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Abstract: The role of thioredoxin-1 (TRX), a small redox-active protein with antioxidant effects, during
hyperoxic lung injury in newborns remains undetermined. We investigated TRX impact on hyperoxic
lung injury in newborn TRX transgenic (TRX-Tg) and wildtype (WT) mice exposed to 21% or 95% O2

for four days, after which some mice were allowed to recover in room air for up to 14 days. Lung
morphology was assessed by hematoxylin/eosin and elastin staining, as well as immunostaining
for macrophages. The gene expression levels of proinflammatory cytokines were evaluated using
quantitative real-time polymerase chain reaction. During recovery from hyperoxia, TRX-Tg mice
exhibited an improved mean linear intercept length and increased number of secondary septa in
lungs compared with the WT mice. Neonatal hyperoxia enhanced the mRNA expression levels
of proinflammatory cytokines in the lungs of both TRX-Tg and WT mice. However, interleukin-6,
monocyte chemoattractant protein-1, and chemokine (C-X-C motif) ligand 2 mRNA expression
levels were reduced in the lungs of TRX-Tg mice compared with the WT mice during recovery from
hyperoxia. Furthermore, TRX-Tg mice exhibited reduced macrophage infiltration in lungs during
recovery. These results suggest that in newborn mice TRX ameliorates hyperoxic lung injury during
recovery likely through the suppression of proinflammatory cytokines.

Keywords: antioxidant effects; hyperoxic lung injury; newborn mice; proinflammatory cytokine gene
expression; thioredoxin-1

1. Introduction

Bronchopulmonary dysplasia (BPD) is one of the most severe complications affecting premature
infants [1]. Despite the remarkable improvements in neonatal-perinatal medicine, the overall incidence
of BPD has not changed substantially. Recent studies have investigated the long-term consequences of
BPD on the respiratory health of older children and adults. In extremely low-birth-weight survivors,
who were born weighing less than 1000 g, lung function values at 8 and 12 years of age were lower
than the reference values, especially in children with a history of severe BPD and in those exhibiting
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a bubbly/cystic appearance on chest X-rays [2]. Several pharmacological and nonpharmacological
treatments have been proposed not only to support survival but also to minimize further lung injury
and facilitate recovery in patients with BPD [3]. Except for protective ventilation strategies, optimal
oxygen saturation targets, surfactant supplementation, and antenatal corticosteroid therapy, new
therapies have not been efficient. Several alternative therapies using drugs such as inhaled nitric
oxide and vitamin A have failed to consistently produce effective clinical outcomes, and most current
therapies continue to be supportive [4,5]. Current studies are evaluating multiple therapies including
caffeine, furosemide, systemic and inhaled corticosteroids, inositol, and cell therapy to characterize
their efficacy and safety profiles [6].

Many novel therapeutic or preventive strategies to further improve outcomes and/or reduce the
risk of BPD have to be investigated in animal models. Excessive oxidative stress due to exposure to
high O2 concentrations has been reported to be a risk factor for the development of BPD [7]. Therefore,
newborn mice exposed to high O2 concentrations have been commonly used as an animal model of
BPD. This BPD model exhibits persistent alveolar and pulmonary vascular simplification resulting
from delayed alveolar development; this histological finding is in accordance with the pathological
changes observed in humans with BPD [8,9]. Furthermore, cardiac magnetic resonance imaging and
echocardiography studies have demonstrated that hyperoxia-exposed mice exhibit signs of pulmonary
hypertension and right ventricular dysfunction [10].

Thioredoxin-1 (TRX) is a ubiquitously expressed, small (12 kDa) endogenous antioxidant enzyme
with a redox-active disulfide/dithiol within the conserved Cys-Gly-Pro-Cys sequence. TRX protects cells
against oxidative stress by scavenging reactive oxygen species [11,12] while concurrently modulating
chemotaxis and suppressing leukocytic infiltration to the sites of inflammation [13]. TRX transgenic
(TRX-Tg) mice, in which the human TRX gene is systemically overexpressed under the control of
the β-actin promoter, and mice in which recombinant human TRX is systemically administrated
are resistant to injury in various models of human diseases including viral pneumonia [14], acute
lung injury [15,16], pancreatitis [17,18], myocarditis [19], chronic obstructive pulmonary disease
(COPD) [20,21], indomethacin-induced gastric injury [22], and lipopolysaccharide-induced preterm
delivery [23]. The systemic overexpression of human TRX protects against hyperoxia-induced apoptosis
in the cells of alveolar walls [24] and ameliorates significant protein leakage into the lungs, alveolar
damage, focal alveolar hemorrhage, and hyaline membrane deposits by histological evaluation of
the lungs, leading to significant reduction in mortality after exposure to hyperoxia in adult mice [25].
However, the effects of TRX overexpression in neonatal hyperoxia-induced lung injury, whose
pathophysiology is very different than that of adult hyperoxia-induced lung injury [26], have not been
determined. Therefore, the objective of the present study was to investigate the role of TRX in a mouse
model of BPD by exposing newborn mice to hyperoxia, with the ultimate aim to determine the efficacy
of recombinant human TRX as a novel therapeutic agent for the prevention and treatment of BPD in
premature infants in future studies.

2. Materials and Methods

2.1. Animals

All protocols and procedures were approved by the Animal Care and Use Committee of Saitama
Medical University (permit no. 1716, 13 November 2015). TRX-Tg mice were originally created by
Takagi et al. [27]. Human TRX cDNA was inserted between the β-actin promoter and the β-actin
terminator. The transgene was cut out of the plasmid by VspI and XbaI digestion, purified, and used
to generate transgenic mice. The pronuclei of fertilized eggs from hyperovulated C57 BL/6 were
micro-injectioned with this DNA construct. TRX-Tg mice were repeatedly backcrossed with C57
BL/6 mice for at least 12 generations and maintained in the animal facility at Saitama Medical Center,
Saitama Medical University. Heterozygous TRX-Tg male and wildtype (WT) female mice were mated
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to produce either TRX heterozygous or WT littermates. Genotyping was performed using polymerase
chain reaction (PCR) analysis of tail biopsies.

2.2. Neonatal Hyperoxic Exposure and Recovery

Newborn pups (< 12 h old) were randomly assigned to the normoxia (normal room air) or
hyperoxia (95% O2) condition. Exposure to hyperoxia was performed for 96 h in a chamber (BioSpherix,
Redfield, NY, USA) that allowed for the continuous monitoring and regulation of O2 and CO2. The
dams were switched between hyperoxia and normoxia every 24 h. The inside of the chamber was
maintained at atmospheric pressure, and the mice were exposed to a 12 h light/dark cycle. After
hyperoxic exposure, some mice were allowed to recover in normoxia until they were 14 days old.

2.3. Lung Tissue Collection

Mice were anesthetized with intraperitoneal injection of pentobarbital (50 mg/kg) after determining
the body weight. The pulmonary artery was perfused with phosphate-buffered saline via the right
ventricle, and the right lung was excised and snap-frozen in liquid nitrogen for RNA and protein analyses.
The left lung was inflated through the trachea with 10% neutral-buffered formalin (Sigma-Aldrich,
St. Louis, MO, USA) at 25 cm gravity pressure and allowed to fix in situ for 1 min; the trachea was
tied, and the left lung was then removed and fixed further overnight at 4 ◦C. The left lung tissue was
paraffin-embedded, and 5-µm-thick sections were mounted onto glass slides for further analyses.

2.4. Lung Histology and Morphometry

Computer-aided morphometric analysis was performed using ImageJ software version 1.49 (NIH,
Bethesda, MD, USA) to determine distal airspace maturation, and mean linear intercept length (Lm)
and the number of secondary septa were determined.

Paraffin-embedded lung tissue sections were stained with hematoxylin and eosin. Lm, defined as
the mean length of line segments on random test lines spanning the airspace between intersections of
the line with the alveolar surface, was obtained using light microscopy by dividing the total length of a
line drawn across the lung section by the total number of intercepts, until the number of intercepts
reached 50 for each field [28]. Lm was assessed in six nonoverlapping fields of lung parenchyma in
one tissue section per animal, and six animals per condition at each time point were examined.

Elastin staining was assessed using an elastic stain kit (Abcam, Cambridge, MA, USA) according
to the manufacturer’s instructions. The number of secondary septa, where elastin was detected, was
manually counted in six nonoverlapping fields of lung parenchyma in one tissue section per animal,
and six animals per condition at each time point were examined.

2.5. RNA Extraction and Quantitative Real-Time PCR Analysis

Total RNA was extracted from five lung tissue samples per group, as previously described [29].
RNA (500 ng) was reverse-transcribed (High-Capacity cDNA Reverse Transcription Kit; Applied
Biosystems, Foster City, CA, USA), and cDNA was amplified via PCR using primers (Applied
Biosystems) for interleukin-6 (Il-6) (Mm00446190_m1), heme oxygenase-1 (Ho-1) (Mm00516005_m1),
monocyte chemotactic protein-1 (Mcp-1) (Mm00441242_m1), Il-1β (Mm00434228_m1), tumor necrosis
factor (Tnf ) (Mm00443258_m1), chemokine (C-X-C motif) ligand 1 (Cxcl1) (Mm04207460_m1), Cxcl2
(Mm00436450_m1), and macrophage migration inhibitory factor (Mif ) (Mm01611157_gH) with the
TaqMan Universal PCR Master Mix (Applied Biosystems). All PCR reactions were performed using
a 7500 Fast Real-Time PCR System (Applied Biosystems). Relative mRNA expression levels were
determined using the comparative critical threshold method, and each sample was normalized to
β-glucuronidase (Mm01197698_m1) (Applied Biosystems).
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2.6. Immunohistochemistry

Paraffin-embedded tissue sections were processed for immunofluorescence staining using the
avidin/biotin-based peroxidase system (Vectastain ABC HRP Elite Kit; Vector Laboratories, Burlingame,
CA, USA). Next, the sections were incubated with anti-F4/80 primary antibody (1:200; ab111101; Abcam)
overnight at 4 ◦C, followed by incubation with a horseradish-peroxidase (HRP)-conjugated anti-mouse
IgG secondary antibody (A10551; Invitrogen, Carlsbad, CA, USA) for 1 h at room temperature.

2.7. Western Blotting

Western blot analyses were performed to evaluate MIF protein levels. The blotted membranes
were incubated with a primary anti-MIF (1:143; 524001; BioLegend, San Diego, CA, USA) or anti-β-actin
(1:5000; GTX26276; GeneTex, Irvine, CA, USA) antibody, followed by HRP-labeled secondary antibodies.
Chemiluminescence was detected using the Amersham ECL Prime Western blotting detection reagent
(GE Healthcare, Little Chalfont, UK) with a digital imaging system (Bio-Rad ChemiDoc XRS+; Bio-Rad
Laboratories, Hercules, CA, USA).

2.8. Immunoprecipitation

Lung 12,000× g supernatants from the hyperoxia-exposed WT or TRX-Tg mice were incubated
with 2µg hTRX antibody (ab133524; Abcam, Cambridge, UK) or nonimmune antibodies (normal rabbit
IgG; Wako, Osaka, Japan) for 1 h at 4 ◦C. Next, 50 µL nProtein A Sepharose 4 Fast Flow suspension
(GE Healthcare, Uppsala, Sweden) was added, and the mixture was incubated for 1 h at 4 ◦C. After
centrifugation at 12,000× g for 20 s, the supernatants were removed and analyzed to detect MIF by
Western blotting. Sample inputs were simultaneously loaded.

The following antibodies were used for Western blotting: Anti-MIF (1:286; 524001; BioLegend),
anti-hTRX (1:2500; GTX108263; GeneTex), and anti-β-actin (1:5000; GTX26276; GeneTex).

2.9. Statistical Analysis

All values were expressed as means ± standard error of the mean. Comparisons between groups
were performed using the statistical package JMP ver. 14 (SAS Institute, Cary, NC, USA) by one-way
analysis of variance, followed by Tukey’s post hoc test for parametric data or the Kruskal–Wallis test
followed by the Mann–Whitney U test for nonparametric data. P-values less than 0.05 were considered
to indicate statistical significance.

3. Results

3.1. Neonatal Hyperoxia Does Not Negatively Affect Body Weight in TRX-Tg Mice

The effect of neonatal hyperoxia on body weight was assessed in the WT and TRX-Tg mice. On
day 4 after neonatal hyperoxia, no significant decrease in body weight was observed in the WT or
the TRX-Tg mice compared with their normoxic counterparts. However, neonatal hyperoxia led to
a reduction in body weight in both the male and female WT mice on day 14 during recovery from
hyperoxia, whereas no change in body weight was observed in the TRX-Tg mice on day 14 following
neonatal hyperoxia (Figure 1).
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(n = 6 per group). Data are shown as means ± SEM. Comparisons between groups were performed 
using one-way ANOVA followed by Tukey’s test. ** p < 0.01. WT: wildtype; TRX: Thioredoxin-1; Tg: 
Transgenic; Air: Normoxia; O2: Hyperoxia; SEM: Standard error of the mean; ANOV: Analysis of 
variance. 
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In normal room air, the mice developed well-organized terminal airways. In contrast, the 
exposure of newborn mice to hyperoxia for 96 h led to the impairment of alveolar development, 
resulting in alveolar expansion and simplification (Figure 2A). Compared with the normoxic control 
lungs, a longer Lm was observed after neonatal hyperoxic exposure in the lungs of both the WT and 
TRX-Tg mice on day four (Figure 2B). Neonatal hyperoxia also led to a reduction in the number of 
secondary septa in the lungs of both the WT and TRX-Tg mice (Figure 2C,D). 

 
Figure 2. Alveolar development on day four after neonatal hyperoxic exposure. (A) H&E-stained 
histological sections. Scale bar = 100 µm (magnification × 100). (B) Lm (n = 6 per group). Lm was 
assessed in six nonoverlapping fields of lung parenchyma in one tissue section per animal. Animals 

Figure 1. Changes in body weight after neonatal hyperoxic exposure. The changes in body weight
were evaluated in 4 and 14-day-old WT and TRX-Tg mice following normoxic or hyperoxic exposure
(n = 6 per group). Data are shown as means ± SEM. Comparisons between groups were performed
using one-way ANOVA followed by Tukey’s test. ** p < 0.01. WT: wildtype; TRX: Thioredoxin-1;
Tg: Transgenic; Air: Normoxia; O2: Hyperoxia; SEM: Standard error of the mean; ANOV: Analysis
of variance.

3.2. Alveolar Development Is Impaired After Neonatal Hyperoxia in Both WT and TRX-Tg Mice

In normal room air, the mice developed well-organized terminal airways. In contrast, the exposure
of newborn mice to hyperoxia for 96 h led to the impairment of alveolar development, resulting in
alveolar expansion and simplification (Figure 2A). Compared with the normoxic control lungs, a longer
Lm was observed after neonatal hyperoxic exposure in the lungs of both the WT and TRX-Tg mice on
day four (Figure 2B). Neonatal hyperoxia also led to a reduction in the number of secondary septa in
the lungs of both the WT and TRX-Tg mice (Figure 2C,D).
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Figure 2. Alveolar development on day four after neonatal hyperoxic exposure. (A) H&E-stained
histological sections. Scale bar = 100µm (magnification × 100). (B) Lm (n = 6 per group). Lm was
assessed in six nonoverlapping fields of lung parenchyma in one tissue section per animal. Animals
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were exposed to air (open bars) or O2 (filled bars). (C) Elastin-stained histological sections. The black
arrows indicate elastin-positive secondary septa. Scale bar = 50µm (magnification × 200). (D) Number
of secondary septa (n = 6 per group). The number of secondary septa was assessed in six nonoverlapping
fields of lung parenchyma in one tissue section per animal. Animals were exposed to air (open bars) or
O2 (filled bars). Data are shown as the mean ± SEM. Comparisons between groups were performed
using one-way ANOVA followed by Tukey’s test. ** p < 0.01. Air: Normoxia; O2: Hyperoxia; WT:
Wildtype; TRX: Thioredoxin-1; Tg: Transgenic; Lm: Mean linear intercept length; H&E: Hematoxylin
and eosin; SEM: Standard error of the mean; ANOVA: Analysis of variance.

3.3. Impaired Alveolar Development Is Mitigated in TRX-Tg Mouse Lungs during Recovery from Hyperoxia

On day 14, the Lm was significantly longer and the number of secondary septa were significantly
lower in the neonatal WT mice that were exposed to hyperoxia for four days followed by recovery
in normal room air for ten days, compared with their normoxic counterparts. In contrast, despite
the impaired alveolarization after neonatal hyperoxia on day 4, the TRX-Tg mice had a significantly
improved Lm (Figure 3B) and exhibited an increase in the number of secondary septa (Figure 3D)
after recovery in normal room air on day 14 compared with the WT mice that were exposed to the
identical conditions.
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3.4. Hyperoxia-Induced Increases in Proinflammatory Cytokine and Chemokine mRNA Expression Levels 
Disappeared During Recovery from Hyperoxia in TRX-Tg Mouse Lungs 

Figure 3. Alveolar development during recovery from neonatal hyperoxic exposure on day 14.
(A) H&E-stained histological sections. Scale bar = 100µm (magnification ×100). (B) Lm (n = 6, per
group). Lm was assessed in six nonoverlapping fields of lung parenchyma in one tissue section per
animal. Animals were exposed to air (open bars) or O2 (filled bars). (C) Elastin-stained histological
sections. The black arrows indicate elastin-positive secondary septa. Scale bar = 50µm (magnification ×
200). (D) Number of secondary septa (n = 6 per group). The number of secondary septa was assessed in
six nonoverlapping fields of lung parenchyma in one tissue section per animal. Animals were exposed
to air (open bars) or O2 (filled bars). Data are shown as means ± SEM. Comparisons between groups
were performed using one-way ANOVA followed by Tukey’s test. * p < 0.05; ** p < 0.01. Air: Normoxia;
O2: Hyperoxia; WT: Wildtype; TRX: Thioredoxin-1; Tg: Transgenic; Lm: Mean linear intercept length;
H&E: Hematoxylin and eosin; SEM: Standard error of the mean; ANOVA: Analysis of variance.
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3.4. Hyperoxia-Induced Increases in Proinflammatory Cytokine and Chemokine mRNA Expression Levels
Disappeared During Recovery from Hyperoxia in TRX-Tg Mouse Lungs

TRX was reported to exert chemotaxis-modulating functions and to suppress leukocytic infiltration
to sites of inflammation [20]. Therefore, the lung mRNA expression levels of proinflammatory cytokines
and chemokines, including Il-6, Mcp-1, Il-1β, Tnf, Cxcl1, and Cxcl2, were determined using quantitative
real-time PCR. Compared with the normoxic controls, Il-6, Mcp-1, Il-1β, Cxcl1, and Cxcl2 mRNA
expression levels were significantly increased in the lungs of both the WT and TRX-Tg mice after
hyperoxic exposure on day four (Figure 4A). However, after a 10-day recovery in normal room air, the
mRNA expression levels of Il-6, Mcp-1, and Cxcl2 in the lungs of TRX-Tg mice exposed to neonatal
hyperoxia returned to basal levels and were significantly lower than those in the hyperoxia-exposed
WT mice (Figure 4B).
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Figure 4. Changes in mRNA expression levels of Il-6, Ho-1, Mcp-1, Il-1β, Tnf, Cxcl1, and Cxcl2 in lungs.
Quantitative RT-PCR was performed on (A) day 4 and (B) day 14 (n = 6 per group). Animals were
exposed to air (open bars) or O2 (filled bars). Data are shown as means ± SEM. Comparison between
groups were performed using one-way ANOVA followed by Tukey’s test. * p < 0.05; ** p < 0.01. IL:
Interleukin; HO: Heme oxygenase; MCP-1: Monocyte chemotactic protein-1; TNF: Tumor necrosis
factor; CXCL: Chemokine (C-X-C motif) ligand; Air: Normoxia; O2: Hyperoxia; WT: Wildtype; TRX:
Thioredoxin-1; Tg: Transgenic; SEM: Standard error of the mean; ANOVA: Analysis of variance.

3.5. Macrophage Infiltration Is Reduced in the Lungs of TRX-Tg Mice after Neonatal Hyperoxia

Based on the observed suppression of macrophage-related cytokine mRNA expression levels
in the lung of TRX-Tg mice, we assessed the extent of macrophage infiltration in the lungs by
immunohistochemistry using the macrophage marker F4/80. Compared with their normoxic
counterparts, an increase in the number of macrophages was observed in the lungs of WT mice
after hyperoxic exposure on day four and during recovery from hyperoxia on day 14. In contrast,
in the lungs of TRX-Tg mice, although the higher basal macrophage numbers were observed under
normoxic conditions, the hyperoxia-induced macrophage infiltration was inhibited on day 4 and the
number of macrophages was decreased during recovery from hyperoxia on day 14 compared with the
lungs of WT mice (Figure 5D).
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internalization and signaling, such as the augmentation of TNF-α production, by the direct binding 
of TRX with MIF [30]. Therefore, we used quantitative RT-PCR and Western blotting to assess mRNA 
and protein expression levels of MIF and performed immunoprecipitation to assess the direct binding 
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Figure 5. Immunohistochemistry for macrophages. Immunohistochemistry using the macrophage
marker F4/80 was performed on lung sections on (A) day 4 and (C) day 14. The black arrows indicate
F4/80-positive macrophages. Scale bar = 25µm (magnification × 400). Number of macrophages on (B)
day 4 and (D) day 14 (n = 6 per group). The number of macrophages was assessed in six nonoverlapping
fields of lung parenchyma in one tissue section per animal. Animals were exposed to air (open bars) or
O2 (filled bars). Data are shown as means ± SEM. Comparisons between groups were performed using
one-way ANOVA followed by Tukey’s test. * p < 0.05; ** p < 0.01. Air: Normoxia; O2: Hyperoxia; WT:
Wildtype; TRX: Thioredoxin-1; Tg: Transgenic; SEM: Standard error of the mean; ANOVA: Analysis
of variance.

3.6. Lung Mif mRNA and Protein Levels Are Not Different Between WT and TRX-Tg Mice after
Hyperoxic Exposure

An in vitro study previously demonstrated the regulatory involvement of TRX in MIF
internalization and signaling, such as the augmentation of TNF-α production, by the direct binding of
TRX with MIF [30]. Therefore, we used quantitative RT-PCR and Western blotting to assess mRNA
and protein expression levels of MIF and performed immunoprecipitation to assess the direct binding
of TRX with MIF in our in vivo model. There were no differences in the mRNA and protein expression
levels of MIF between the lungs of WT and TRX-Tg mice exposed to hyperoxia (Figure 6A–D), although
the MIF mRNA and protein expression levels were increased in the lungs of TRX-Tg mice during
recovery from hyperoxia on day 14 (Figure 6D). No direct binding was observed between TRX and
MIF by immunoprecipitation followed by Western blotting (Figure 6E).
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Figure 6. (A,B) Mif mRNA expression levels. Quantitative RT-PCR for MIF was performed on (A)
day 4 and (B) day 14 (n = 6 per group). (C,D) MIF protein expression levels. Western blot analysis
for MIF was performed on (C) day 4 and (D) day 14. Animals were exposed to air (open bars) or
O2 (filled bars). Data are shown as means ± SEM. Comparisons between groups were performed
using one-way ANOVA followed by Tukey’s test. * p < 0.05. Air: Normoxia; O2: Hyperoxia; MIF:
Macrophage migration inhibitory factor; WT: Wildtype; TRX: Thioredoxin-1; Tg: Transgenic; SEM:
Standard error of the mean; ANOVA: Analysis of variance. (E) Immunoprecipitation of TRX with
MIF. Immunoprecipitation using normal IgG and anti-TRX antibody was analyzed by Western blot
analysis. The antibodies for Western blotting were anti-MIF, anti-hTRX, and anti-β-actin. hTRX: Human
thioredoxin; MIF: Macrophage migration inhibitory factor.

4. Discussion

In the present study, the newborn TRX-Tg mice tended to attenuate hyperoxia-induced lung injury
compared with the newborn WT mice. During recovery from hyperoxia, the lungs of newborn TRX-Tg
mice exhibited a shorter Lm and a greater number of secondary septa compared with the newborn
WT mice, indicating that TRX overexpression mitigated the arrested alveolar development caused
by neonatal hyperoxia. Furthermore, the mRNA expression levels of proinflammatory cytokines and
chemokines, such as Il-6, Mcp-1, and Cxcl2, and the macrophage infiltration in the lungs of TRX-Tg
mice exposed to neonatal hyperoxia were significantly suppressed on day 14 compared with the WT
mice, suggesting that recovery from hyperoxic lung injury observed in the TRX-Tg mice might be due
to the anti-inflammatory activity of TRX in the lungs of newborn mice. However, we did not observe
an interaction between TRX and MIF in the lungs of TRX-Tg mice exposed to normoxia or hyperoxia.

Several animal models have shown the anti-inflammatory properties of TRX. We previously
reported that recombinant human TRX attenuated the rate of lipopolysaccharide-induced preterm
delivery in mice by preventing the elevation of proinflammatory cytokines including TNF-α,
interferon-γ, MCP-1, and IL-6 in the maternal serum [23]. Using a mouse model of COPD exacerbation
induced by cigarette smoke, Tanabe et al. demonstrated that TRX ameliorated neutrophilic inflammation
by suppressing the release of granulocyte-macrophage colony-stimulating factor, thereby preventing
the progression of emphysema, indicating the potential of TRX as a novel therapeutic agent that
might counteract COPD exacerbation [31]. In a mouse model of irritant contact dermatitis induced
by croton oil, topically applied recombinant human TRX significantly suppressed the inflammatory
response by inhibiting the production of cytokines and chemokines, such as Tnf-α, Il-1β, Il-6, Cxcl1, and
Mcp-1, in the skin tissues [32]. Furthermore, exogenous administration of recombinant human TRX
significantly improved the survival rate and attenuated the histological changes in lungs in a mouse
model of influenza pneumonia by diminishing the production of TNF-α and CXCL1 in the lungs
observed in influenza-inoculated mice [33]. In agreement with these animal models, we observed
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the anti-inflammatory properties of TRX, including the suppression of mRNA expression levels of
proinflammatory cytokines and chemokines, as well as the suppression of macrophage infiltration, in
the hyperoxia-induced BPD model in newborn mice.

MIF, a proinflammatory cytokine, is released by T lymphocytes and can inhibit the random
movement of macrophages [34]. In addition to T lymphocytes, MIF is secreted by a variety of other cells,
including epithelial cells, endothelial cells, and macrophages [35]. MIF has been classified as a powerful
cytokine, capable of inducing TNF-α, IL-1β, IL-6, and IL-8 and amplifying lipopolysaccharide-driven
cytokine responses [36]. Son et al. demonstrated the specific affinity of TRX to MIF within cells, as
well as culture supernatants of ATL-2 cells, which led to the MIF internalization into the ATL-2 cells;
the authors also showed that MIF mediated the augmentation of TNF-α production from RAW264.7
macrophage cells [30]. In the current study, to examine the role of MIF in the observed differences
between the WT and TRX-Tg mice during recovery from neonatal hyperoxia, we assessed the Mif
mRNA and protein expression levels, direct binding of TRX with MIF, and Tnf gene expression levels
in the lungs. In contrast to the previously reported in vitro findings, MIF and its downstream target
TNF did not appear to be involved in the protective effects of TRX in the hyperoxic lung injury model
used in the present study.

In clinical settings, extracellular concentrations of TRX were measured in various
conditions characterized by oxidative stress and inflammation, including autoimmune diseases,
ischemia-reperfusion injury, sepsis, viral infection, and acute lung injury [37–40]. Yu et al. reported
that serum TRX might be a biomarker of cardioembolic stroke severity and that increased TRX levels
might be a useful tool for predicting favorable prognosis in patients with acute ischemic stroke [41]. In
patients with coronary artery disease accompanied with hyperhomocysteinemia, decreased serum
TRX levels were closely correlated with the extent and severity of coronary artery disease [42]. TRX
levels in human neonates, especially very premature babies, who often suffer from BPD, have not
yet been investigated. To consider the utility of TRX as a biomarker or a novel therapeutic agent for
BPD, the association of TRX levels in human samples, such as serum and tracheal aspirates, with the
development and/or severity of BPD should be investigated. Furthermore, preclinical studies in animal
models of BPD are warranted to assess the efficacy of treatment with recombinant human TRX.

5. Conclusions

Hyperoxic lung injury was attenuated in the newborn TRX-Tg mice compared with the newborn
WT mice. The mechanism for the observed beneficial effect of TRX on lung development might
occur through the suppression of proinflammatory cytokine gene expression after neonatal hyperoxic
exposure, in the absence of MIF involvement.
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