bly transfected cell lines to grow in an anchorage independent environment. The colony number was assessed after 5 days. 
Results of the mean ± standard error from three independent experiments are shown. D R37, R37-pBK-CMV and R37-OPN 
were plated on ECM-coated filters (500 μg/ml) in Boyden chambers. The number of cells that migrated through the filter after 
48 hrs was determined by staining and scanning using a digital imaging system (Methods). Results of the mean ± standard error 
from three independent experiments are shown.
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fold increase, respectively, in RAN expression compared
to MCF-7 cells and they also showed a 9785 and 60 fold
increase in levels of OPN (see Additional file 5). The rela-
tively non-invasive breast cancer cell line ZR-75 showed
almost identical levels of low expression of RAN and OPN
to those of the MCF-7 cell line (see Additional file 5).

Discussion
These results are not a simple artefact of a single clone of
cells, since they have been obtained with pools of single
cell clones of transfectants. R37 cells thus provide a robust
system for the study of OPN-induced changes in the
parental R37 cells that lead to the invasive, malignant
phenotype in vitro and, in a parallel system, to the meta-
static state in vivo [5]. Using SSH technology, we have now
identified potential downstream effectors of the OPN-
induced signaling network that may lead to invasion and
ultimately metastasis. Here we report the recovery of gene
fragments representing differentially expressed mRNAs
between benign, noninvasive R37 [11] and malignant,
invasive R37-OPN cells [11] from two cDNA libraries
established after SSH, and compare their sequences with
those of known genes (see Additional files 1 &2, 3 &4).
The SSH procedures used to establish differences in gene
expression between the two cell types have permitted the
isolation of genes expressed in high and low-abundance
classes. It also leads directly to the production of cloned
fragments of expressed genes without the necessity to
clone subsequently genes of interest.

Methods
Cell culture and production of stable transformant cell 
lines
In vitro tests for malignancy
Assays for cell adhesion, colony formation and invasion
through Matrigel in Boyden chambers were carried out as
previously described ([13]; see Additional file 6).

Synthesis of SSH cDNA libraries
Two subtracted cDNA libraries, from R37 and R37-OPN
cell lines, were synthesized using the PCR-Select™ cDNA
subtraction kit (CLONTECH) (see Additional file 6).

Cloning and sequence analysis of OPN-target genes
The forward and reverse subtracted cDNAs were cloned
into pCR2.1-TOPO vectors (Invitrogen) and transformed
into competent TOPO 10 cells (Invitrogen) (see Addi-
tional file 6).

Expression array screening and analysis
A total of 327 combined cDNA inserts from forward sub-
tracted and reverse subtracted libraries were PCR ampli-
fied using NP1R and NP2R primers as previously
described [27] (see Additional file 6).

Quantitative Real Time RT-PCR (QPCR)
QPCR was used as an independent method to probe the
association of identified differentially expressed genes
with that of OPN in different human breast cancer cell
lines (see Additional file 6).

Statistical treatment of results
All biological experiments were performed at least 3
times. The mean and standard error were calculated and p
values less than 0.05 were considered significant as calcu-
lated using the Student's t-test.

The abbreviations used are
OPN: osteopontin, MAb: monoclonal antibody; Rama:
rat mammary; and SDS: sodium dodecyl sulfate.
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ential expression of the tumor protein, translationally-controlled 1 
(TPT1), aryl hydrocarbon receptor nuclear translocator (ARNT), ataxia 
telangiectasia mutated (ATM), and RAN GTPase (RAN) genes versus 
the housekeeping S18 ribosomal gene was calculated for each cell line 
using the expression: &#916Ct = Cttarget gene-CtS18. Next, MCF7 non-
invasive cells:other cell ratios were calculated from the &#916Ct values as 
follows: 2-(&#916Ct tumor cells-&#916Ct MCF-7). ND-not detectable.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-15-S5.xls]

Additional File 6
Details Methods.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-15-S6.pdf]
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