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Impact of environmental colored noise in single-species population dynamics

Tommaso Spanio,1,2 Jorge Hidalgo,2,* and Miguel A. Muñoz1

1Instituto Carlos I de Física Teórica y Computacional and Departamento Electromagnetismo y Física de la Materia,
Universidad de Granada, 18071 Granada, Spain

2Dipartimento di Fisica “G. Galilei” and CNISM, INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
(Received 12 July 2017; published 2 October 2017)

Variability on external conditions has important consequences for the dynamics and the organization of
biological systems. In many cases, the characteristic timescale of environmental changes as well as their
correlations play a fundamental role in the way living systems adapt and respond to it. A proper mathematical
approach to understand population dynamics, thus, requires approaches more refined than, e.g., simple white-noise
approximations. To shed further light onto this problem, in this paper we propose a unifying framework based
on different analytical and numerical tools available to deal with “colored” environmental noise. In particular,
we employ a “unified colored noise approximation” to map the original problem into an effective one with
white noise, and then we apply a standard path integral approach to gain analytical understanding. For the
sake of specificity, we present our approach using as a guideline a variation of the contact process—which can
also be seen as a birth-death process of the Malthus-Verhulst class—where the propagation or birth rate varies
stochastically in time. Our approach allows us to tackle in a systematic manner some of the relevant questions
concerning population dynamics under environmental variability, such as determining the stationary population
density, establishing the conditions under which a population may become extinct, and estimating extinction
times. We focus on the emerging phase diagram and its possible phase transitions, underlying how these are
affected by the presence of environmental noise time-correlations.
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I. INTRODUCTION

Population dynamics is a core matter in the modeling
of ecological communities, genetics, and epidemics [1–3].
Combined with the increasing volume of available exper-
imental (big) data, it constitutes a fundamental tool to
shed light on the laws governing complex communities of
living systems [4]. The traditional approach to population
dynamics consists in the analysis of coupled deterministic
equations describing the evolution of species abundances in a
given community [5]. This procedure—whose outcome is not
necessarily simple [6,7]—is adequate in many cases. However,
deterministic approaches neglect the effect of fluctuations, and
these are now acknowledged to be both inherent and essential
to the organization of communities of living systems [8]. On
the one hand, the discreteness and finiteness of populations
lead to demographic noise, which has been shown to be
responsible for a wealth of nontrivial phenomena, such as
the emergence of complex statistical patterns in neutral com-
munities [9,10], quasiperiodic oscillations in prey-predator
systems [11], species formation [12], and others [13–15].
On the other hand, populations are strongly affected by
fluctuations in external conditions [16,17], which in most of
the cases are highly unpredictable. This source of stochasticity,
usually called environmental noise, can have important conse-
quences for, e.g., ecosystem stability [18,19] and evolutionary
dynamics [20–24], and fosters species coexistence [25–28].

Remarkably, theoretical and empirical evidence reveals that
these phenomena strongly rely on a specific interplay between
the characteristic timescale of environmental variations and
the intrinsic timescale of the dynamics [27–31]. Owing to this,
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theoretical approaches have to be constructed beyond simple
white-noise approximations, i.e., including “colored” (time-
correlated) noise [32,33]. The question of how environmental
colored noise affects population extinction has been widely
studied in the literature, and there are contrasting positions
on whether environmental fluctuations increase or decrease
the risk of extinction, as this may actually depend on subtle
differences of the underlying dynamics as well as the actual
“color” of the fluctuations [34–40]. Of particular interest
for our analyses here is the remarkable work of Kamenev
et al. [40], who analyzed a logistic growth population-dynamic
model in which birth and death rates fluctuate in time, showing
that, depending on the interplay between the system size and
the temporal scale of the environment, the model exhibits
qualitatively different functional dependencies of the mean
extinction time with the system size.

In this paper, we bring the question of how time-correlated
environmental noise affects population dynamics to the context
of phase transitions and analyze in detail one of the most
standard models in the study of population dynamics, the
contact process [41,42]—which can also be described as
a birth-death process of the Malthus-Verhulst class—in the
presence of time-correlated environmental variability [43–47].
To study this model we employ the so-called “unified colored-
noise approximation,” which is exact in the limits of very
large and very short correlation times [48,49], and study the
resulting effective (white-noise) problem employing a standard
path integral approach; analytical results are tested against
direct computational simulations obtained employing a very
careful numerical analysis scheme [50]. Using this combined
approach, we scrutinize the model phase diagram and identify
the parameters for which the population becomes extinct with
certainty and those for which the population survives, as well
as the threshold separating them, and how the resulting phase
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transition depends on environmental-noise time correlations.
As we will show, the phase diagram becomes much richer in
this case than in its noiseless counterpart.

From a broader perspective, our study provides a simple
and general framework for the analysis of population dynamics
with colored noise, blending together several analytical [48,49]
and numerical [50] tools already available in the literature,
which can be straightforwardly implemented to other similar
scenarios beyond the case presented here.

II. THE CONTACT PROCESS

The contact process (CP) [41,42] is a prototypical model
for the study of population dynamics with extinction, with
applications in different fields such as in epidemic spreading
[51], ecology [52], and propagation of neural activity [53].
We use this simple model as a guideline here, but results are
easily generalizable to other similar models for population
or spreading dynamics. In the CP (see Fig. 1), nodes in a

FIG. 1. Single-species dynamics with extinction. (a) A commu-
nity of individuals grow under limited conditions with the dynamics
of the contact process running on any given network. Each of
the N nodes in the network can be either occupied by up to one
individual (active node) or remain empty (inactive node). Individuals
can reproduce at empty neighboring nodes at rate λ and also die and
be removed from the community at rate μ. (b) The model exhibits
different behaviors depending on parameter values: for low values
of the reproduction rate, birth processes do not compensate deaths,
and any population becomes extinct in the long term (absorbing
phase). After a threshold value, population density exhibits a nonzero
stationary value (active phase). Both regimes are separated by a
critical point of a continuous phase transition. (c) However, any
finite population eventually becomes extinct due to demographic
fluctuations. Phases can be then distinguished looking at the scaling
of the mean-extinction time with the system size, which is logarithmic
in the absorbing phase and exponential in the active phase, while it
becomes a power-law just at the critical point. (d) In the simplest
scenario, the rate at which individuals reproduce (and similarly for
the death rate) can be considered as a constant parameter (blue
line). However, variability on the external conditions such as the
temperature, humidity, pH,... may strongly influence rate parameters
(red line). What is the impact of environmental variability in the
previous panels?

given network (e.g., a square lattice) can be either occupied
and active or vacant and inactive. Active nodes produce
new offspring at neighboring empty sites at rate λ and can
also die and be removed from the community at rate μ.
The total system size N is fixed, representing limitation of
space or resources, imposing an upper bound on the active
population size. For the sake of simplicity, we neglect spatial
effects and restrict our analysis to the simplest case of a
well-mixed community (or, equivalently, a fully connected
network). At each time t , the state of the system is determined
by the total number of active sites, n(t), or equivalently, the
population density, ρ(t) = n(t)/N . For very large populations,
demographic fluctuations can be neglected, and the dynamics
of ρ becomes deterministic [41,42]:

ρ̇(t) = λρ(t)[1 − ρ(t)] − μρ(t). (1)

The stationary density, ρ∗ [see Fig. 1(b)] is either ρ∗ = 0
(the so-called “absorbing” state) if λ < λc = μ, i.e., if births
do not balance deaths and the population progressively shrinks,
leading to extinction, or ρ∗ = 1 − μ/λ (“active” phase) if λ >

λc and the population survives indefinitely. A “critical” point,
λ = λc, separates the absorbing from the active phase; this
value represents the extinction threshold and is a fundamental
parameter of our forthcoming analysis.

In finite systems, demographic fluctuations can drive
population extinction even when parameters correspond to the
active phase [54]; as a matter of fact, the only “truly” stable
solution in the long term is the absorbing state in such a case.
Still, it is possible to characterize the phases of a finite popu-
lation by the mean time to reach extinction, T , as a function of
the system size, N . Different functional dependencies emerge
for each of the phases of the CP [43,55] (see Fig. 1): T scales
logarithmically with the system size in the absorbing phase
(λ < λc), while it increases exponentially in the active phase
(λ > λc)—meaning that extinctions become extremely rare for
sufficiently large populations in the active phase—and scales
as a power-law right at the critical point, λ = λc. Thus, in a
nutshell, the CP represents a prototypical paradigm to analyze
single-species communities with extinction. Such a dynamics
can be characterized by means of (i) the phase diagram, which
describes the stationary state of the system as a function of the
parameters, (ii) the critical point, representing the extinction
threshold, and (iii) the scaling of the mean-extinction time with
the system size, as a proxy for population stability. In the next
section we analyze how time-correlated environmental noise
changes each of these elements and how this depends on the
environmental auto-correlation time.

A. Contact process with environmental noise

For the sake of simplicity, we assume that the environment
influences homogeneously the population (i.e., demographic
rates are global variables), and it does so by affecting only
one parameter, which here we take to be the birth rate, leaving
all other parameters unchanged (other choices are possible
but they do not significantly affect the forthcoming results).
The state of the environment is encoded in a time-dependent
variable, ε(t), assumed to be independent of the state of system,
so that λ → λ(t) = λ̄ + σε(t), where λ̄ is the mean value, σ is a
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constant, and ε(t) follows an Ornstein-Uhlenbeck process [54]
(see Fig. 1):

ε̇ = − 1

τ
ε +

√
2

τ
ξ (t), (2)

where ξ (t) is a zero-mean Gaussian white noise with
〈ξ (t)ξ (t ′)〉 = δ(t − t ′). From Eq. (2), it follows that λ is
distributed as a Gaussian variable with mean λ̄ and autocor-
relation function 〈(λ(t) − λ̄)(λ(t ′) − λ̄)〉 = σ 2e|t−t ′ |/τ [54]. As
we are interested in the interplay between the timescale of the
dynamics and the environment, we keep the correlation time
of the environment, τ , as a control parameter throughout our
analysis. Let us also note that, for sufficiently large values
of σ , it may occur that λ(t) < 0, so we restrict our analysis
to the regime of small variability, σ � λ̄. Numerical analyses
are performed keeping the constraint that λ(t) = 0 if a negative
value is reached, but such events are extremely rare for σ � λ̄.
We have verified that other forms with bounded colored noise,
as for instance dichotomous Markov noise [56], do not change
qualitatively our main results.

In the well-mixed scenario, substituting λ → λ̄ + σε(t) in
Eq. (1), one readily finds the following stochastic differential
equation for the averaged density ρ in the infinite-size limit:

ρ̇(t) = (λ̄ − μ)ρ − λ̄ρ2 + ρ(1 − ρ)σε(t). (3)

The set of stochastic equations formed by Eqs. (2) and (3)
constitutes the starting point of our analysis. In this work, we
exclusively focus on the impact of environmental fluctuations,
as here we consider the limit of very large populations,
where demographic fluctuations can be safely neglected. The
important case with the combined effects of demographic and
environmental stochasticity—relevant for finite systems—has
also been explored in the literature [23,27,40,57,58].

III. RESULTS

We analyze how environmental colored noise changes
the phase diagram and mean-extinction times (as sketched
in Fig. 1) by employing both analytical and computational
approaches. To this end, we combine two different analytical
tools: the unified colored noise approximation (UCNA) [48]
(see also Appendix A) and a path-integral approach to
calculate extinction times in finite populations [40]. Numerical
simulations of the stochastic particle (“individual-based”)
model have been implemented by means of Anderson’s next
reaction method [50], which can be adapted to the case in
which rates vary stochastically in time (see Appendix B).

A. Phase diagram

We first compute the stationary density as a function of
parameter values. The process defined by Eqs. (2) and (3)
is Markovian and, thus, the theory of Markovian processes
applies [54]. The standard approach to solve it consists in
finding the steady-state distribution Pst (ρ,ε) by solving the
corresponding Fokker-Planck equation and then computing
its associated averaged density ρ∗ = ∫ 1

0 dρρ
∫ ∞
−∞ dεPst (ρ,ε).

However, this program cannot be completed analytically in the
present case, as an exact integral does not exist.

The UCNA allows us to construct an approximate Marko-
vian process for just one variable—much more susceptible
of analytical understanding—describing the evolution of the
population density with white noise [48]. In a nutshell, the
UCNA method consists in the adiabatic elimination of the
environmental variable; this can be safely done when the
intrinsic dynamics and the environmental one operate at very
different timescales. As a matter of fact, the method provides
an exact equation for τ → 0 and τ → ∞, whereas it is only
approximate for intermediate timescales τ . Thus, the UCNA
can be understood as an “interpolation” between the dynamics
for rapidly and slowly varying environments, respectively [59]
(see Appendix A).

For simplicity, it is convenient to rewrite Eq. (3) in terms of
a new variable with additive rather than multiplicative noise.
In particular, defining x = log [ρ/(1 − ρ)], so that x(ρ = 0) =
−∞ and x(ρ = 1) = ∞, Eq. (3) becomes [60]

ẋ(t) = λ̄ − μ − μex + σε(t) ≡ f (x) + σε(t), (4)

where, to ease the notation we have introduced the drift term
f (x) = λ̄ − μ − μex . Unless explicitly stated, the forthcom-
ing expressions remain valid for other choices of f (x). In the
case of Eq. (4), after the elimination of the environmental
variable ε, the UCNA approximation leads to a Langevin
equation with multiplicative noise of the form (see Appendix A
for a more detailed presentation of the UCNA method):

ẋ(t) = aτ (x) + gτ (x)η(t), (5)

where η(t) is a Gaussian white noise with zero mean and
〈η(t)η(t ′)〉 = δ(t − t ′), which has to be understood in the
Stratonovich sense [48], and where

aτ (x) = f (x)

1 − τf ′(x)
, gτ (x) =

√
2τσ

1 − τf ′(x)
. (6)

Equation (5) is equivalent to the following Fokker-Planck
equation for the probability distribution P (x,t) [54]:

∂tP (x,t) = −∂x

[(
aτ (x) + 1

2gτ (x)g′
τ (x)

)
P (x,t)

]
+ 1

2∂2
x

[
g2

τ (x)P (x,t)
]
, (7)

whose stationary solution, Pst(x), can be found analytically
imposing the zero-flux condition:

Pst(x) = Z−1|1−τf ′(x)| exp

{
1

τσ 2

∫ x

dyf (y)[1−τf ′(y)]

}
,

(8)

where we have introduced the potential V (x) = − ∫ x
f (y)dy

and Z is a normalization constant. Introducing the expression
of f (x), i.e., Eq. (4), and reverting the change of variables,
Pst(ρ) = Pst[x(ρ)]dx/dρ, one finally obtains the stationary
distribution for the dynamics of Eq. (3) under the UCNA
approximation:

Pst(ρ) = Z−1ρ
λ̄−μ

σ2τ
−1 1 + (μτ − 1)ρ

(1 − ρ)
λ̄−μ

σ2τ
+2

× exp

[
− μ

τσ 2

ρ

1 − ρ
− 1

2σ 2

(
λ̄ − μ

1 − ρ

)2
]
. (9)

042301-3



TOMMASO SPANIO, JORGE HIDALGO, AND MIGUEL A. MUÑOZ PHYSICAL REVIEW E 96, 042301 (2017)

Although Eq. (10) has a complicated form, its shape is chiefly

controlled by the factor ρ
λ̄−μ

σ2τ
−1, as illustrated in Fig. 2. In

particular, if λ̄ < λc = μ, then a nonintegrable singularity
appears at ρ = 0, i.e., the distribution is not normalizable.
This means that Eq. (10) is not a truly stationary solution,
and the only stationary solution corresponds to the absorbing
state, Pst(ρ) = δ(ρ) [61]. On the other hand, for λ̄ > λc = μ,
Eq. (10) can be safely normalized. Consequently, our first
important result is that environmental variability does not shift
the critical point for the process described by Eq. (3).

Remarkably, there is an important difference with respect
to the case with constant rates, as the active phase splits into
two regions (see Fig. 2): the first one, spanning in λc < λ̄ <

λc + σ 2τ ≡ λ′
c, for which Pst(ρ = 0) exhibits an integrable

singularity, and the second one, for λ̄ > λ′
c, for which P (ρ =

0) = 0. Therefore, we find a region λ̄ ∈ [λc,λ
′
c], where the

system can be found arbitrarily close to the absorbing state.
We call this region the “weakly active” phase. Moreover, such
a region can be itself divided into two subregions; after a
certain value λ̄ = λb the distribution becomes bimodal, only
to recover its monomodality when λ̄ > λ′

c. The value of λb does
not have a simple analytical form and needs to be numerically
determined.

We have compared the prediction of the PDF, Eq. (10),
with simulations of the individual-based model. To capture the
form of the quasistationary distribution (i.e., the distribution
conditioned to the fact that the system is not in the absorbing
state), it suffices to instantaneously introduce one active
particle in the system if the population becomes extinct
(more sophisticated methods provide slightly more accurate
results of the quasistationary distribution [62]). Figure 2(b)
illustrates the time series of the population density for a
system size N = 1000, for different values of λ̄ taken in
the weakly active and active phases, respectively. Histograms
are represented in Fig. 2(c), together with the corresponding
theoretical prediction, Eq. (10) (solid curves), illustrating a
rather good agreement between them.

These results (summarized in Fig. 2) have been obtained
neglecting the effects of demographic noise, which may play a
fundamental role when the system approaches to the absorbing
state. In fact, one may have doubts about the physical meaning
of ρ∗ in the weakly active region, as the distribution exhibits a
singularity at ρ = 0 and the system may become extinct with
a relatively large probability. To shed light on this issue, in
the next section we analyze the mean extinction time in the
weakly active and active regions, elucidating the meaning of
the different phases in the context of finite populations.

B. Mean extinction times

Mean-first passage times of a stochastic process [63] can
be computed using the framework of path integrals [40,49,64].
Our strategy here is to apply such a method to the “effective”
process obtained from the UCNA approximation method,
Eq. (5).

The idea behind the path integral approach is that one can
express the probability of a particular realization of the process,
i.e., of a path {(x(t),ẋ(t))}t ≡ (x,ẋ), as

P [(x,ẋ)] ∝ exp (−S[(x,ẋ)]), (10)

FIG. 2. Phases of the contact process with environmental noise
(well-mixed scenario). Individual-based dynamics are implemented
using Anderson’s next reaction method [50], where the death rate is
fixed to μ = 1 and the birth rate is a stochastic Gaussian variable
with mean λ̄, variance σ 2, and temporal correlation τ [modeled as
an Ornstein-Uhlenbeck process, Eq. (2)]. We study the behavior
of the model for different values of λ̄, and we take μ = 1, τ = 5,
σ 2 = 0.1, N = 1000. Extinction is avoided by introducing an active
particle at a random location to measure quasistationary distributions.
(a) Phases of the model: (i) in the absorbing phase, λ̄ < λ̄c = μ,
the only stationary solution is extinction; (ii) in the weakly active
phase, λ̄c < λ̄ < λ̄′

c = μ + τσ 2, there is a positive quasi stationary
density but the system can approach arbitrarily close to extinction
due to fluctuations of the environment; this phase can be divided
into two phases, depending on whether the corresponding probability
distribution function (PDF) is uni- or bimodal; (iii) in the active
phase, excursions close to the absorbing state become extremely rare.
(c) Time series of the total population density, for different values
of λ̄ (same color code than in panel a). (c) Histograms represent
the stationary PDF of the population density in the individual-based
model, whereas continuous lines are the theoretical prediction given
by the UCNA approximation, Eq. (8). The overlap between the
observed PDF P̄st and the theoretical prediction Pst (computed as∫

ρ
dρ min{P̄st(ρ),Pst(ρ)}) takes the values 0.90, 0.95, 0.98, and 0.97,

for the four cases above, respectively.
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where S in the action associated with such a path, i.e., the
time-integral of the Lagrangian, S[(x,ẋ)] = ∫

dtL(x(t),ẋ(t)),
which encodes the dynamics we aim to describe (see below).

A particular realization of the process leading to extinction
can be understood as a path passing through the state of zero
density (the absorbing state), where the dynamics ceases. The
leading contribution is given by the most probable path starting
in the neighborhood of a deterministic attractor and ending at
the absorbing state, i.e., the path (x∗,ẋ∗), which obeying such
constraints minimizes the action. Up to leading order (in a
weak-noise, i.e., low σ , expansion) the mean time to go to
extinction is then inversely proportional to the probability of
such a path [40]:

T ∼ exp
(
S[(x∗,ẋ∗)]

)
. (11)

Let us now compute the action along the most probable path,
following a standard procedure [40,49,64]. Given a stochastic
process described by a Fokker-Planck equation [e.g., Eq. (7)],
the time evolution can be described in terms of an associated
Hamiltonian operator, ∂tP = HP , which, as a rule of thumb,
can be written by simply identifying −∂x → p [40,49]. In
particular, for Eq. (7),

H (x,p) = p
(
aτ (x) + 1

2gτ (x)g′
τ (x)

) + 1
2p2g2

τ (x). (12)

Given that the Hamiltonian does not depend explicitly on time
(∂H/∂t = 0), it is a constant of motion. Moreover, as the
optimal path we are looking for starts from the deterministic
attractor (for which p = 0), such a constant is equal to
zero [64].

Imposing these constraints, one finds two solutions of
H (x∗,p∗) = 0: the trivial one, p∗ = 0, corresponding to the
deterministic trajectory toward the stable attractor, and another
one for p∗ �= 0, describing the most-probable fluctuation
driving the system from an initial state to the absorbing state,
which, for the case of Eq. (6), is

p(x) = − 1

τσ 2
f (x)(1 − τf ′(x)) + ∂x log[1 − τf ′(x)]. (13)

Given that the Lagrangian is the Legendre transform of
the Hamiltonian, L(x,ẋ(x,p)) = ẋ(x,p)p − H (x,p) and that
H = 0, the action can be easily evaluated as

S =
∫ tf

ti

dt ẋ(x,p)p =
∫ xf

xi

dxp(x), (14)

without the need to explicitly integrate the equations of motion
(Hamilton equations). Plugging Eq. (13) into this, and using
Eq. (11) [65], one readily obtains

T ∼
∣∣∣∣1 − τf ′(xf )

1 − τf ′(xi)

∣∣∣∣ exp

(
1

2σ 2

[
f 2(xf ) − f 2(xi)

])

× exp

(
1

τσ 2

[
V (xf ) − V (xi)

])
, (15)

where we have defined the potential V (x) = − ∫ x
dx ′f (x ′).

This expression, which is valid for a general form of f (x), can
be understood as a generalization of the Arrhenius formula
with an effective diffusion term equal to τσ 2.

Figure 3(a) illustrates different trajectories in the (x,p)
plane for the case of the CP with environmental noise under
the UCNA approximation. Deterministic trajectories (p =
0; i.e., horizontal axis) push the system toward the stable

FIG. 3. (a) in a path-integral framework, a stochastic process
follows trajectories in the (x,p) space. The deterministic dynamics
(p = 0) lead the system to a stable attractor x∗, from where the system
can escape due to fluctuations (p �= 0) and go to extinction, which
here we identify with the state of one single particle remaining in
the population, ρ = N−1 ⇒ x = − log(N − 1). Up to first order, the
mean extinction time, T , is the exponential of the action associated
to the most probable path, represented by the shaded region. (b)
Numerical results of the individual-based model for T as a function
of the system size are represented with dots, together with the
asymptotic theoretical behavior, Eq. (16) (dashed lines), for different
values of λ̄. Barr errors are smaller than dot size. Parameters are
set to μ = 1, τ = 1, σ 2 = 0.05. For sufficiently large values of N

(for which demographic fluctuations can be neglected), T scales
logarithmically in the absorbing phase, sublinearly in the preactive
phase, and superlinearly in the active phase.

deterministic attractor x∗. On the other hand, a stochastic
trajectory, i.e., (p �= 0) starting arbitrarily close to the attractor,
takes the system from there to the absorbing state that—to
make it reachable in finite time—we identify with the state
with one particle remaining in the system, ρ = 1/N [⇒ x =
− log(N − 1)]. The shaded area in Fig. 3 corresponds to the
action S of the most probable stochastic trajectory.

More quantitatively: it is possible to derive the asymptotic
behavior of Eq. (15) (i.e., its large-N behavior) for the
specific case of Eq. (4). The initial point can be taken
arbitrarily, as it does not depend on the system size, and
the ending point scales as xf � − log(N ) for large system
sizes. With that, f (xf ) = λ̄ − μ + O(N−1) and f ′(xf ) =
O(N−1). Finally, V (x) = −(λ̄ − μ)x + μex , so that V (xf ) =
(λ̄ − μ) log(N ) + O(N−1), which was introduced in Eq. (15)
and leads to the final result,

T ∼ N
λ̄−μ

τσ2 , (16)
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for any λ̄ > μ. Therefore, our conclusion is that environmental
noise induces power-law scaling of the mean-extinction time
all along the active phase—typical for systems under envi-
ronmental stochasticity [28,43,44,46,58,66]—i.e., what has
been called a temporal Griffiths phase in the recent literature.
Moreover, our result coincides exactly with the one derived
by Kamenev et al. for very large system sizes [40] (i.e.,
when τ � log(τσ 2N ), which—neglecting other parameter
constants—applies to our setting as we work in the asymptotic
limit of large N ).

Equation (16) elucidates the meaning of the phase diagram
depicted in Fig. 2: in the weakly active phase (μ < λ̄ <

μ + τσ 2), the system makes excursions very close to the
absorbing state, and as a consequence T scales sublinearly
with the system size, whereas, in the active phase (λ̄ >

μ + τσ 2) T scales superlinearly, and extinction becomes more
unlikely for large system sizes. The linear case, in between,
signals a change in the convexity of the extinction-time versus
system-size curves.

We have checked the validity of Eq. (16) with an imple-
mentation of the individual-based model using Anderson’s
next step algorithm [50] (see Appendix B). To this end, we
compute T through independent realizations setting as initial
condition ρ = 1/2 and ε = 0, as a function of the system
size N , for different values of λ̄. As illustrated by Fig. 3(b),
Eq. (16) perfectly captures the asymptotic scaling behavior of
T , whereas it fails for small values of N , where demographic
stochastic effects (not included in the above calculation)
significantly affect the dynamics.

IV. DISCUSSION

We have presented a mathematical and computational study
of a simple model for a well-mixed population where the
dynamics is subjected to environmental variability, consisting
of a contact process with birth rates modeled as an Ornstein-
Uhlenbeck process. Our goal was to explore how the standard
phase diagram of the contact process is affected by the
introduction of environmental noise and in particular by its
temporal autocorrelations. We explored whether its critical
point is shifted or not, and what the nature of the emerging
phases is. For this, we choose to work in the large system
size limit, so that demographic fluctuations are negligible with
respect to environmental ones, and the focus was put on phases
and phase transitions.

The approach presented here is simple and easy to extend to
other models and consists in the successive use of two analyt-
ical techniques: an approximation to deal with colored noise
that reduces the number of variables, and a way to compute
extinction times from the resulting equation. In particular, in
the mean field-limit (describing a well-mixed scenario), we
employ the unified colored noise approximation [48] (UCNA)
to replace the correlated (colored) noise by a δ-correlated
Gaussian (white) noise, at the price of introducing, an effective
force and an effective diffusion term in the Langevin equation
describing the system.

We verified computationally that the UCNA works remark-
ably well all across the phase diagram, generating steady-state
density-distributions, hardly indistinguishable from the exact
ones, as obtained from Monte Carlo simulations of the under-

lying microscopic model. Numerical analyses were performed
using a variation of the (exact) Gillespie integration method,
adapted to deal with time-dependent (stochastic) rates, i.e., the
so-called Anderson’s method [50]. These analyses revealed
that the probability distribution becomes a δ-Dirac at ρ = 0 at
a critical value of the averaged birth rate coinciding with the
critical value for the pure contact process. In other words, the
introduction of colored environmental noise does not shift the
location of the critical point, separating the absorbing from the
active phase.

To proceed further we applied a weak-noise approximation
within a path-integral formulation of the effective white-noise
problem [40,64]. Using this standard approach, a second
important result is that in the active phase, the mean time
required for the system to reach extinction scales as a power-
law of the system size. This algebraic dependence of extinction
times in the presence of uncorrelated environmental noise was
first reported by Leigh [67] and was later on scrutinized by
Vázquez et al. [43] who introduced the notion of “temporal
Griffiths phase” (TGP) to refer to such a sort of active state.
Temporal Griffiths phases are the counterpart of standard
Griffiths phases [68], but where the role of spatial quenched
disorder is played by temporal one [43–46].

A more general study of extinction times in the presence of
colored noise was elegantly tackled and solved by Kamenev et
al [40]. These authors performed a path-integral formulation
to the full problem, including both demographic and envi-
ronmental stochasticity, and found diverse regimes depending
on the ratio between system size and noise correlation time.
In particular, the dependence on system-size of the mean
extinction time changes from exponential in the absence of
the environmental noise (as corresponds to the Arrhenius law)
to a power law for a short-correlated noise (as is the case
in our study) and to no dependence whatsoever for noise with
very large correlation times. This last regime implies that when
there are extremely long periods of adverse external conditions
(as compared, using adequate rescaling units, with system
size) the system reaches deterministically the absorbing state
regardless its size. Let us notice that this situation is not
accessible to our approach, as we set the system in the
asymptotic limit of large N (where demographic effects can
be neglected), and thus τ cannot be much larger than it. For the
power-law regime, our simple method gives exactly the same
dependence as in Ref. [40].

An interesting result of our analysis is that the active phase
can be divided into two sub-phases. In the “weakly active
phase” the probability distribution of ρ has a nonvanishing
value around 0 meaning that the system makes excursions to
very tiny values, at the edge of the collapse, but then it recovers.
For this regime we find that, in finite systems, extinction times
scale sublinearly with system size, while in the truly active
phase, the scaling is superlinear. Note that the linear case in
between signals a change of convexity in the extinction-time
versus system-size curves in linear scale.

In summary, the combined use of the UCNA approximation
to deal with colored noise and a standard weak-noise approx-
imation for the resulting white noise equation allows us to
construct a general approach to analyze particle systems with
absorbing states in the presence of colored noise, in a relatively
simple and systematic way. We believe that this combined
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approach should be very useful in applications in theoretical
ecology, population dynamics, and epidemic spreading among
others.
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APPENDIX A: UNIFIED COLORED NOISE
APPROXIMATION (UCNA)

We briefly review the method of the unified colored
noise approximation (UCNA) [48]. We start from a general
stochastic process with additive colored noise (see below for
multiplicative noise):

ẋ = f (x) + σε(t), (A1)

where ε(t) is described by an Ornstein-Uhlenbeck process
[Eq. (2)]. To confine the variable around a given bounded
interval, we impose that f ′(x) < 0 for all values of x. ε(t)
can be eliminated from Eq. (A1) by differentiating in time and
introducing the expression for ε̇, Eq. (2):

ẍ = f ′(x)ẋ + σ ε̇ = f ′(x)ẋ +
(

− 1

τ
(ẋ − f (x)) +

√
2

τ
ση(t)

)

= −
(

1

τ
− f ′(x)

)
ẋ + 1

τ
f (x) +

√
2

τ
ση(t). (A2)

Multiplying both sides of this equation by τ and introducing a
new time scale t̂ = t/

√
τ , one obtains

ẍ = −γτ (x)ẋ + f (x) +
√

2τση(
√

τ t̂), (A3)

where dots now refer to the time derivative in the scale t̂ and
where we have introduced the “damping” factor γτ (x) defined
as

γτ (x) = 1√
τ

− √
τf ′(x). (A4)

Finally, the stochastic term in Eq. (A3) can be replaced by
an equivalent one, η(

√
τ t̂) → τ−1/4η̂(t̂), where 〈η̂(t̂)η̂(t̂ ′)〉 =

δ(t̂ − t̂ ′), as both of them have the same mean value and corre-
lation function, 〈η(

√
τ t̂)η(

√
τ t̂ ′)〉 = δ(

√
τ (t̂ − t̂ ′)) = 1√

τ
δ(t̂ −

t̂ ′) = 〈τ−1/4η̂(t̂)τ−1/4η̂(t̂ ′)〉.
Observe, from the definition of γτ [Eq. (A4)], that the

system becomes over-damped both in the limit τ → 0 and
τ → ∞. Therefore, it is possible to perform an adiabatic
approximation—valid for either very small or very large values
of τ—by neglecting the transient contribution of the term
ẍ, and the process becomes approximately equivalent to the
following Langevin equation with multiplicative noise:

ẋ = γ −1
τ (x)f (x) + γ −1

τ (x)
√

2
√

τσ η̂(t̂). (A5)

Let us note that this equation has to be understood in the
Stratonovich sense, as the previous derivation has been carried
using the rules of the standard calculus [54]. Finally, we remark
that the UCNA method becomes exact in the limit τ → 0
and τ → ∞, whereas it is an approximation for intermediate

values of τ . Let us notice that, by Eq. (A4), for τ � 0 the
system is homogeneously over-damped (i.e., independently
of x), whereas a dependency of x is preserved for τ � 1.
Therefore, we should expect that the UCNA provides accurate
results independently of x for short-correlated environments,
whereas in highly correlated environments we may still find
some discrepancies with numerical results for those values of
x for which f ′(x) is large.

APPENDIX B: ANDERSON’s NEXT REACTION METHOD
FOR STOCHASTIC TIME-DEPENDENT RATES

The Gillespie algorithm is the most widespread method
used to simulate the dynamics of discrete particlelike stochas-
tic processes [69]. Alternatively, when rates explicitly depend
on time, one can use the algorithm developed by Ander-
son [50], which can be easily adapted to the case in which
such a dependency is stochastic. In this appendix, we briefly
review Anderson’s next reaction method, underlining some
technical issues arising from the fact that rates vary in time in
a stochastic rather than deterministic way.

In short, Anderson’s algorithm keeps track of different
“clocks” counting the time remaining for each possible
reaction to occur. In the “system of reference” of each
reaction, its timer goes at unit speed; an absolute “observer”
updates each of these timers according to their corresponding
time-dependent rates, accelerating or slowing them, choosing
which reaction will take place next and updating the species
involved.

At each time, the state of the system is determined by
the number of members or particles of each species, X. Each
reaction k is characterized by its propensity ak(X,t) and its
state-change vector νk , so that X → X + νk when reaction k

occurs. The algorithm is implemented as follows [50]:
(1) Initialize: set the number of each species, set t = 0 and

the internal clocks Pk = Tk = 0 for each reaction k.
(2) Generate the internal firing times for each k, which

are exponentially distributed random variable with unit mean:
Pk = − log(rk), where rk is a uniform random number in the
interval [0,1].

(3) Calculate propensity functions ak(X,t) for each k.
(4) For each k, find the �tk for which∫ t+�tk

t
ds ak(X,s)ds = Pk − Tk (see below).

(5) Find the minimum time-step � = mink �tk . We denote
α its corresponding reaction.

(6) Update internal times Tk = Tk + ∫ t+�

t
ak(X,s) (see

below), total time t = t + �, and finally the number of species
according to reaction α, X = X + να .

(7) Generate a new internal firing time Pα = Pα − log(rα)
with rα a uniform random number in (0,1), and go to step 3.

A small complication arises during steps 4 and 6 when
rates vary stochastically, as the method has an anticipating
nature: when integrating each of the propensity functions one
may integrate one or many stochastic functions up to a certain
time �tk , and then seek for the minimum of such times, �.
In principle, this step does not require a complete knowledge
of the whole stochastic trajectories at intermediate time steps
(see below). However, after this, one should reintegrate all the
propensity functions up to t + � (step 6), but this can be a
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problem if we did not keep track of the stochastic trajectory
with high enough precision.

We believe that this problem may be also solved using
the theory of “stochastic bridges” [70], which in principle
would allow us to generate an intermediate point of the
stochastic path conditioned to a future value of such a process
(information that afterwards could be safely erased). We prefer
to not enter into this matter, and we simply keep track of
the stochastic trajectories (in our case the Ornstein-Uhlenbeck
process and its time integral) taking a moving time window
of length 10τ and precision 10−2τ , where τ is the correlation
of the environment. Intermediate points of such a discretiza-
tion are calculated using the simple linear interpolation
rule.

Updating formulas for the Ornstein-Uhlenbeck process
and its time-integral

When implementing Anderson’s next reaction method, we
use the formulas derived in Ref. [71] to integrate exactly the

OU process [Eq. (2)]:

ε(t + �t) = ε(t)θ + σ1N1, (B1)

∫ t+�t

t

ε(s)ds = ε(t)τ (1 − θ ) +
(

σ 2
2 − κ2

12

σ 2
1

)1/2

N2 + κ12

σ1
N1,

(B2)

where N1 and N2 are two independent Gaussian ran-
dom numbers with zero mean and unit variance, and
the coefficients θ = exp(−�t/τ ), σ 2

1 = σ 2(1 − θ2), σ 2
2 =

2σ 2τ 2(�t/τ − 2(1 − θ ) + (1 − θ2)/2) and κ12 = σ 2τ (1 −
θ2)2. τ represents the temporal correlation of the process and σ

its standard deviation. Notice that, when implementing Ander-
son’s method, one could simply generate two random Gaussian
numbers and look for the �t for which

∫ t+�t

t
ε(s)ds = C,

where C is some numerical value given by the algorithm.
However, this leads to the already mentioned problem of
anticipation, so it is preferable to integrate Eqs. (B1) and (B2)
at regular time steps.
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