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Abstract: Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for
qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which
given chemical structure or series of congeners actively act on biological sites either by focused
interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes
three of the fertile directions in approaching the biological activity by chemical structural causes: the
special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering
the full analytical counterpart for multi-variate computational regression, the minimal topological
difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms
were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump
inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid
secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine
congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type
(HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis),
respectively, all involving 3D pharmacophore interactions.

Keywords: quantitative structure-activity relationship (QSAR); multi-linear correlation; statistical
correlation; chemical stericity; ligand binding; cross-validation; hydrophobicity; van der Waals
interaction; molecular mechanism; drug design

1. Introduction

The quantitative structure-activity relationship (QSAR) method has wide applications in medical
chemistry, one of them being the design of new drugs. The study of the interactions between
macromolecules (proteins, membrane receptors) and their ligand drugs is very important for many
scientific fields, like psychiatry, chemistry, pharmacology or biochemistry. Because the molecular
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mechanisms of many severe genetic disorders are unclear, it is necessary to apply fast methods
(e.g., in silico) in order to analyze and predict the biological activity of new pharmacophores,
able to reduce the genetic disorders’ symptoms. For this, new techniques, such as computational
chemistry [1,2], high-throughput screening [3] and combinatorial chemistry [4], are available. Basically,
the theoretical aspects of these techniques include the consideration that a potent ligand fits in the
active site of its target protein or membrane receptor, while an inactive ligand does not. Many in
silico methods that are useful for investigating ligand—protein interactions require the knowledge
of proteins’ or receptors’ crystallographic structures [5]. Unfortunately, such structures are not
available for all potential drug targets. Usually, when the pharmacological effects of psychiatric
drugs (e.g., neuroleptics, antidepressants) are discussed, the dopamine, adrenergic and serotonin
receptors are taken into account [6-8]. The 3D structures of these membrane receptors are not available.
In such conditions, when the structures of the receptors or proteins are unknown, QSAR methods
remain an appropriate option to predict the pharmacological effects of psychiatric drugs. Thus, QSAR
methods are required in order to elucidate the possible mechanisms underlying genetic disorders like
psychiatric or others disorders and to design new pharmacophores useful in their treatment.

All QSAR methods consider that drugs’ macroscopic properties (e.g., biological activity) are
induced by their molecular structure, and every change in the molecular structure leads to a change
of these properties [9,10]. A QSAR model generally takes the form of a linear equation, under
conceptual form:

Biological activity (log1/K;) = const + (c1 x p1) + (c2 X p2) + (c3 X p3) + ... (1a)

where the parameters p; through pn may be molecular volume, dipole moment, etc., while being
computed for each molecule in the series; the coefficients ¢y through ¢ are currently calculated by
fitting variations in the parameters against the biological activity.

The good correlation between observed and predicted biological activities allows the design
of new derivatives starting from a template compound (the most active molecule of the study set)
with improved pharmacokinetic properties. QSAR performed before drug synthesis allows the
identification of the most potent compounds worth synthesizing, which significantly decreases the
time and cost of the procedures [11]. Generally, 2D and 3D-QSAR methods consider the structural
changes that influence the biological activity as being dependent on three important, potentially
independent, properties, namely: electronic, steric and hydrophobic [10,12]. Advanced 3D-QSAR
methods aim at identifying spatial features shown by the similarity or differences between electrostatic
and steric force fields of the active site vs. their ligands, at the 3D level of macromolecule structural
representation [13,14]. The selection of biological data, their range and distribution are critical to the
successful development of a QSAR model. It is preferred to take into account a range of biological
activities as wide as possible (a minimum of three log units) [15].

In this context, the actual review is organized as follows: it opens with a new paradigm of
modeling the structure-activity by the so-called spectral or algebraic approach (special computing
trace of the algebraic structure-activity relationship (SPECTRAL-SAR)) [16,17]; this is followed
by a conceptual-computational basis of modeling the 3D interaction by the aid of the minimal
topological/sterical difference (MTD) [18,19] that serves also as a precursor of the modern 3D
methods of comparative molecular field analyses (CoMFA) and comparative molecular similarity
indices analysis (CoMSIA), able to approach the complex problems of assessing genetic diseases on
a specific molecular interaction [20,21]. Conclusions summarize the actual status of modeling the
pharmacophores’ 3D interaction in the view of solving the bio-chemical interaction in a universal
structural manner.
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2. The Special Computing Trace of Algebraic Structure-Activity Relationship (SAR) Method

2.1. General Special Computing Trace of the Algebraic Structure-Activity Relationship
(SPECTRAL-SAR) Algorithm

Quantitative structure-activity relationships (QSARs) have proven to be a successful attempt to
describe chemical-biological interactions because of their capacity to provide the analytical predictive
equation applied to analogues of certain classes of compounds, within an application domain linking
the chemical causes with their bio-, eco- and pharmaco-effects [22-37]. It appears to be a macroscopic
equation, but this observation is countered, since it falls out of commonly-accepted forms for natural
phenomena according to which an effect under study is modeled by an exponential, polynomial,
logarithmic or trigonometric function. Conversely, the custom linearity and multi-linearity dependence
of a QSAR study using the recorded activity by the molecular M-descriptors as the following equation:

A=ay+a X1 +aXy+ ... +apyXp (1b)

finely respects the superposition principle in quantum matter, modeling at the micro-universe level the
substance’ structure and evolution; consequently;, it is right and correct to point out that as far as the
states are each represented by independent (orthogonal) descriptors/properties, their superposition
into a molecular architecture appropriately produces, by an optimum algorithm, the projection
coefficients (ag, a1, ..., ap1) driving the observed state for (measured) activity, therefore explained by the
so-called Banach chemical-property space [16,38—42]:

|A) = ao |Xo) + a1 [X1) + a2 | X2) + ... +ap | Xm) )

with |Xp) = 1y = |11...1x) being the unitary vector with N-dimensions as corresponding to the
N-compounds in the congener pool of toxicants.

This idea was entirely employed and exploited by the already consecrated SPECTRAL-SAR
vectorial version of QSAR, where biological activity is reloaded as a vectorial decomposition into an
orthogonal multi-dimensional space of molecular descriptors. Beyond the algebraic consequences
in dealing with correlation in absolute manner, i.e., by reforming the statistical least search of errors,
the “quantum” or Banach vectorial approach of QSAR yields two major ideas with considerable
closeness to the ultimate goal of any QSAR study: establishing the mechanistic scenario driving the
chemical-biological interaction under concern [17,43-46]:

e  The orthogonality constraint of the molecular descriptors’ states involved in Equation (2),
X1y LX)y L|X), Vi,j=2,.,M 3)

also restrains the classes of molecular descriptors to be considered; for instance, the
electronegativity and chemical hardness are ideal candidates because of their orthogonal and
complementary conceptually nature [47,48];

e Introducing the variational principle selecting from the pool of various predicted endpoints of
Equation (2), from those of linear, bilinear, up to those that are multi-linear in nature, e.g.,

Y1) = yio | Xo) +v1i | X1y, i=1,..,. M (4a)

Y1) = yro | Xo) + yini | X1i) + yini | Xai), i =1,..., M (4b)

Yam) = ymo [Xo) +ymr 1X1) +ym2 [ X2) + o + ymm [ Xm) (40)
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with the general form given by the SPECTRAL-SAR algorithm [16,17,42]:

Y) wo wi - wp o wy
X 1 0 - 0 -+ 0
1X1) 7(1) 1 -~ 0 --- 0
: R =0 (4d)
1 X 716 ,Jl< 1 -0
|XM> r(I)VI r{w rIJCVI 1
Y) e
=———", k= 4
Yk = 000 0,M (4e)
K (XiQ)
o _ 4f
"0 40

with the vectors [Qg), |(V1), ..., |Q_1) orthogonally constructed, i.e.,

(%) =0 (4g)

assuring that |()p) and |();) are orthogonal, along the general Gram—-Schmidt expressions:

k—1
) = Xy — D |y (4h)
i=0

so that the vector |Q)) is orthogonal on all previous ones.

Finally, the shortest path is found throughout the variational procedure imposed among all
possible connected paths, namely:

0=235{Yri), Y11y, s [YM)}i—T i1 ©)

It also releases with the identification of the above searched mechanism explaining the interaction
by the appropriate identification of the molecular descriptors appearing in the least path of
Equation (5) [17,43-46].

2.2. Results of SPECTRAL-SAR in Pharmacophores’ 3D-Interaction

It is important to underline that the SPECTRAL-SAR procedure originally embraces the desiderate
and principle No. 5 for any QSAR study of the Organization for Economic Cooperation and
Development (OECD) [49,50], namely fully addressing the mechanistic picture of the molecular
impact/interaction on the biological /organismal site. It was, however, innovatively combined with
chemical reactivity principles of electronegativity and hardness, as well as with the logistic framework
of ligand-receptor interaction (in its turn, generalizing the Michaelis-Menten enzyme kinetics) [51].

To this end, whenever on the molecular structure of the ligand L or on enzyme more X substituents
are coupled, their effects can be regarded in an additive quantum (superposition) way or, on the
contrary (classically), each of the substituents is treated separately. Because it may be difficult to
characterize quantitatively a certain structure, it is obvious why there is a large amount of parametric
scales. Paradigmatically, for the transportation parameter, the logarithm of the partition coefficient of
the bioactive compound (L) is used, and almost in all cases, it is determined as a water to 1-octanol
ratio simulation of the lipidic hydrophobic membrane, among other derived parameters. On the
other hand, the electronic structure of bioactive compounds is customarily quantified as starting
from the thermodynamic model using the substituent constants as the well-known o-Hammett
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benchmark [52], supporting also further refining [53]. These are nevertheless, in most cases,
the adequate parameterization possibilities for including the electronic effects” parameterization;
for their use, there are large computer databases delivering such constants when numerous substituents
are considered [54]. For a further structural insight, one needs an alternative approach employing
quantum reactivity indices, like electronegativity, chemical hardness, bonding orders, charges on an
atom series, etc.

The SPECTRAL-SAR algorithm was tested more explicitly in relation to the 3D structural
information through employing the least spectral paths (say «,  and vy spectral paths, for the
three parameters’ correlation in biological activity) connecting the considered endpoint computed
models for a paradigmatic correlation analysis, upon Equation (5), and applied on a selected series
of 4-indolyl, 2-guanidinothiazole derivatives with a potential role in gastric anti-secretor activity,
by inhibiting the gastric H* /K* ATPase proton pump in parietal cells of the stomach [55]. Note
that in molecular design, we are forecasting molecules that optimally interact through controlled
or predicted mechanisms, constructed on interpretable molecular indices, e.g., as assumed by the
Hansch correlation scheme (i.e., seen as a combination of hydrophobicity LogP controlling the cellular
transduction, the polarizability (POL) controlling the electrostatic interaction, being overall tuned
by total energy, Etot, so accounting for the degree of covalent bindings). The performed study in
this area obtained the series of maximum and minimum residue values across «, 3 and y spectral
paths accordingly ordered from the smallest ahead, while identifying the observed activity for each
molecule in those series, respectively; the molecular null and negative observed activities have
an unfavorable (or detrimental) contribution to binding. The search continued until the molecule
4-(5-methylindolyl)-2-methylheptylguanidinothiazole (Figure 1) was found with the closest to the
higher observed activity [56].

ELECTROPHILE
ATTACK

NUCLEOPHILE N S

ATTACK T g
Figure 1. The electronic basins (left) and the associated electrostatic potential contours (right) for
4-(5-methylindolyl)-2-methylheptylguanidinothiazole, displaying optimized maximum electrophilic
activity by the predicted special computing trace of the algebraic structure-activity relationship
(SPECTRAL-SAR) mechanism action [56]. Green lines correspond with highest occupied molecular
orbitals (HOMO), magenta with lowest unoccupied molecular orbitals (LUMO) with the yellow shapes
marked as key fragments for chemical frontier reactivity.

Note that in the case that two candidate molecules are found with the same observed activity
the preferred one will be that belonging to the spectral pathway displaying a superior degree
(0« > B >y); if they further belong to the same path (i.e., they both feature equal positive and negative
residual values against the same observed activity), then the common structure resulting from their
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superposition will be considered as the designed active molecular fragment or site by the spectral
path analysis. This kind of completing of the S-SAR algorithm predicts the 3D molecular structure
performing the optimum attack on the envisaged biological sites by certain (controlled) structural
mechanism models. It may be appropriately called the 3D-SSAR method. In the reported case of
Figure 1, the described 3D-SPECTRAL-SAR method shows a large area of electrophilic interaction
(so governed by polarization), which eventually complements by inhibiting the protonation role of
H*K*-ATPase, as one should optimally predict [57-60].

Even further, when the non-linear correlation (interactions) are involved in more complex (open)
biological systems, Thom’s theory of catastrophes appears as one of the most preeminent mathematical
theories modeling open-system dynamics. It is widely used because of its simple yet valuable
modeling of the system-environment interaction; moreover, it is inclusive towards phenomena, such
as equilibrium/steady state and/or life cycles [61]. Biological systems are the first submitted to
catastrophe modeling because of their action-reaction causal response to various natural stimuli and
feedback to the imposed constraining limits. The reactions of organisms against vital toxicological
threats were accordingly developed, e.g., into the survival attractor concept as driven by the butterfly
bifurcation phenomenology, also closely related to the cusp catastrophe [62]. In its turn, the cusp
catastrophe may be further related to the physiological processes of predation and generation, thus
giving theoretical biology support to Heidegger’s philosophical concept of entity; it may be thus
regarded as a tool in translating the ontological entities into computer language [63]. In this context,
Jungian psychology may be proclaimed as entering the topological phase approach by modeling
personal unconscious and conscious minds by the swallowtail catastrophe [64]. As a consequence,
neuro-self-organization is correspondingly advanced by the reduction of the archetypal precursor
of epileptic seizures to cusp synergetics [65]. Lastly, but not least, the catastrophe approach enters
chemistry through the need to unitarily characterize chemical bonding through elementary processes,
leading to the so-called bonding evolution theory; it also triggered the reformulation of the electronic
localization functions [66,67]. Catastrophe theory was nevertheless successfully grounded on Hilbert
space modeling with the aid of density matrix and non-linear evolution-specific tools including
non-commutative (quantum open) systems [68].

3. The Minimal Topological Difference Method

3.1. General MTD Algorithm

The concept of “key-into-lock” promoted by Fischer is a very well-known, and it responds in an
essential way to the MTD requirements. Thus, the philosophy of MTD techniques is based on the fact
that a ligand L; has an ideal correspondent at the level of the receptor (binding site). Translated into
the MTD language, this principle would acknowledge that in the case of a degree of misfit, the larger
this degree of misfit is, the lower is the biological activity A; of that ligand. The MTD technique was
developed by the QSAR group Timisoara [69,70].

In simple terms, the MTD method can be perceived by means of volumes. Thus, when the affinity
of the ligand at the binding site of the receptor is low, the receptor registers an augmentation of its
un-overlapped volume, in a commensurate manner.

In order to achieve the MTD steric parameters, the molecular stereochemistry is compared using
two types of interventions:

e molecular superposition, which identifies similarities within a series of molecules or describes a
“pharmacophoric constellation” of atoms,
e and identifying and describing the positions that are equivalent.

A “hyperstructure” is obtained by combining these equivalent positions and the bonds between
them. The “hyper-molecule” includes both topological and geometrical aspects.

In a series of N molecules L; (i =1, 2, ..., N) in which their activities A; are known, in order
to identify the most biologically-active molecule, one should apply specific molecular modeling
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techniques to provide the structure-activity correlation equation. With respect to the MTD philosophy,
this correlation equation measures quantitatively the level of mismatch between the ligand and the
cavity of the receptor, materialized by the steric/topologic differences MTD; [71,72]. As stated before,
the MTD technique requires firstly to build, and, afterwards to optimize the so-called hyper-molecule
(H). The “contracted” hydrogen atoms are considered to build the hyper-molecule (H): in this phase,
second or higher period atoms X or XH,, are considered for superposition. The superposition stage
requires that molecules with a fixed orientation have to be taken into account, so that the superposition
process takes place in an atom-over-atom manner. An S active and rigid molecule is taken as the
starting molecule, over which all other molecules will be maximally superimposed, which means
that the distances less than 0.5 A after maximum superposition are comprised in the same vertex j in
the H hyper-molecule. Completing the superposition process, a number of j vertices resultsj = 1,M.
The j vertices express within the R*L; complex the estimation of the atoms’ position. The edges in this
complex are defined through the valence bonds between atoms. The interaction between ligands and
receptors provides an activated R*L; complex, like:

R(aq) + Li(aq) — R*Li(aq) + nH,O (6)

where R* represents the active conformation of the receptor, while a L; ligand binds to that receptor.

To simplify the description of the obtained H hyper-molecule, hydrogen atoms are not represented.
Therefore, each L; ligand implies a “vectorial” identification of the {x;} type, where x;; = 0, 1. We have
xjj = 0 when the j vertex in L; identifies no occupancy. In opposition, x;; = 1. The minimal topological
difference MTD; of molecule “i” has the following shape [18,19,69-72]:

M
MTD; =s+ > g x5 i = 1,..., N 7)
=1

where ¢; concerns the situations of vertices in relation to the receptor cavity. ¢; = —1 is the benefic
situation for a sustained biological activity (vertices are attributed to the receptor cavity); ¢ = 0
expresses the situation when vertices are situated externally from the receptor cavity (irrelevant); ¢; = +1
describes the situation when vertices are attributed to the receptor walls, expressing a detrimental
biological activity. The s parameter in Equation (7) takes into account all vertices in the receptor

M
cavity (gj = —1). >, & - x;j in Equation (7) is the sum of the situations of occupancy and non-occupancy.
j=1

Equation (7) represents the quantitative representation of the “steric relation between each ligand
“i” of the total tested N respecting the available M vertices of receptor R in the course of bonding”.
The mismatch in terms of steric aspects within the L; molecule is provided by the count of the
vertices with no cavity occupancy in H and the count of the vertices with wall occupancy. Assuming
that there are more conformations with low energy, that conformation will be used in a version of
Equation (7) that shows the best match to the receptor site (k = number of conformations of low energy,

where k=1, ... ,C; and C; is the number of conformations of one I molecule) [18,19,69-72]:
S k]
MTD; = min | s + 21 & - X (8)
]:
Thus, the MTD technique provides a regression equation of the following form:
A=ap+a;-Pr+ay-Pr+---—p-MID )

where P;,i=1,2, ..., define additional or alternative structural parameters that can be considered
within the optimization stages or after the $* receptor chart has been defined according to the optimized
MTD* values.
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Actual data provide the idea that the steric mismatch (misfit) can be adjusted with an energy that
varies proportionally to the corresponding volume mismatch. In Equation (9), the minus sign points
out that there is a direct relation between biological activity and the amount of ligand steric misfit,
while the first decreases in relation to the increase of the latter.

To start an optimization process of a given series of molecules, it is necessary to define an

initial {e]p} attribution set corresponding to the beginning chart S°. The next step is to obtain the

MTD? values, the regression coefficients in Equation (9) (multi-linear regression) and the associated
correlation coefficient 7). The next step consists of the one by one modification of g attributions.
A number of 2M mono-substituted charts will be obtained, combining the MTD; values with the 2M
correlation equations of type Equation (9) and their correlation coefficients. The next step considers
the mono-substituted chart with the highest correlation coefficient . This algorithm is repeated until it
is observed that the regression coefficient  shows no more increase tendency. At this time, the final
{&;} set of values is obtained, j = 1M, obtaining thus the optimized receptor chart, S*. This optimized
receptor chart is used in Equation (7), providing the optimized predictor variables MTD* for the QSAR
problem [18].

3.2. Results of MTD in Pharmacophores’ 3D-Interaction

The 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners (HEPT ligands) [73,74]
(see Figure 2) have proven in vitro antiviral activity, particularly against HIV-1.

Ph = phenyl

Chx = cyclo-hexyl

TI = p-folyl

CP = p-chilorine-phenyl

Figure 2. 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine (HEPT) structure with superimposition
of 79 derivatives with minimum energy conformations; these are (marked in blue, in the center)
the possible positions for substituents of the uracil ring; also in blue, we marked the 63 obtained
vertices [19]; down arrows and triangles denote those beneficial vertices (attributed to the receptor
cavity), up arrows and triangles indicate the detrimental vertices, for the mono-linear and bi-linear
MTD analysis of Equations (17) and (19) and the optimized charts (18) and (20), respectively; see the
text for further details. Circular colors generally indicate self-corresponding visualization for the
molecular group belonging in the hypermolecule.
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An exclusive anti-HIV-1 activity of HEPT ligands is proven, at the level of viral replication.
Unfortunately, there is no proof of the inhibition of other retroviruses, including HIV-2, using HEPT
ligands. Research [75] concerning aspects of the synthesis of HEPT derivatives has shown that if
there is a methyl group in position C-5 (R; region in Figure 2), a cyclic structure in position C-6
(R region in Figure 2), it is necessary to have also a two-atom HN-3 constellation to express a powerful
anti-HIV activity.

In their work, Tanaka et al. [76] showed that derivatives HEPT-S express an increased potential of
antiviral activity. Inhibition of viral reverse-transcriptase (RT) represents an attractive target to assess
the anti-HIV activity of specific ligands; thus, it was challenging to point out anti-HIV activity in the
case of assessing the impact of different substituents on the phenyl ring and upon C-5 [76]. In Figure 2,
on the general structure of HEPT are represented the effects of the presence of certain atomic groups at
the level of certain positions within HEPT.

The minimal topological difference (MTD) method translates data into 3D. It offers several
advantages in terms of molecular modeling techniques, starting from a correlation equation of
higher/improved quality, having as a result the obtaining of those specific stereochemical conditions
in order to optimize the anti-HIV-1 attack [77].

Substituents in the C-5/R; and C-6/R; positions on the phenyl ring via oxygen bounds or via
the sulfur bridge at the level of C-6/R; are solid reasons that determine the investigation of the
anti-retroviral activity of HEPT series [73,74,78,79]. This means that the mentioned positions of
substituents with various possibilities for them, but not 1-[(2-hydroxyethoxy)-methyl], provide the
inhibition of the reverse-transcriptase (RT).

In Figure 2, we represent the general structure of a series of HEPT derivatives consisting
of 79 congeners. We used the HyperChem 7.01 program package [80] to obtain the most stable
conformations, which means the congeners with the lowest energy. Superposition was performed
on the pyrimidine-2,4(1H,3H)-dione cyclic structure, in order to obtain the minimal distance
between equivalent atoms. If this distance exceeds 0.5 A, a new vertex has been introduced in
the hyper-molecule. This process led us to obtain a hyper-molecule containing 63 vertices.

We obtained the S° beginning chart in an automatic fashion. The principle that provided this
assumed that there is a relation between the degree of the molecular activity at the local level and
the occupancy of vertices taken individually. Therefore, the S° beginning chart is represented as
follows [19]:

(¢; = —1): 28,35,40,42,53,54,55,56,57,60,61,62,63

(¢, =0):1,2,345,6,7,89,10,15,16,17,18,19,20,21,22,
27,32,33,34,37,38,41,45,46,49,50,51,58,59

(¢f = +1):11,12,13,14,23,24,25,26,29,30,31,36,39,43,44,47 48,52

SO _ (10)

The obtained QSAR model, as for each QSAR model, has to be validated; we used the
cross-validation (cv) technique. It involves several steps: first, a series of ligands, N, has to be considered
with the calculated activities. This series is split into two sub-series, odd and even. The odd sub-series
determines the S* optimized chart, as well as the correlation equation. The even sub-series determines
the MTD; parameters and the linked A;* activities. Reciprocity is the principle that concludes this
model: activities of the molecules in the odd sub-series are derived from those of the even sub-series.
The cross-validation correlation index:

N
2

ree =1— (11)
2
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is obtained through its 100 - 73, value. Equation (9) and S* contribute to predicting a proportion of the
variance of the experimental biological activity, with an A average.

QSAR models of considered HEPT congeners are analyzed as follows, by means of their
experimental anti-HIV activity [73,74,78,79]:

e the mono-parametric model of hydrophobicity:
Aj = ag + a1logPh; (12)
e the mono-parametric model when the steric parameter is:
Aj = oxg — B - MTD; (13)

e the combined correlation:
A =nap+ allogPi — B3 -MTDy (14)

We used the HyperChem program package [80] and the option “QSAR Properties” in order to
compute the parameters that define hydrophobicity in Equations (12) and (14). MTD; parameters are
those that are in relation to the S* optimized chart of the receptor; regression parameters &g, «; and 3
describe the obtained QSAR studies. A; is the calculated value of Aexpi-

The algorithm of hyper-molecule optimization starts from the S° beginning chart, S = {ejli=1,.. M-
Attribution of vertices (¢j) within the hyper-molecule is done in a consecutive manner: initially, the
ro correlation coefficient is taken into account (it is linked to S); the process is repeated until the
maximal correlation coefficient rmax is obtained that describes the S* receptor’s optimized chart. It is
worth mentioning that every r is the result of the minimization process of the sum of squares of the
differences between experimental and calculated biological activities:

Y= (Ai - Ai,calc)2 (15)

P

I
[

1

We can state that we have obtained an optimized receptor chart $* in the situation when any new
change of ¢; does not produce any change (decrease) of (15). In a simplified manner, $* is the picture of
the interaction between R and L; ligands.

Hydrophobicity has the following regression equation type [19]:

A; = 3.838 (+0.327) + 0.790 (+0.099) - logP; (N = 79;r = 0.673; F = 63.85) (16)

Its interpretation is logical and simple: biological activity increases with the increase of the
partition octanol/water. Although the correlation coefficient records a good value, its impact is
rather frugal, meaning that in this kind of QSAR models, it is necessary to consider also steric effects:
hydrophobicity should be excluded, and MTD parameters should be considered or MTD parameters
should be part of Equation (16).

In the case of the 79 HEPT biologically-active congeners, the mono-linear MTD Equation
(13) provided an improved statistical model that registered an improved correlation coefficient
(r=0.830) [19]:

A; = 15.894( + 0.742) — 0.834( + 0.064) - MTD; (N = 79;r = 0.830; F = 169.9;7%, = 0.685) (17)
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Figure 2 shows the hyper-molecule’s optimized chart and the vertices” attribution, 5%; it is
nevertheless unfolded from Equation (17) through employing the minimization procedure described
by Equation (15) and looking like [19]:

(g5 = —1):21,24,28,40,42,53,54,55,56,60,61,63
gr _ ) (§=0:123456789,10,1214,1516,7,18,19,20,
MTD 25,27,32,34,35,36,38,39,45,49,50,51,58,59
(g5 = +1): 11,13,22,23,26,29,30,31,33,37,41,43 44,46 47 48,52,57 62

(18)

Now, the chart (18) gives knowledge about the stability of the vertices” attribution in the H
hyper-molecule while quantifying the place of ligand-receptor binding as: inside the cavity ... (—1),
inside the walls ... (+1) and corresponding to the steric irrelevant region ... (0).

The results are obtained using the mono-parametric MTD method (17); they nevertheless prove
that the substituents’ presence in the R; region (C-5 of Figure 2) explains the interaction only when
they are of relatively low dimension (i.e., methyl, ethyl, isopropyl, cyclopropyl). Note that the
more voluminous substituents (e.g., allyl, propyl, phenethyl and benzyl) induce the appearance of
detrimental vertices, with negative influence on the anti-HIV activity.

On the other side, in the R; substituents’ region (C-6 of Figure 2), the phenyl rests interact
positively with the receptor site once they are substituted in meta positions with small radicals;
the detrimental effect is carried here by the methoxy, methoxycarbonyl, nitro and cyano radicals.

Overall, the R3 region (N-1 of Figure 2) is the most favorable region for receptor interaction.
Accordingly, the benefic effect on the anti-HIV activity is recorded by single and voluminous
substituents bound to the 2-hydroxyethyl rest; these substituents are mostly aromatic, so interacting
with a relatively large receptor cavity by means of van der Waals (hydrophobic) bonds [81].
The mentioned hydroxyethyl rests in “extreme” regions develop detrimental vertices in the region.

Finally, one considers both the hydrophobicity parameter (LogP) and the minimal topological
difference towards the formation of a bilinear statistically-validated Equation [19]:

A; = 13.844( + 0.972) + 0.488( + 0.070) - logP; — 0.674( + 0.064) - MTD;

19
(N =79;r = 0.882; F = 133.2;7%,, = 0.774) 19)

note that the correlation coefficient, » = 0.882, is significantly improved respecting the simple case of
the mono-hydrophobic model (16). Therefore, it is computationally proven (and presumed valid not
only in this exposed case) that the fundamental feature of the MTD-QSAR contribution is in enhancing
the degree of correlation as based on the accounting of the steric effects.

Moreover, Equation (19) tells us that while high values of the MTD parameters relate to the
structural and bonding symmetries” effects in decreasing the biological activity; the opposite situation
occurs when the complementary symmetry is parameterized. Accordingly, higher biological activity
correlates with the asymmetry degree of the hyper-molecule, a feature appropriately described by the
MTD steric quantifications

Actually, by using Equation (19), the optimized MTD chart of parameters can be obtained as
before as [19]:

(¢ = —1):14,21,28,36,39,40,42,49,53,54,55,60,61,63
(¢ = 0): 1,2,3,4,5,6,7,89,10,12,15,16,17,18,19,20,
ST 41ogp = 26,27,32,33,34,35,37,38,45,48,51,58 (20)
(¢ = +1): 11,13,22,23,24,25,29,30,31 41,43,44,46,
47,50,52,56,57,59,62
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The interpretation of Equation (20) is made in relation to Figure 2: the vertices” attribution in the
hyper-molecule has been changed respecting the inset case, especially in the R3 substituents’ region.
In fact, the vertices 14 and 49 as being part of the “extreme” vertices of the hydroxyethyl rest became
benefic, while the vertices 56 and 59, corresponding to voluminous rests as phenyl and cyclohexyl,
became detrimental. It is also possible that the hydrophobic interactions (appearing when in the same
region, other voluminous rests are considered) do not exist, whereas hydrophobic interaction favoring
van der Walls interactions in the mentioned positions (i.e., the vertices 53-55, 60 and 61). Most probably,
the simultaneously increase of biological activity along the octanol/water partition coefficient is due
to an accelerated transport of ligands to the receptor site; a matter topologically sustained by the MTD
parameter characterizing the ligand-receptor interaction.

The last idea is crucial for the future of special QSAR and special computational chemistry:
including the hydrophobicity and topological influence by MTD parameterization significantly
improves the chemical structure-biological activity correlation and the allied equations’ qualities;
yet, it does not sensibly modify the hyper-molecule vertices’ effective contribution. However, the peak
change is shown in the R3 substituents’ region, where the voluminous rests close to the R; region
contain vertices with detrimental interaction. Overall, the multi-parametric models” analysis may be
considerably improved when, apart from combining the structural descriptors of different classes,
one adds also the topological contribution, including the hydrophobicity parameter to the correlation
coefficients close to 0.9 [19].

4. New Pharmacophores in Severe Genetic Disorders

4.1. 3D-QSAR Modeling for Severe Genetic Disorders

In the last few years, advanced QSAR techniques (alignment-dependent comparative
molecular field analyses, comparative molecular similarity indices, alignment-independent
comparative molecular field analyses or SPECTRAL-QSAR) were widely used in the design of
pharmacophores [14,20,21,82,83].

In CoMFA techniques, two critical molecular descriptors are used for describing the interaction
between ligands and cellular targets: steric and electrostatic. In addition, CoMSIA considers
hydrophobic and hydrogen donor/acceptor bond properties as being critical for drugs” biological
activity. Supplementary to this, 3D-QSAR-ALMOND considers that many types of molecular
descriptors are important for drugs” interactions, for instance the interactions of drugs with different
species of ions (sodium, potassium, calcium, iron, etc.). Multivariate statistics methods (e.g., partial
least squares (PLS)) are applied [10]. Statistical parameters that validate the QSAR model are
represented by SD (standard deviation), q2 (cross-validated r2), * (correlation factor), SEE (standard
error of estimate) and F (Fischer) [10,11]. Avram et al. [20] presented a recent review of the molecular
descriptors that appeared to be critical in the interactions of antidepressants with membrane receptors.
We summarize a few molecular descriptors of antidepressants in the interaction with membrane
receptors in Table 1.

Equally, QSAR studies applied to the interactions of neuroleptics and membrane receptors
identified the same critical molecular descriptors mentioned above. In Table 2, we present a few of
them in a selective manner.
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Table 1. Symbols and chemical and physical considerations of significant molecular descriptors of
the antidepressants.

Name of Descriptors Chemical and Physical Considerations of Descriptors Reference

Dipole-mag electronic descriptor involved in ligand-receptor interactions [84]

SASA = total solvent accessible surface area [85]

FOSA = hydrophobic component of the total solvent accessible surface area [85]
(saturated carbon and attached hydrogen)

FISA = hydrophilic component of the total solvent accessible surface area [85]
(SASA on N, O, H on heteroatoms, and carbonyl C)

Glob globularity descriptor [85]

the electrostatic interactions between a probe atom, usually an

COMEFA, electrostatic sp3-carbon atom with a +1 charge, and the ligands are calculated at [86,87]

descriptor uniform grid points following the Coulombic function
. . . 3_
CoMFA, steric the sterllc interactions between a.probe atom, usually an sp . carbon.
descriptor atom with a +1 charge, and the ligands are calculated at uniform grid [86,87]

points following the Lennard-Jones function

Table 2. Significant descriptors and chemical and physical considerations of them when antidepressants
activity is considered.

Descriptors Chemical and Physical Considerations of Descriptors Reference
Steric and hydrogen the energies calculated with the water probe contain the steric and
bonding interaction hydrogen bonding interaction energies, supplied by the presence of [21]
energies sodium, potassium, calcium and iron
EA electron affinity [88]
BBB blood brain barrier [88]
QPlogBB brain/blood partition coefficient [88]
CoMFA /CoMSIA, The electrostatic interactions between a probe atom, usually a
electrostatic sp3-carbon atom with a +1 charge, and the ligands are calculated at [14]
descriptor uniform grid points following the Coulombic function

The steric interactions between a probe atom, usually an sp3-carbon
atom with a +1 charge, and the ligands are calculated at uniform grid [14]
points following the Lennard—Jones function

CoMFA /CoMSIA,
steric descriptor

Recently, an extension of classical QSAR methods applied to small molecules was used to predict

the interactions among macromolecules, like proteins [89]. It was noticed that the important molecular

descriptors associated with significant protein—protein interactions were:

i

ii

iii

iv

the van der Waals term of the potential energy;

van der Waals surface area and, also, solvent accessible surface areas calculated as an approximate
sum of all hydrophobic atoms’ contributions [15,90];

counts of bonds from the structure of interest [91];

dipole moments, both electronic and hydrophobic [92-94]; and

van der Waals surface areas of polar atoms and, also, hydrogen bond acceptor atoms [90].

The hydrophobic moment of proteins is a critical descriptor, especially when changes in proteins’

conformation are of interest [92-94]. When investigating the hydrophobicity of proteins with known
3D structures, a strong periodicity can be identified in most cases of amino acid sequences folding as
a-helices (3.6 residues) or as strands of 3-sheets (2.3 residues). The hydrophobic moment is a sum over
the product of the hydrophobicity of each amino acid and the distance in space between its own and

the whole protein centroid.
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The binding of proteins to small ligands and even to other proteins requires interactions that
involve a molecular surface. In molecular modeling, this surface can be described as the van der
Waals surface area and solvent accessible surface area, and the parameters chosen for calculating them
can have a great impact on the estimation of various protein properties important for understanding
protein-protein interactions or proteins folding [90]. When simulating proteins, surface area calculation
is difficult due to the large number of polar and hydrophobic atoms from the protein composition,
each of them having different acceptors/donors of hydrogen bond descriptors. Such problems were
already discussed in the literature [90].

The molecular descriptors presented in this section clearly suggest that, in the body, molecular
structures of drugs impose their functions, and any changes of their chemical structure may induce
changes in their functions. Based on our expertise in computational chemistry and in the design of
new pharmacophores with wide applications in psychiatric disorders’ treatments, in the next section,
we will discuss a few recent studies focused on changes in the chemical structure of drugs able to
induce brain disorders and important rules in the generation of new potent pharmacophores.

4.2. 3D-QSAR Predictions in Pharmacophores” 3D-Interaction

Psychiatric disorders like depression and psychosis are severe mental disorders induced by
disturbance in the neurotransmitters’ balance in the brain and also by genetic risk factors. The clinical
studies conducted during the last few years mentioned an increase in the cases of patients that suffer
from psychotic depression [95]. Depression symptoms are low mood, behavior perturbations and
alterations of the cognitive processes and suicidal behaviors [96,97]. Besides these, some disturbances
of normal psychological and functional features appear (e.g., somatizations) [96]. Schizophrenia
symptoms are generally classified into two classes: positive (e.g., hostility, hallucinations, grandiosity
and life disorganization) and negative symptoms (decreases of attention, affective disorder, several
degrees of social impairment) [98]. Recently, it was shown that many patients diagnosed with
psychotic depression depend on strong treatments, based on antidepressants and antipsychotic drugs,
simultaneously. The most prescribed treatment in psychotic depression are antidepressants that belong
to the serotonin-reuptake inhibitor class (sertraline, paroxetine, fluvoxamine, escitalopram) [99] and
other drugs used for schizophrenia treatment (e.g., typically, like chlorpromazine haloperidol, and
atypical, like olanzapine, sertindole, risperidone and quetiapine) [100]. In the last few years, many
other chemical structures expressing antipsychotic activities were reported [12,21,101,102]. The action
mechanisms of drugs involved in psychotic depression therapy consist of the blockage of several types
of membrane receptors, with a major impact on dopamine (D2, D3, D4), serotonin receptors (5-HT1A,
5-HT2A) or on the serotonin transporter (SERT) [13,101].

The most prescribed antidepressants and neuroleptics in psychotic depression are presented in
Table 3 in a selective manner.

The genetic risk factors of psychiatric disorders represented by specific molecular mechanisms of
genetic errors are yet unclear. It is know that identical copies of chromosomes are obtained during
mitotic cell division. Correct sister chromatids pairs are produced if the bipolarity of chromatids
and centrosome duplication are achieved [103,104]. During these processes, the anaphase is delayed
by a complex of proteins, namely the mitotic spindle assemble checkpoint (SAC), until all pairs
formed by sister chromatids go through the biorientation process [105,106]. SAC proteins, like mitotic
arrest-deficient proteins (Madl, Mad2) or serine/threonine protein kinase, are highly conserved
throughout species evolution [107,108].



Int. J. Mol. Sci. 2016, 17, 1087

Table 3. Antidepressants and antipsychotics classifications.

Classes of Chemical Structure

Antidepressants

Molecules Name

Chemical Classes

cl sertraline tetrahydronaphthalenes
N
[,j\/o 0]
© \C[o
Selective serotonin F paroxetine piperidines
reuptake inhibitors N
(SSRIs) \_\
fluvoxamine benzenes
escitalopram benzofurans
\
Ni
|
0 >j—< »—O
venlafaxine phenols
(6]
~
Serotonin T‘
norepinephrine
reuptake inhibitors
(SNRIs)
o desvenlafaxine phenols
duloxetine naphthalenes
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Table 3. Cont.

Classes of Chemical Structure Molecules Name Chemical Classes
Antidepressants

/ clozapine benzodiazepines

Cl

—N
TN
e \
N
O ziprasidone phenethylamines
0
N
F N
Newer generation \Q/ON N
/

of drugs 0-N ° paliperidone benzoxazoles
N
goNg et
O*Kl © risperidone benzoxazoles

<)
quetiapine benzothiazepines

/

()
\

z

CL

They present a complicated interaction pattern. In a synthetic description, Mad2, a protein
that natively has two conformers, open-Mad2, corresponding to an inactive state, and closed-Mad?2,

olanzapine benzodiazepine

corresponding to an active state, is activated by the Mad1-Mad2 core complex [109,110]. Afterward,
in complex with Madl, closed-Mad2 recruits cytosolic open-Mad2, which further interacts with
Cdc20. The Mad2-Cdc20 complex binds BubR1-Bub3 to Cdc20, forming the APC/C-inhibitory mitotic
checkpoint complex [111,112]. Yang et al. [110] showed that Mad2 mutants are able to adopt the two
different spatial conformations and to interact in different manners with Cdc20.

Considering that the number of computational studies on the QSAR-Mad?2 protein is low, Avram
et al. [89] calculated the molecular descriptors of critical Mad2 mutants. Their study represents
an original approach of applying QSAR methods to large molecules like Mad2 native and Mad2
expressing mutations with the purpose of linking Mad2 features with their biological role played
during chromosome segregation. In this study, QSAR methods were successfully applied to establish
a correlation between the predicted properties of the Mad2 protein family and the following
experimentally-determined features: (i) binding to Cdc20; and (ii) the interconversion rate from
nAMEO-Mad?2 to C-Mad2 configurations. Three QSAR models were derived, and their biological
prediction power is shown by appropriate statistical parameter values; see Table 4.
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Table 4. Statistical parameters determined for the three QSAR models [89].

2 2 i
q r Root Mean Square  Cross-Validated .
QSAR Models (Cross-Validated ?)  (Fitted Correlation)  Error (RMSE) RMSE Fischer Test
QSAR Model 1 0.53 0.82 0.15 0.27 13.22
QSAR Model 2 0.65 0.83 0.14 0.20 10.03
QSAR Model 3 0.60 0.90 0.10 0.25 10.23

Some important conclusions regarding the molecular descriptors of the Mad2 protein critical
for its functions were: (i) the most relevant descriptors that are useful to predict the role of Mad2
and mutant chromosomes’ instability are: van der Waals area, water accessible surface area and their
subdivided, van der Waals energy; (ii) protein hydrophobic and dipole moments, as well as van
der Waals surface areas over polar and hydrogen bond acceptor atoms are critical in computing the
prediction of Mad2 mutants as inductors of chromosome instability.

It was suggested that the molecular descriptors of native and mutant Mad2 evaluated in this
paper represent an important study for future studies focused on aneuploidy, provided that kinetic
data about Mad1-Mad2 and/or Mad2-Cdc20 are available.

Taking into account the complexity of psychotic depression symptoms, Avram et al. [21]
obtained powerful 3D-QSAR-ALMOND models able to predict simultaneously the antidepressant
and antipsychotic activity against the 5-HT1A receptor. The novelty of this study was represented
by the presence in the proposed QSAR models of crucial ions (potassium, calcium and iron), which
potentiated the drugs’ biological activity. The presence of these ions was indicated by experimental
evidence. Robust QSAR models (expressed by values of statistic 42 and 72 values) were based on
combinations of descriptors: QSAR Model 1, water and sodium (q2 =0.60, r* = 0.97); QSAR Model 2,
water and potassium (q2 =0.64, 2 = 0.97); QSAR Model 3, water and calcium (q2 =0.63, 12 = 0.96); and
QSAR Model 4, water and iron (g% = 0.76, r*> = 0.98). Good correlations between experimental and
predicted biological activities were obtained for each QSAR model (residual values (0.01-1.77)) for
all molecules.

Another recent paper [88] presented the design of a biphenyl moiety linked with aryl piperazine
and syntheses of fourteen 1-(biphenyl-4-yl)-2-[4-(substituted phenyl)-piperazin-1-yl]ethanone
derivatives along with their pharmacological evaluation for antipsychotic activity and computational
studies, including QSAR and descriptor-based similarity study. In this study, the pharmacophoric
features of biphenyl and aryl piperazine using the acetyl linkage were used to predict the atypical
antipsychotic potential of the new compounds. The results of the study showed that: (i) all
derivatives possess considerable anti-dopaminergic and anti-serotonergic activity, and two very
important compounds, namely 1-(biphenyl-4-yl)-2-[4-(2-methoxyphenyl)-piperazin-1-yl]ethanone
and 1-(biphenyl-4-yl)-2-[4-(2,3-dichlorophenyl)-piperazin-1-yl]ethanone, presented an antipsychotic
profile with lower potency for catalepsy induction; (ii) the developed QSAR models showed that
the predicted brain/blood partition coefficient (QPlogBB) and electron affinity (EA) correlated with
antidopaminergic activity.

5. Conclusions

The goal of molecular modeling is beyond explaining physical and chemical phenomenon and/or
properties, yet targets also new experiments’ design (meaning testing new molecular structures
with pre-definite architecture). The molecular (read structural) modeling alone is not able to give a
quantitative prediction of biological activity, unless it is enriched with quantum topological analysis:
quantum for interaction, topological for vicinity and stericity; structural chemistry may however
stand as a data-driven space guiding (by chemical intuition) the design of new molecular structures,
potentially not foreseen by custom macroscopic chemical knowledge, with increased bioactive response
and action [81].



Int. ]. Mol. Sci. 2016, 17, 1087 18 of 23

Further 3D-QSAR studies are envisaged targeting the possibility to know the structural
requirements for a compound to have an increased anti-HIV activity [19].

On the other side, recently, research on the molecular aspects of genetic disorders has been a hot
topic in medicinal chemistry. Therefore, a large number of studies is focused on chromosomal instability
and its possible treatments. Risk factors for chromosomal instability and a target of many genetic
disorders” understanding is the overexpression of spindle assembly checkpoint proteins. Among these
proteins, mitotic arrest-deficient proteins, Madl and Mad2, are crucial. As a novelty, here, we present
a structure-activity relationship (QSAR) study applied to SAC proteins as possible targets for the
development of new pharmacogenomic studies. In the present paper, we also detail recent research in
the field of QSAR applied to small chemical compounds with clinical application as last generation
drugs used for genetic disorders’ treatment. The efficiency of antidepressants and antipsychotics drugs
in controlling mental symptoms and also their side effects are critical subjects for the development of
new psychiatric treatments. Researchers are focused on reducing side effects and understanding their
pharmacodynamic/pharmacokinetic features in order to develop new pharmacophores.
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Abbreviations

(Q)SA(/P)R  quantitative structure-activity (/property) relationships

HIV human immunodeficiency virus
HAART highly-active antiretroviral therapy
AIDS acquired immune deficiency syndrome
RT reverse transcriptase

FDA Federal Drug Agency

CB chemical-biological

A activity

L ligand

R receptor

LR Ligand-eceptor complex
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