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Abstract

A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances.
Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This
report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C.
albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble b-1,3 glucan,
in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we
identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of
these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in
matrix production and may function through hydrolysis of insoluble b-1,3 glucan chains. We also show that a group of
alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6,
negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn
govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of
a process central to infection.
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Introduction

A biofilm is a community of surface-associated microorganisms

embedded in a matrix of extracellular polymeric substances.

Biofilms are common microbial growth forms in nature and are a

leading cause of human infection [1]. These infections are seeded

from biofilms present on implanted medical devices, such as

intravascular catheters [2]. Biofilm formation mechanisms are thus

relevant to our understanding of both microbial ecology and

infectious disease.

Biofilm matrix is broadly defined as an extracellular polymeric

material that is maintained within a biofilm [3–6]. It derives

from directed synthesis and secretion of matrix components as

well as lysis of a fraction of biofilm cells [5]. In natural settings,

matrix constituents may also come from the local environment,

such as an infected host [5]. Biofilm matrix often consists

predominantly of extracellular polysaccharides. For example,

bacterial biofilm matrices can include cellulose, polysaccharide

intercellular adhesin, and the polysaccharide polymers VPS,

PEL, and PSL [6]. Other matrix components include proteins,

fatty acids, and nucleic acids [6,7]. In general, the matrix

provides support and protection of the microbial community

embedded within it.

Our focus is the biofilm matrix of C. albicans, the major fungal

pathogen of humans. The C. albicans matrix is composed primarily

of carbohydrate and includes protein, hexosamine, phosphorus,

and uronic acid [8]. The primary carbohydrate is probably b-1,3

glucan: glucose is the major matrix sugar and biofilms are

disrupted by in situ treatment with lyticase [8], an enzyme that

specifically hydrolyzes b-1,3 glucan. Moreover, Nett et al. have

shown that elevated b-1,3 glucan levels are characteristic of

biofilm cells as compared to planktonic free-living C. albicans cells

[9]. The increased b-1,3 glucan content of in vitro-grown biofilms

is found in both cell walls and as a secreted form [9]. Finally,

soluble b-1,3 glucan is produced by C. albicans biofilms grown in an

in vivo catheter infection model, where it can be used in diagnosis

of catheter-based infection [10].

Matrix production is closely tied to biofilm formation, yet little is

known about its regulation or production mechanisms. We

describe here a C. albicans transcription factor, Zap1/Csr1

(orf19.3794), that governs matrix production. This transcription

factor is closely related to the Saccharomyces cerevisiae zinc-response

regulator Zap1, and we show that expression of three zinc

transporter genes depends upon C. albicans Zap1/Csr1. This

observation supports a recent report [11] indicating that the S.

cerevisiae and C. albicans Zap1 both regulate zinc-responsive gene

expression. However, we also show that Zap1/Csr1 controls genes

that influence overall matrix levels. Our results provide a

foundation for a mechanistic understanding of matrix production

and its regulation.
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Results

Role of Zap1 in Biofilm Formation In Vitro
We have described screens of C. albicans transcription factor

gene insertion mutants for defects in biofilm formation [12]. In the

course of these screens, we found an insertion mutant that

produced a biofilm with a slimy or glistening appearance. The

insertion lay in the coding region for ZAP1/CSR1 (orf19.3794).

This phenotype was observed for several additional zap1/zap1

insertion mutants as well as a newly created zap1D/zap1D deletion

mutant. This unusual phenotype was complemented by introduc-

tion of a wild-type ZAP1 construct into the zap1D/zap1D mutant,

but not by the vector lacking the ZAP1 insert. Therefore, loss of

ZAP1 function causes an unusual glistening appearance of in vitro-

grown C. albicans biofilms.

We examined overall biofilm growth and ultrastructure to

explore the nature of this altered biofilm appearance. We detected

no difference in biofilm biomass of zap1D/zap1D mutant and the

zap1D/zap1D+pZAP1 complemented strain or the reference wild-

type strain (Figure 1A). Overall biofilm thickness was similar for

the zap1D/zap1D mutant and the zap1D/zap1D+pZAP1 comple-

mented strain as well (Figure 2C, 2F), as visualized by confocal

scanning laser microscopy (CSLM). However, depth views

revealed that the mutant hyphae often terminated in yeast-form

cells (Figure 2A, 2B). Some of these cells appeared spherical and

resembled chlamydospores. Complementation with ZAP1

(Figure 2D, 2E) restored an appearance similar to wild-type

biofilms in this system [12]. Therefore, Zap1 is required for

normal hyphal morphogenesis in biofilms.

A glistening appearance can be associated with accumulation of

extracellular polymers, as in the case of Staphylococcus biofilms [13].

To see whether matrix might hyperaccumulate in the zap1D/

zap1D strain, we measured biofilm-associated soluble b-1,3 glucan.

The zap1D/zap1D strain produced 1.5- to 2-fold greater soluble b-

1,3 glucan in biofilms than the complemented and reference

strains (Figure 1B). Planktonic cultures of the strains showed a

similar trend but the differences were not statistically significant

(Figure 1C). Therefore, in in vitro-grown biofilms, Zap1 is a

negative regulator of extracellular soluble b-1,3 glucan, a major

component of extracellular matrix.

Role of Zap1 in Biofilm Formation In Vivo
In order to determine whether Zap1 may play a role in biofilm

formation in vivo, we turned to a rat model for catheter-associated

infection [14]. We observed that the zap1D/zap1D mutant, the

zap1D/zap1D+pZAP1 complemented strain, and the wild-type

reference strain all produced substantial biofilms in vivo (Figure 3B,

3D, 3F), as visualized with scanning electron microscopy (SEM).

However, the zap1D/zap1D mutant biofilm had a striking

abundance of extracellular material (Figure 3A) compared to the

control strains (Figure 3C, 3E). Quantitative measurements of

serum removed from the catheters indicated that the zap1D/zap1D
mutant produced over 3-fold more soluble b-1,3 glucan than the

wild-type strain (Figure 1D). Introduction of ZAP1 into the mutant

reduced soluble b-1,3 glucan production substantially (Figure 1D),

as expected from the common phenomenon of partial comple-

mentation. These results indicate that Zap1 is a negative regulator

of extracellular matrix production in an in vivo biofilm model.

Identification of Zap1-Regulated Genes
In order to understand the connections between Zap1 and

matrix production, we performed expression microarrays com-

paring the zap1D/zap1D mutant and complemented strain, both

grown as biofilms. We found 232 genes that were significantly

upregulated in the mutant, and 272 genes that were significantly

downregulated genes in the mutant (Table 1; Dataset S4,

worksheet 2). Several top target genes identified by the expression

arrays were verified by northern or quantitative real-time PCR

analysis (Dataset S5). The data indicate that C. albicans Zap1, like

its S. cerevisiae ortholog, is a regulator of zinc homeostasis as the

zinc transporter genes ZRT1, ZRT2, and ZRT3 are downregulated

in the zap1D/zap1D mutant. Indeed, we found that the zap1D/

zap1D mutant is defective in growth on low-zinc medium (Dataset

S5). That defect arises from reduced expression of zinc

transporters, because increased expression of zinc transporter

genes ZRT1 or ZRT2 improved growth of the zap1D/zap1D
mutant on low-zinc medium (Dataset S5). These growth assays

confirm findings reported recently by Kim et al. [11]. Several

other gene classes are downregulated in the zap1D/zap1D mutant,

including those related to adhesion, aldehyde metabolism, and

hyphal development. The connection of adhesion and hyphal

formation to biofilm formation is well established; the connection

with aldehyde metabolism genes is discussed below. The classes of

genes upregulated in the mutant include those related to alcohol

dehydrogenase activity, carbohydrate transport, cell wall structure,

ergosterol biosynthesis, and glucoamylase activity. The connection

of several of these gene classes to biofilm formation is explored

below. Finally, we note that the zap1D/zap1D strain has altered

expression of several transcriptional regulatory genes, and these

gene products may mediate indirect control of some genes by

Zap1.

To identify target genes that are directly regulated by Zap1, we

used genome-wide chromatin immunoprecipitation (ChIP) anal-

ysis of biofilm cells (Figure 4; Dataset S6). We found that Zap1

binds directly to the promoters of ZRT1, ZRT2, and ZRT3

(Figure 4A–4C; Dataset S6), thus arguing that Zap1 regulates zinc

homeostasis through activation of zinc transporter gene expres-

sion. The ZRT1 59 region is shared with the divergent PRA1 gene,

whose S. cerevisiae ortholog ZPS1 is a Zap1 target, so this shared

regulatory region may permit Zap1 activation of both ZRT1 and

PRA1 (Figure 4B). We also found Zap1 associated with its own

(ZAP1) promoter region, as expected if C. albicans Zap1 activates its

Author Summary

A biofilm is a surface-associated population of microbes
that is embedded in a cement of extracellular compounds.
This cement is known as matrix. The two main functions of
matrix are to protect cells from their surrounding
environment, preventing drugs and other stresses from
penetrating the biofilm, and to maintain the architectural
stability of the biofilm, acting as a glue to hold the cells
together. The presence of matrix is a contributing factor to
the high degree of resistance to antimicrobial drugs
observed in biofilms. Because biofilms have a major
impact on human health, and because matrix is such a
pivotal component of biofilms, it is important to under-
stand how the production of matrix is regulated. We have
begun to address this question in the major human fungal
pathogen Candida albicans. We found that the zinc-
responsive regulatory protein Zap1 controls the expression
of several genes important for matrix formation in C.
albicans. These target genes encode glucoamylases and
alcohol dehydrogenases, enzymes that probably govern
the synthesis of distinct matrix constituents. The findings
here offer insight into the metabolic processes that
contribute to biofilm formation and indicate that Zap1
functions broadly as a negative regulator of biofilm
maturation.

Matrix Mediators in Candida albicans Biofilms
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own expression (Figure 4F). We note that Zap1 autoregulation is

well established in S. cerevisiae [15]. Finally, we found Zap1 bound

to the promoters of CSH1 and IFD6 (Figure 4D, 4E), whose

contribution to biofilm matrix is described below. Although S.

cerevisiae Zap1 can function as a repressor [16], we did not detect C.

albicans Zap1 bound to promoter regions of genes identified by

microarrays to be repressed including ADH5, GCA1, or GCA2.

(ChipView plots of every significant binding event may be found in

Dataset S6, sheet 3.) These genes may be indirectly regulated by

Zap1. It is also formally possible that Zap1 associates with other

Figure 1. Analysis of biofilm and matrix production. The mutant strain CJN1201 (zap1D/zap1D), complemented strain CJN1193 (zap1D/
zap1D+pZAP1), and reference wild-type strain DAY185 (ZAP1/ZAP1) were assayed for (A) in vitro-grown biofilm biomass, (B) in vitro-grown biofilm
soluble b-1,3 glucan production, and (C) in vitro planktonic culture soluble b-1,3 glucan production. In addition, (D) soluble b-1,3 glucan production
was assayed in a rat catheter biofilm infection model. The symbol ‘‘*’’ indicates that glucan measurements were significantly different (p,0.0005)
from the zap1D/zap1D strain.
doi:10.1371/journal.pbio.1000133.g001
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proteins that mask the epitope in order to function as a repressor;

according to this model we would fail to detect genes where Zap1

was bound as a repressor. Overall, our data clearly show that Zap1

directly activates many target genes that function in diverse

biological processes.

Function of Zap1 Target Genes in Biofilm Matrix Production
We further investigated several Zap1 target genes that may

function in biofilm matrix production (Table 1). Genes that are

downregulated in the zap1D/zap1D mutant could, in principle, be

inhibitors of matrix production; genes that are upregulated in the

zap1D/zap1D mutant could be activators of matrix production. We

reasoned that overexpression of matrix inhibitors in the zap1D/

zap1D mutant may cause reduced levels of soluble b-1,3 glucan.

To test this idea, we introduced highly expressed TDH3 promoter

sequences to replace promoter regions of the following target

genes: ZRT2, ZRT1, PRA1, CSH1, and IFD6. We confirmed their

overexpression through qPCR assays in the zap1D/zap1D

Figure 3. Scanning electron microscopy of in vivo biofilms. The mutant strain CJN1201 (zap1D/zap1D, [A,B]), complemented strain CJN1193
(zap1D/zap1D+pZAP1, [C,D]), and reference wild-type strain DAY185 (ZAP1/ZAP1, [E,F]) were inoculated into rat intravenous catheters, and resulting
biofilms were visualized after 24 h of growth. Images show catheter luminal surfaces at (A,C,E) 1,0006 and (B,D,F) 506magnification.
doi:10.1371/journal.pbio.1000133.g003

Figure 2. CSLM analysis of in vitro biofilm structure. In vitro-grown biofilms of the mutant strain CJN1201 (zap1D/zap1D, [A–C]) and
complemented strain CJN1193 (zap1D/zap1D+pZAP1, [D–F]) were visualized by CSLM. (A,D) Depth views show the x-y plane. (B, E) Magnified depth
views with pseudocolor scale. (C, F) Side views show the y-z plane.
doi:10.1371/journal.pbio.1000133.g002
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transformants (Dataset S5). We observed that both TDH3-CSH1

and TDH3-IFD6 caused a significant decrease in soluble b-1,3

glucan levels produced by in vitro biofilms (Figure 5A), whereas

the other constructs produced no significant differences. To survey

candidate activators of matrix production, we overexpressed

selected genes in a wild-type (ZAP1/ZAP1) background. Once

again, we used the TDH3 promoter to replace promoter regions of

target genes YWP1, orf19.3499, HXT5, GCA1, GCA2, HGT2, and

ADH5, and used qPCR to confirm overexpression (Dataset S5).

We observed that TDH3-GCA1, TDH3-GCA2, and TDH3-ADH5,

but not the other constructs, significantly increased soluble b-1,3

glucan levels produced by in vitro biofilms (Figure 5A). These

results support the idea that specific Zap1 target genes can

modulate biofilm matrix levels in vitro.

To test target gene function in vivo, we turned to the rat

catheter infection model. We measured biofilm-associated

Figure 4. ChIP mapping of genomic Zap1 binding sites. Zap1 myc-tagged strain CJN1688 versus untagged wild-type strain DAY185
immunoprecipitation binding data were performed under biofilm conditions. The x-axis represents ORF chromosomal locations (See Dataset S6,
sheet 1 for exact location values). The y-axis is the Agilent normalized enrichment value (log2) for binding of Zap1 (See Dataset S6, sheet 1 for exact
enrichment values). Zap1-myc strain (blue line) and untagged wild-type (red line) ChIP–chip array binding data were mapped and plotted onto the
chromosomes containing ZRT1 and PRA1 located on Chromosome 4 (A), ZRT2 located on Chromosome 2 (B), ZRT3 located on Chromosome 2 (C),
CSH1 located on Chromosome 1 (D), IFD6 located on Chromosome 1 (E), and itself ZAP1 located on Chromosome 4 (F) using ChipView v0.954. The
promoters of these genes show significant peak enrichment (determined using Agilent Chip Analytics software v1.2) for the binding of Zap1. The
blue track under the peak indicates that the Agilent segment p-value (2log10) for the binding of Zap1 is significant (See Dataset S6, sheet 1 for actual
segment p-values). Genes plotted above the bold line read in the sense direction; genes plotted below the bold line read in the antisense direction.
Identical binding sites with similar peak enrichment values were observed for the independently isolated Zap1 myc-tagged strain CJN1694 versus
untagged wild-type strain DAY185 (unpublished data).
doi:10.1371/journal.pbio.1000133.g004
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soluble b-1,3 glucan levels after biofilm formation by the strains

that had displayed altered glucan levels in vitro. The general

effects on soluble b-1,3 glucan of each TDH3-target gene during

biofilm culture in vivo paralleled those measured in vitro

(Figure 5B), though the magnitudes of the effects were typically

greater in vivo. These findings indicate that Csh1 and Ifd6 are

inhibitors of matrix production, and that Gca1, Gca2, and

Adh5 are activators of matrix production.

Discussion

Matrix is a defining characteristic of biofilms [3–6], and has

been found to contribute, in many organisms, to such critical

biofilm attributes as adherence and antimicrobial drug resistance.

The matrix of C. albicans biofilms has been characterized

biochemically [8,17], but its biogenesis and regulation have

remained elusive. We report here that C. albicans Zap1 governs

Figure 5. Effect of altered Zap1 target gene expression. Soluble b-1,3 glucan levels were determined after biofilm growth (A) in vitro or (B) in
the rat catheter model. Determinations were carried out with zap1D/zap1D strains carrying either no promoter fusion or TDH3 promoter fusions to
genes ZRT2, ZRT1, PRA1, CSH1, or IFD6, as indicated in the figure. Determinations were also carried out with ZAP1/ZAP1 strains carrying either no
promoter fusion, or TDH3 promoter fusions to genes YWP1, orf19.3499, HXT5, GCA1, GCA2, HGT2, or ADH5, as indicated in the figure. A single asterisk
indicates that glucan measurements were significantly different (p,0.05) from the zap1D/zap1D strain carrying no promoter fusion; a double asterisk
indicates that glucan measurements were significantly different (p,0.05) from the ZAP1/ZAP1 strain carrying no promoter fusion; both assessments
are based upon Student’s t-tests. In (B), the pound symbol (#) indicates that the respective strain was not assayed in the in vivo biofilm model.
doi:10.1371/journal.pbio.1000133.g005
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biogenesis of a major matrix component, soluble b-1,3 glucan.

Our characterization of the Zap1 regulon, together with recent

studies by Kim and colleagues [11], confirms the functional

conservation of Zap1 as a regulator of zinc metabolism. We show

that, in C. albicans, the Zap1 regulon extends to govern both

positive and negative matrix biogenesis functions, and identifica-

tion of key Zap1-regulated genes gives insight into the metabolic

processes that contribute to biofilm formation. Based on the

relationship between Zap1 and matrix, as well as other Zap1

target genes, it is likely that Zap1 functions broadly as a negative

regulator of biofilm maturation.

Zap1-Responsive Genes
C. albicans Zap1, like its S. cerevisiae ortholog, has a critical role in

zinc metabolism. Genes activated by C. albicans Zap1 include

putative plasma membrane zinc transporter genes ZRT1 and

ZRT2 as well as the putative vacuolar zinc transporter gene ZRT3.

Both homology and functional analysis indicates that these genes

are connected to zinc acquisition ([11] and this report). Thus the

connection of Zap1 to zinc metabolism is clear.

Interestingly, the conserved Zap1 circuit encompasses many

additional genes, as indicated by comparison of Zap1-responsive

genes in our dataset with their S. cerevisiae orthologs and best hits

[18]. Conserved Zap1-responsive genes extend beyond zinc

transporter genes (Figure 6; Dataset S4, worksheet 3) to include

such Zap1-activated genes as PRA1, DPP1, HSP30, LAP3, STE23,

CSH1, and IFD6. Conserved Zap1-repressed genes include ADH5

and orf19.3352, among many more (Figure 6). The extent of

conservation may be underestimated because of the different

growth conditions employed for the two organisms, and the fact

that the S. cerevisiae Zap1 regulon varies with conditions of zinc

limitation [19]. Some of these gene products are known or

predicted to be zinc metalloenzymes, such as Ste23, and their

increased expression in zap1 mutants may reflect a homeostatic

Figure 6. Comparison of C. albicans and S. cerevisiae Zap1 regulons. Expression of Zap1-responsive genes in C. albicans (complemented strain
versus zap1D/zap1D mutant, x-axis) was compared with their S. cerevisiae orthologs and best hits (wild-type strain versus zap1 mutant, y-axis).
Definitions of orthologous genes and best hits were provided by the Candida Genome Database (see Dataset S4; worksheet 3; (http://www.
candidagenome.org/download/homology/orthologs/Calb_Scer_by_inparanoid/Assem21orthologs/CA_SC_orthologs.txt and http://www.candida-
genome.org/download/homology/best_hits/Calb_Scer_best_hits_Assem21.txt). Expression data for S. cerevisiae were for growth in 61 nM zinc from
Lyons et al. [18]. This graph presents the 40 most downregulated genes (purple triangles) and 40 most upregulated genes (blue triangles) in the zap1D/
zal1D mutant compared to S. cerevisiae orthologs, and the 40 most downregulated genes (purple squares) and 40 most upregulated genes (blue squares)
in the zap1D/zal1D mutant compared to S. cerevisiae best hits. In addition, all C. albicans ERG genes are graphed against their orthologs or best hits (green
squares). Finally, the five genes shown to be functionally relevant for biofilm matrix are graphed against their orthologs or best hits (red circles).
doi:10.1371/journal.pbio.1000133.g006
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response to reduced enzyme activity. However, the relationship of

many of conserved Zap1-dependent genes to zinc acquisition or

metabolism is not well understood. We note in particular that the

secreted metalloprotease homolog Pra1, the ortholog of S. cerevisiae

Zps1, is also closely related to the Aspergillus fumigatus antigen

ASPF2 (44% identity over 294 amino acid residues), which is

induced under low zinc conditions [20]. Thus the Zap1 regulon

may be broadly conserved among fungi. Genes with conserved

Zap1 responsive regulation in fungi with distinct environmental

niches might be considered priorities for further study in

relationship to zinc metabolism. Conversely, species-specific

responses may provide insight into unique features of each zinc-

limited niche.

MEME analysis of direct Zap1 target genes has identified two

potential Zap1 binding motifs, ACCTTGGTGGTTA and

TAGTGGTTAT (motifs 1 and 2, respectively, in Dataset S6,

worksheet 2), which are similar to each other. RSAT analysis

points to enriched 8-mers TAATGGTG and ATGGTGGT in

these 59 regions, which closely resemble the MEME sites. All are

similar to the known S. cerevisiae Zap1 binding motif, AC-

CTTNAAGGT [21,22], particularly because the greatest speci-

ficity is for the motif ends ACC and GGT [23].

C. albicans biofilm growth is associated with overall upregulation

of ergosterol biosynthesis [24] as well as increased resistance to

antifungals that target ergosterol [7,25]. It is striking that almost all

ergosterol biosynthetic genes are regulated oppositely by Zap1 in

C. albicans and S. cerevisiae (Figure 6 [green squares]; Dataset S4,

worksheet 3). ERG genes are largely downregulated in the S.

cerevisiae zap1D mutant; in other words, ScZap1 is formally a

positive regulator of ScERG genes. This relationship has functional

consequences, because a S. cerevisiae zap1D/ZAP1 heterozygous

diploid is hypersensitive to ergosterol biosynthetic inhibitors [26].

In contrast, ERG genes are largely upregulated in the C. albicans

zap1D/zap1D mutant, thus CaZap1 is formally a negative

regulator of CaERG genes. Zap1 may govern their expression

indirectly, because they lack clear ZREs and were not bound by

Zap1 in our ChIP analysis. This difference in ERG gene regulation

may reflect the distinct niches sampled for microarray analysis: S.

cerevisiae cells were grown aerobically [18]; our C. albicans cells were

grown in biofilms, which are substantially anaerobic [27]. It is well

established that ERG gene expression responds to oxygen levels

[28], a reflection of the heme requirement for ergosterol synthesis.

The apparently opposite roles of Zap1 in ERG gene regulation in

the two organisms may arise from the difference in growth

conditions. In any event, for C. albicans biofilms, perhaps a decline

in Zap1 activity during biofilm growth may be the cause of

increased ergosterol biosynthetic gene expression in biofilms.

Biofilm Matrix Synthesis
In principle, Zap1 might have influenced matrix production

indirectly, as a consequence of poor growth or zinc limitation.

However, overexpression of ZRT1 or ZRT2 improves zinc-limited

growth of the zap1D/zap1D mutant but has no effect on matrix

production. These findings indicate that it is altered Zap1 target

gene expression, rather than other effects of zinc limitation, that

stimulates matrix production in the zap1D/zap1D mutant. Our

target gene overexpression studies point to two classes of matrix

biogenesis functions: Csh1 and Ifd6 inhibit matrix production;

Gca1, Gca2, and Adh5 promote matrix production.

The role of Gca1 and Gca2 in matrix production is probably

direct. They are predicted extracellular glucoamylases; the

extracellular localization of Gca1 has been confirmed by

biochemical isolation [29]. Glucoamylases convert long-chain

polysaccharides into smaller-chain polysaccharides. Therefore,

we propose that Gca1 and Gca2 promote matrix production by

hydrolytic release of soluble b-1,3 glucan fragments, perhaps

from biofilm cell walls, from exported glucan polymers that are

not attached to cell walls, or from debris of lysed cells.

The roles of Csh1, Ifd6, and Adh5 may be more complex. All

three are predicted alcohol dehydrogenases. One simple

possibility is that they affect matrix production through their

impact on carbon metabolism. For example, Adh5 may promote

entry of ethanol into the TCA cycle for energy or via the

glyoxylate shunt to provide hexose for b-1,3 glucan synthesis.

Ethanol is known to accumulate in mature biofilms [30] and

thus may serve as a potential source of carbon. However, this

explanation does not readily account for the fact that Adh5

stimulates matrix production, whereas Csh1 and Ifd6 inhibit

matrix production. A second model is based upon the roles of

alcohol dehydrogenases in the Ehrlich pathway [31]. This

pathway permits nitrogen assimilation from amino acids,

yielding a-keto acids that must be reduced to acyl and aryl

alcohols for secretion. Such alcohols have profound roles in

quorum sensing and cell signaling. One aryl alcohol, tyrosol,

accumulates during biofilm maturation and functions to

stimulate hyphal growth [32,33]. The acyl alcohol farnesol also

accumulates during biofilm maturation [34] and inhibits hyphal

growth and biofilm formation [35–37]. Additional complex

alcohols that inhibit hyphal growth also accumulate in C. albicans

biofilms during maturation [34]. With these studies as backdrop,

a simple model is that Csh1, Ifd6, and Adh5 catalyze the final

reductive step in the biogenesis of biofilm-associated acyl and

aryl alcohols, and these alcohols act as signals to govern matrix

synthesis. The apparently opposite effects of these gene products

on matrix production may be related to substrate specificity:

Csh1 and Ifd6 may act preferentially to yield a matrix inhibitory

signal; Adh5 may act preferentially to yield a matrix stimulatory

signal.

The idea that Zap1 governs quorum-sensing molecule synthesis

explains the unexpected cell morphology observed in zap1D/

zap1D mutant biofilms. Specifically, we observed an excess of

yeast-form cells along with some unusually round cells that

resemble chlamydospores. Consistent with the apparent accumu-

lation of yeast-form cells, we note that the zap1D/zap1D mutant

shows upregulation of yeast-specific gene YWP1 and downregu-

lation of hyphally induced genes HWP1, RBT1, HYR1, and IHD1

(Figure 6). Growth of yeast-form cells and chlamydospores is

promoted by the quorum-sensing molecule farnesol [35,38,39].

However, there has been thus far no clear connection between

quorum-sensing molecules and biofilm matrix. Although this

connection is speculative at present, we note that it makes testable

predictions; in particular, that accumulation of specific acyl and

aryl alcohols will be modulated by Zap1 and by these alcohol

dehydrogenases. Similarly, it predicts that other defects in

biogenesis of Ehrlich pathway precursors will modulate matrix

production.

The unexpected connection of C. albicans Zap1 to matrix

production raises the question of whether the relevant target genes

are part of the conserved Zap1 regulon. We find that three of the

genes are (Figure 6): C. albicans CSH1 and IFD6 share the S.

cerevisiae best hit YPL088W; C. albicans ADH5 has the S. cerevisiae

best hit ADH5. All of these genes are under Zap1 control in the

respective organisms. On the other hand, GCA1 and GCA2 share

the S. cerevisiae best hit ROT2, which is not significantly responsive

to S. cerevisiae Zap1 under conditions examined [18]. These

findings indicate that a focus limited either to conserved or novel

Zap1-responsive genes would have revealed some functional

targets and overlooked others.
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Integration of Zap1 Activity into C. albicans Biofilm
Formation

The zap1D/zap1D mutant produces a biofilm with exaggerated

features of mature biofilms. We have focused here on the

abundance of matrix, but there are other such features as well.

For example, the mutant biofilm hyphal layer includes an

apparent excess of yeast-form cells, which may be induced in

mature biofilms by accumulation of quorum-sensing molecules

[4,32,34] to facilitate biofilm dispersal. The upregulation of ERG

genes and hexose transporter genes in the mutant are other

features in common with mature biofilms [24]. A simple working

hypothesis is that Zap1 functions as a negative regulator of biofilm

maturation (Figure 7). We suggest that a decline in Zap1 activity

during biofilm development may occur during the natural process

of biofilm maturation to bring about these characteristic biological

features.

Material and Methods

Media
C. albicans strains were grown at 30uC in either YPD (2% Bacto

peptone, 2% dextrose, 1% yeast extract) for Ura+ strains or in

YPD+uri (2% Bacto peptone, 2% dextrose, 1% yeast extract, and

80 mg/ml uridine) for Ura2 strains. Transformants were selected

for on synthetic medium (2% dextrose, 6.7% Difco yeast nitrogen

base with ammonium sulfate and auxotrophic supplements) or on

YPD+clonNAT400 (2% Bacto peptone, 2% dextrose, 1% yeast

extract, and 400 mg/ml nourseothricin [clonNAT, WERNER

BioAgents]) for nourseothricin-resistant isolates. Growth on low-

zinc medium was assayed with synthetic medium lacking added

zinc (2% dextrose, 1.7% yeast nitrogen base without ammonium

sulfate and without zinc sulfate, 0.2% ammonium sulfate, 2.5 mM

EDTA, and auxotrophic supplements). To obtain nourseothricin-

sensitive isolates having flipped out the SAT1 marker, nourseo-

thricin-resistant transformants were grown for 8–12 h in YPD

liquid medium, plated at a low cell density of 200 cells/plate on

YPD+clonNat25 (2% Bacto peptone, 2% dextrose, 1% yeast

extract, and 25 mg/ml nourseothricin [clonNAT, WERNER

BioAgents]), and allowed to grow for 24 h at 30uC as previously

described [40] with the defined modifications. Biofilms for

visualization were grown using Spider medium [41]. Supernatants

collected for b-1,3 glucan measurements were grown in suspension

or as biofilms in RPMI-MOPS medium for 12 h at 37uC, as

described previously [10].

Plasmid and Strain Construction
All C. albicans strains used in this study are listed in Dataset S1.

Reference strain DAY185 has been described [42]. Newly

constructed C. albicans strains were derived from BWP17 [43].

Primer sequences are listed in Dataset S2. All genotypes were

verified by colony PCR using corresponding detection primers

(Dataset S2). Construction of CJN1091 (zap1/zap1) was made by

PCR product-directed gene deletion [43] with 120-mer oligonu-

cleotides CSR1null-5DR and CSR1null-3DR via consecutive

rounds of transformation into BWP17. For gene complementation,

PCR was used to generate a fragment for ZAP1 from 1,000 bp

upstream of the start codon to 500 bp downstream of the stop

codon. This fragment was inserted into pGEMT-Easy (Promega),

digested with NgoMIV and AlwNI, and subsequently inserted by

in vivo recombination in S. cerevisiae into NotI- and EcoRI-digested

HIS1 vector pDDB78 [44], yielding plasmid pCJN517. The

complemented strain CJN1193 was made by transforming

CJN1091 with NruI-digested pCJN517, directing integration to

the HIS1 locus. The zap1/zap1 mutant strain was made His+ by

transforming CJN1091 with NruI-digested pDDB78 to yield strain

CJN1201.

The NAT1-TDH3 promoter plasmid pCJN542 [45] was used

for gene overexpression. The TDH3-IFD4 overexpression strain

CJN1680 was constructed by transforming CJN1201, the zap1/

zap1 mutant, using PCR products from template plasmid

pCJN542 and primers IFD4-F-OE-Ag-NAT-Ag-p-CJN and

IFD4-R-OE-Ag-NAT-Ag-TDH3p-CJN. These primers amplify

the entire Ashbya gossypii TEF1 promoter, the C. albicans NAT1 open

reading frame, the A. gossypii TEF1 terminator, and the C. albicans

TDH3 promoter with 100 bp of hanging homology to 500 bp

upstream into the promoter of IFD4 for the forward primer and

100 bp of hanging homology from exactly the start codon of IFD4.

The homology in these primers allows for homologous recombi-

nation of the entire cassette directly upstream of the natural locus

of IFD4 so that its expression is driven by the TDH3 promoter

instead of its natural promoter. By the same method, primers

IFD6-F-OE-Ag-NAT-Ag-p-CJN and IFD6-R-OE-Ag-NAT-Ag-

TDH3p-CJN were used for overexpression of IFD6 to produce

strain CJN1631; ZRT2-F-OE-Ag-NAT-Ag-TEF1p and ZRT2-R-

OE-Ag-NAT-Ag-TDH3p-CJN for overexpression of ZRT2 to

produce strain CJN1655; ZRT1-F-OE-Ag-NAT-Ag-TEF1p-CJN

and ZRT1-R-OE-Ag-NAT-Ag-TDH3p-CJN for overexpression

of ZRT1 to produce strain CJN1651; and PRA1-F-OE-Ag-NAT-

Ag-p-CJN and PRA1-R-OE-Ag-NAT-Ag-TDH3p-CJN for over-

expression of PRA1 to produce strain CJN1623. The TDH3-

19.4899 overexpression strain CJN1638 was constructed by

transforming DAY185, the wild-type reference strain, using PCR

products from template plasmid pCJN542 and primers 4899-F-

OE-Ag-NAT-Ag-p-CJN and 4899-R-OE-Ag-NAT-Ag-TDH3p-

CJN. By the same method, primers 999-F-OE-Ag-NAT-Ag-p-CJN

Figure 7. Integration of Zap1 function into biofilm formation.
Zap1 functions as a negative regulator of biofilm matrix accumulation.
It does so through activation of expression of CSH1 and IFD6, which
inhibit matrix accumulation, and through repression of expression of
GCA1, GCA2, and ADH5, which promote matrix accumulation. Zap1
binds to the CSH1 and IFD6 promoter regions and thus is likely to
activate their expression directly. Zap1 is a negative regulator of two
gene classes—ERG genes and HXT genes—that that are upregulated
during biofilm development [24]. We suggest that Zap1 functions as a
negative regulator of several aspects of biofilm maturation.
doi:10.1371/journal.pbio.1000133.g007
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and 999-R-OE-Ag-NAT-Ag-TDH3p-CJN were used for over-

expression of ORF19.999 to produce strain CJN1675; ADH5-F-

OE-Ag-NAT-Ag-p-CJN and ADH5-R-OE-Ag-NAT-Ag-

TDH3p-CJN for overexpression of ADH5 to produce strain

CJN1642; YWP1-F-OE-Ag-NAT-Ag-p-CJN and YWP1-R-OE-

Ag-NAT-Ag-TDH3p-CJN for overexpression of YWP1 to

produce strain CJN1659; 3499-F-OE-Ag-NAT-Ag-p-CJN and

3499-R-OE-Ag-NAT-Ag-TDH3p-CJN for overexpression of

ORF19.3499 to produce strain CJN1633; 4384-F-OE-Ag-

NAT-Ag-p-CJN and 4384-R-OE-Ag-NAT-Ag-TDH3p-CJN

for overexpression of HXT5 to produce strain CJN1663; and

HGT2-F-OE-Ag-NAT-Ag-p-CJN and HGT2-R-OE-Ag-NAT-

Ag-TDH3p-CJN for overexpression of HGT2 to produce strain

CJN1667. Transformation into C. albicans strains and selection

on YPD+clonNAT400 plates has been described [46]. Integra-

tion of the constructs was verified by colony PCR with a gene-

specific forward detection primer (for example primer IFD4-

OE-F-det-CJN for the IFD4 gene), annealing to a sequence

within the promoter of each gene and the reverse primer Nat-

OE-R-det2-CJN annealing to a sequence found in the NAT

gene.

The C-terminal myc-tagging plasmid pADH34 (Dataset S3),

containing a 13myc epitope tag immediately preceding the

SAT1-flipper cassette (34-bp FLP recombination target sequence

[FRT], followed by the C. albicans MAL2 promoter, followed by a

C. albicans-adapted FLP gene, followed by a C. albicans ACT1

terminator sequence, followed by the C. albicans-adapted SAT1

marker gene, followed by another 34-bp FRT sequence), was

constructed as follows. PCR was done using template pFA6a-

13myc-kanMX6 [47] and primers AHO276 and AHO277 to

generate a 568-bp product containing a 13myc epitope tag and

linker sequences with flanking XhoI sites. This fragment was

ligated into the unique XhoI site of the SAT1-flipper cassette

plasmid, pSFS2A [40], yielding plasmid pADH34. The C-

terminal tagged nourseothricin-resistant Zap1-myc strains,

CJN1684 and CJN1685, were constructed by transforming

DAY185, the reference strain, using PCR products from

template plasmid pADH34 and primers 3794MycFnostop-CJN

and 3794MycRUTR-CJN. These primers amplify the entire

13myc epitope tag and complete SAT1 flipper cassette with

65 bp of hanging homology to the ZAP1 ORF minus its stop

codon for the forward primer and 65 bp of hanging homology

to the ZAP1 UTR precisely downstream of the stop codon for

the reverse primer. The homology in these primers allows

recombination of the entire 13myc epitope tag and complete

SAT1 flipper cassette directly downstream of the ZAP1 ORF,

lacking its natural stop codon, so that the ZAP1 ORF contains a

C-terminal 13myc epitope tag translational fusion. Correct

integration of the C-terminal 13myc epitope tag and SAT1

flipper was verified by colony PCR using detection primers

3794detFUpMyctag-CJN and AHO300 to check the upstream

integration and 3794detRDownMyctag-CJN and AHO301 to

check the downstream integration. The C-terminal tagged

nourseothricin-sensitive Zap1-myc strains, CJN1688 and

CJN1694, were constructed by flipping out the SAT1 cassette

from strains CJN1684 and CJN1685, respectively, as described

previously [40]. The following primer pairs were used in colony

PCR to confirm the clean ‘‘flipping out’’ of the SAT1-flipper

cassette: 3794detFUpMyctag-CJN and AHO300, and

3794detRDownMyctag-CJN and AHO302. The 13myc epitope

tag and the region of homology to the 39 end of ZAP1 used for

integration of the SAT1-flipper cassette was confirmed by

sequencing the colony PCR product generated using primers

3794detFUpMyctag-CJN and AHO283.

In Vitro Biofilm Growth, Microscopy, and Biomass
Determination

In vitro biofilm growth assays were carried out in Spider

medium and visualized by CSLM as described previously [12].

Biomass measurements were determined for four independent

silicone samples as described previously [46].

In Vivo Biofilm Model
A rat central-venous-catheter infection model, as described

previously [14], was selected for our in vivo biofilm studies. We

removed catheters from the rats at 24 h after C. albicans infection

to determine biofilm development on the internal surface of the

intravascular devices. The distal 2 cm of the catheter was cut from

the entire catheter length, and biofilms were imaged by SEM at

506 and 1,0006magnification, as described previously [9].

Secreted b-1,3 Glucan Measurements from Biofilm and
Planktonic Growth In Vitro

Cultures were grown on silicone disks or in suspension in RPMI

medium, as described above. Culture supernatants from C. albicans

in vitro biofilm and planktonic cells were collected at 12 h for

glucan measurements. Viable cell burdens were determined using

plate counts to ensure the cultures contained similar number of

cells. Supernatants were centrifuged at 3,000g for 10 min, and

were stored at 220uC until glucan analysis. Glucan concentrations

were determined using the commercially available Glucatell (1,3)-

b-D-Glucan Detection Reagent kit (Associates of Cape Cod)

according to manufacturer’s directions. Four in vitro glucan assay

replicates were performed for each sample. Statistical significance

(p-values) was determined with a Student’s t-test.

Secreted b-1,3 Glucan Measurements from Biofilm
Growth In Vivo

After 12 h of growth in the in vivo biofilm model, serum was

collected from the venous catheter. Serum samples were frozen at

220uC until glucan analysis. b-1,3 glucan was measured in the

serum using the Fungitell (1,3)-b-D-Glucan Detection Reagent kit

(Associates of Cape Cod) according to manufacturer’s directions.

Three in vivo glucan assay replicates were performed for each rat

catheter. Statistical significance (p-values) was determined with a

Student’s t-test. Viable cell burdens were measured by harvesting

kidneys at the end of the experiment as an estimation of total-body

organ burden.

RNA Extraction from Biofilms
Biofilms for expression microarray analysis were grown in

Spider medium at 37uC without silicone squares. Instead, the

bottom of a six-well polystyrene plate was used as a substrate for

biofilm growth in order to maximize the efficiency of harvesting

cells for RNA extraction. We find that one six-well plate

containing biofilms for one strain yields sufficient RNA for

expression microarray analysis. Similar to the silicone square

method [12], the bottom of the six-well plates were pretreated

overnight in 4 ml bovine serum (Gibco), and placed at 37uC with

200-rpm agitation in a thermostatic Elmi shaker. Concurrently,

standard overnight cultures of the strains of interest were

inoculated in YPD medium at 30uC with shaking. The following

day, the six-well plates were washed with PBS, 4 ml Spider

medium was added to each well, and the overnight culture was

added to each well in order to obtain a starting OD600 in the 4 ml

Spider well volume of 0.5. Cell adherence was done for 90 min by

placing the six-well plates at 37uC with 200-rpm agitation in the

Elmi shaker. After the cell adherence step, the six-well plates were
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washed with PBS, and 4 ml of fresh Spider medium was added to

the wells. Biofilms were grown for 48 h at 37uC with 200-rpm

agitation in the Elmi shaker. Biofilms were harvested by scraping

the bottoms of the six-well plates with a cell scraper, and

combining the biofilm slurry of the same strain from each well of

one six-well plate in a 50-ml conical tube. Biofilm cells were then

centrifuged at 3,000g for 5 min, and RNA was extracted using the

RiboPure-Yeast RNA kit (Ambion, number AM1926) according

to the manufacturer’s instruction. We find that this kit yields the

cleanest, most stable, and highest quality and quantity of RNA

compared with the hot phenol method for extraction of RNA from

a C. albicans biofilm.

Northern and Quantitative PCR Expression Analysis
Northern analysis was performed as described previously [12] to

verify the expression levels of ZAP1, ZRT2, and ZRT1 using the

primers ZAP1-FNor and ZAP1-RNor for ZAP1, ZRT2-FNor and

ZRT2-RNor for ZRT2, and ZRT1-FNor and ZRT1-RNor for

ZRT1. For quantitative real-time reverse transcription-PCR

(qPCR) analysis, 10 mg of total RNA was DNase-treated at 37uC
for 1 h using the DNA-free kit (Ambion), cDNA was synthesized

using the AffinityScript multiple temperature cDNA synthesis kit

(Stratagene), and qPCR was done using the iQ SYBR Green

Supermix (Bio-Rad) as previously described [45] using the primers

ZRT2-FqRTPCR and ZRT2-RqRTPCR for ZRT2, ZRT1-

FqRTPCR and ZRT1-RqRTPCR for ZRT1, PRA1-FqRTPCR

and PRA1-RqRTPCR for PRA1, IFD4-FqRTPCR and IFD4-

RqRTPCR for IFD4, IFD6-FqRTPCR and IFD6-RqRTPCR for

IFD6, ZAP1-FqRTPCR and ZAP1-RqRTPCR for ZAP1, YWP1-

FqRTPCR and YWP1-RqRTPCR for YWP1, 3499-FqRTPCR

and 3499-RqRTPCR for ORF19.3499, HXT5-FqRTPCR and

HXT5-RqRTPCR for HXT5, 4899-FqRTPCR and 4899-

RqRTPCR for ORF19.4899, 999-FqRTPCR and 999-RqRTPCR

for ORF19.999, HGT2-FqRTPCR and HGT2-RqRTPCR for

HGT2, and ADH5-FqRTPCR and ADH5-RqRTPCR for

ADH5. The iCycler iQ detection system (Bio-Rad) was used

with the following program: initial denaturation at 95uC for

5 min, followed by 40 cycles of 95uC for 45 s, 58uC for 30 s,

and 72uC for 30 s. Amplification specificity was determined by

melting curve analysis. Bio-Rad iQ5 software was used to

calculate normalized gene expression values using the DDCt

method, using TDH3 as a reference gene. For ease of

interpretation, the reference strain expression level values were

set to 1.0 for each gene set, and the normalized expression of

each gene relative to TDH3 expression is shown. Results are the

means of three determinations.

Expression Array Design and Analysis
Transcription expression profiling using long-oligonucleotide

microarrays was performed as previously described [48]. Briefly,

10 mg of total biofilm RNA was DNase-treated at 37uC for 1 h

using the DNA-free kit (Ambion), and cDNA was synthesized

using the AffinityScript multiple temperature cDNA synthesis kit

(Stratagene). We performed four individual hybridization exper-

iments from four pairs of independently produced RNA samples of

CJN1201, the zap1/zap1 mutant strain versus CJN1193, the zap1/

zap1+pZAP1 strain. LOWESS normalization and statistical

analysis of the data were conducted in GeneSpring GX version

7.3 (Agilent Technologies). Data are reported in Dataset S4. A

volcano-plot algorithm was used to identify genes that exhibited

statistical significance (p,0.05) with a change in transcript

abundance of at least 1.5-fold. The results of this analysis with

adjusted p,0.05 are listed in Dataset S4 (worksheet 2).

Full Genome ChIP Tiling Array (ChIP–chip)
The ChIP–chip tiling arrays were designed by tiling 181,900

probes of 60-bp length across 14.3 Mb included in the C. albicans

Assembly 20 genome (http://www.candidagenome.org/), as

previously described [49]. The Zap1 myc-tagged strains

CJN1688 and CJN1694 and the untagged reference strain

DAY185 were grown under the same biofilm-inducing conditions

as the strains grown for expression microarray analysis, described

above. We found that one six-well plate per strain yielded

sufficient starting material to complete a single ChIP–chip

experiment. Biofilms were harvested by scraping the bottoms of

the six-well plates with a cell scraper, and combining the biofilm

slurry of the same strain from each well of one six-well plate in a

50-ml conical tube. Formaldehyde was added to the biofilm slurry

to a final concentration of 1%, and the treated biofilm cultures

were mixed on a platform shaker for 15 min at room temperature.

Glycine was then added to a final concentration of 125 mM, and

the treated cultures were mixed for another 5 min at room

temperature on the platform shaker. The following cell lysis and

ChIP–chip methods were adapted from previously described

protocols [49,50]. Cells were collected by centrifugation at 4uC for

10 min at 3,000g, washed twice in 10 ml ice cold TBS (20 mM

TrisHCl [pH 7.6], 150 mM NaCl), and the pellets frozen in liquid

nitrogen prior to cell lysis. Cell lysis and shearing of DNA were

done by resuspending the pellets in 700 ml lysis buffer (50 mM

HEPES/KOH [pH 7.5], 140 mM NaCl, 1 mM EDTA, 1%

Triton X-100, 0.1% Na-Deoxycholate) supplemented with

complete protease inhibitor cocktail tablets (Roche). The cell

suspension was vortexed at 4uC for 4 h in the presence of 0.5-mm

acid-washed glass beads, and the lysate was collected. Chromatin

was sheared by sonication in a Bioruptor water bath sonicator

(settings: 1615 min, 30 s on, 1 min off) at 4uC, the sheared lysate

was centrifuged at 12,000g for 10 min at 4uC, and the supernatant

was collected. 50 ml of extract was added to 200 ml TE/1% SDS,

and stored at 220uC as the ChIP input material. For chromatin

IPs, 300 ml of the crude lysate was added to 200 ml lysis buffer, and

10 ml of mouse monoclonal antihuman c-myc antibody (Bio-

source, number AHO0062) was added to the mixture. Extract plus

antibody was incubated overnight at 4uC, with agitation. The

following day, 50 ml of a 50% suspension of protein G-Sepharose

Fast-Flow beads (Sigma) in lysis buffer was added and incubated

2 h at 4uC, with agitation. The beads were pelleted for 1 min at

1,000g, the supernatant removed, and the beads washed 5 min at

room temperature with ice-cold buffers as follows: twice in lysis

buffer, twice in high salt lysis buffer (50 mM HEPES-KOH

[pH 7.5], 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%

sodium deoxycholate), twice in wash buffer (10 mM Tris-HCl

[pH 8.0], 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycho-

late, 1 mM EDTA), and once in TE (10 mM Tris, 1 mM EDTA

[pH 8.0]). After the last wash, 110 ml of elution buffer (50 mM

Tris/HCl [pH 8.0], 10 mM EDTA, 1% SDS) was added to each

sample, and the beads were incubated at 65uC for 10 min with

periodic agitation. The beads were spun for 30 s at 10,000g at

room temperature, and 100 ml of the supernatant was stored. A

second elution was carried out with 150 ml elution buffer 2 (TE,

0.67% SDS), and eluates from the two elution steps were pooled

(250 ml final volume). Both the ChIP and input samples were

incubated overnight at 65uC, and cooled at room temperature.

For cleaning the IPed DNA, 250 ml proteinase K solution (TE,

20 mg/ml glycogen, 400 mg/ml Proteinase K) was added to each

sample, and samples were incubated at 37uC for 2 h. 55 ml 4 M

LiCl was added to each, and the samples were extracted once with

450 ml phenol/chloroform/isoamyl alcohol solution (25:24:1).

1 ml ice cold 100% ethanol was added and the DNA was

Matrix Mediators in Candida albicans Biofilms

PLoS Biology | www.plosbiology.org 13 June 2009 | Volume 7 | Issue 6 | e1000133



precipitated overnight at 220uC. The DNA was pelleted by

centrifugation at 12,000g for 30 min at 4uC, washed once with ice

cold 70% ethanol, and the pellets air dried. IP samples were

resuspended in 25 ml TE, and input samples were resuspended in

100 ml TE+100 mg/ml RNaseA and incubated 1 h at 37uC. ChIP-

enriched DNA was amplified, fluorescently labeled, hybridized,

and washed as described in detail in Dataset S7. Labeled DNA for

each channel was combined and hybridized to arrays in Agilent

hybridization chambers for 40 h at 65uC, according to the

manufacturer’s instructions (Agilent Technologies). Arrays were

scanned using Genepix 4000A Axon Instrument scanner. Analysis

and identification of the binding events in the ChIP–chip data

were determined as previously described [49] using Agilent Chip

Analytics software v1.2 (Agilent Technologies). These binding

events were displayed and analyzed using ChipView v0.954

(http://johnsonlab.ucsf.edu/). 250 bp centered on the midpoint of

the peaks in the promoter regions bound by Zap1 were submitted

to MEME v3.5.7 (http://meme.nbcr.net) for motif analysis [51]

using the following parameters: minw = 7, maxw = 25, nmo-

tifs = 10, maxsize = 50,000, mod = zoops. We also analyzed bound

regulatory regions with the RSAT server, http://rsat.scmbb.ulb.

ac.be/rsat/, using 1,500 bp of 59 region sequence and a search for

8 bp motifs [52].

Supporting Information

Dataset S1 C. albicans strains used in this study. This

file gives the genotypes and sources for all C. albicans strains.

Found at: doi:10.1371/journal.pbio.1000133.s001 (0.06 MB

DOC)

Dataset S2 Oligonucleotide sequences. This file gives the

specific nucleotide sequence for each oligonucleotide.

Found at: doi:10.1371/journal.pbio.1000133.s002 (0.04 MB XLS)

Dataset S3 pADH34 sequence. This file gives the nucleotide

sequence of vector pADH34, which was used for epitope tagging.

Found at: doi:10.1371/journal.pbio.1000133.s003 (0.01 MB TDS)

Dataset S4 Microarray data. This file gives complete

microarray results for the comparison of the zap1D/zap1D mutant

and zap1D/zap1D+pZAP1 complemented strain (worksheet 1), a

separate list of significantly regulated genes from this dataset

(worksheet 2), and a comparison of Zap1-responsive genes in C.

albicans and in S. cerevisiae, aligned as orthologs or best hits.

Expression data for S. cerevisiae are from Lyons et al. [18].

Found at: doi:10.1371/journal.pbio.1000133.s004 (3.44 MB XLS)

Dataset S5 Verification of Zap1-responsive gene ex-
pression. This file provides data that support microarray results

to indicate that Zap1-responsive genes are expressed at altered

levels in the zap1D/zap1D strain and that the TDH3 promoter

fusion strains do indeed overexpress the relevant gene.

Found at: doi:10.1371/journal.pbio.1000133.s005 (18.31 MB

DOC)

Dataset S6 ChIP mapping of genomic Zap1 binding
sites. This file gives comprehensive mapping information for

genomic Zap1 binding sites.

Found at: doi:10.1371/journal.pbio.1000133.s006 (2.98 MB XLS)

Dataset S7 Detailed protocol for ChIP. This file describes

the protocol for ChIP used in this report.

Found at: doi:10.1371/journal.pbio.1000133.s007 (0.04 MB

DOC)
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