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6UMR INSERM U1163, Institut Imagine, Paris, France
7St John’s Institute of Dermatology, King’s College London, London, UK
8Division of Dermatology, Geneva University Hospitals, Department of Pathology and Immunology, Faculty of Medicine, University of

Geneva, Geneva, Switzerland
9Department of Dermatology, University of Munich, Munich, Germany

*Correspondence: R. Strohal. E-mail: robert.strohal@lkhf.at

Abstract
Psoriasis is a chronic, immune-mediated disease affecting more than 100 million people worldwide and up to 2.2% of

the UK population. The aetiology of psoriasis is thought to originate from an interplay of genetic, environmental, infec-

tious and lifestyle factors. The manner in which genetic and environmental factors interact to contribute to the molecular

disease mechanisms has remained elusive. However, the interleukin 23 (IL-23)/T-helper 17 (TH17) immune axis has been

identified as a major immune pathway in psoriasis disease pathogenesis. Central to this pathway is the cytokine IL-23, a

heterodimer composed of a p40 subunit also found in IL-12 and a p19 subunit exclusive to IL-23. IL-23 is important for

maintaining TH17 responses, and levels of IL-23 are elevated in psoriatic skin compared with non-lesional skin. A number

of agents that specifically inhibit IL-23p19 are currently in development for the treatment of moderate-to-severe plaque

psoriasis, with recent clinical trials demonstrating efficacy with a good safety and tolerability profile. These data support

the role of this cytokine in the pathogenesis of psoriasis. A better understanding of the IL-23/TH17 immune axis is vital

and will promote the development of additional targets for psoriasis and other inflammatory diseases that share similar

genetic aetiology and pathogenetic pathways.
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Introduction
Psoriasis is a chronic, immune-mediated disease1–3 affecting

approximately 100 million people worldwide4 and 2.2% of the

UK population.5 Psoriasis affects men and women of all ages6

and can manifest in many different forms, the most common

being psoriasis vulgaris (or plaque psoriasis).4 Plaque psoriasis is

characterized by patches of erythema covered in a silvery-white

scale,7 the result of rapid hyperproliferation and dysregulated

differentiation of epidermal keratinocytes.8

The aetiology of psoriasis is multifactorial and includes a

complex interplay of genetic, environmental, infectious and

lifestyle factors.9,10 Genome-wide association studies have

identified numerous psoriasis-associated gene loci,11–13 includ-

ing the HLA-Cw6 gene,14 specifically the HLA-class 1 allele,

HLA-C*06:02,13,15 located within Psoriasis Susceptibility Locus 1

(PSORS1 on 6p21.3).16 Polymorphisms located within this gene

locus confer the highest risk of psoriasis (odds ratio [OR] 4.02–
16.82).17,18 Gene loci outside the HLA region mostly represent

common genetic variants with low effect sizes, including poly-

morphisms in the IL-23/TH17 immune axis such as IL12B (OR

0.78–1.15) and IL23R (OR 0.87–1.10).11,13,17–21 Other variants,

independent of HLA-C*06:02, are related to innate immune

pathways, antigen presentation, and T-cell activation and

differentiation.22–27 When combined with HLA-C*06:02, single-

nucleotide polymorphisms in IL23A, IL23R, IL12B, NFKB1 and

TNIP1 are associated with severe disease.17

Overall, most of the psoriasis-associated gene loci are related

to the innate and/or adaptive immune system. However, as the

majority of putative causal variants are located in noncoding

regions,28 and coupled with a complex genetic environment, it

remains difficult to assign individual gene variants precise roles

in the pathogenesis of, and susceptibility to, psoriasis.

Multiple inflammatory cell types are present in plaques, includ-

ing dendritic cells (DCs), T cells and macrophages, which con-

tribute to disease pathogenesis and drive keratinocyte

proliferation.29 T cells are known to be central to the pathogenesis

of psoriasis; interfering with T-cell trafficking and cutaneous T-cell

recruitment improves psoriasis.30–32 Inhibition of CD8+ T-cell

infiltration and activation into the epidermis prevented the devel-

opment of psoriasis in a mouse model using human skin trans-

plants.33,34 More specifically, CD4+ and CD8+ T cells with an

interleukin-17 (IL-17) secretory phenotype (T-17 cells) are impor-

tant contributors owing to their production of the pro-inflamma-

tory cytokines IL-17, IL-22 and tumour necrosis factor (TNF).35,36

Also, a shift in the T-cell pool during psoriasis in which regulatory

T cells (Tregs) begin expressing IL-17A has recently been identi-

fied.37 Expression of the Treg master transcription factor Foxp3 is

progressively lost, whereas expression of the TH17 transcription

factor retinoic acid receptor-related orphan receptor ct (RORct),
is increased by Tregs.37 This process appears to be augmented by

IL-2337 and may be a contributing factor to the chronic inflamma-

tion seen in psoriasis. DCs are also important in the pathogenesis

of psoriasis owing to their influence on T-cell activation and cyto-

kine production. Myeloid DCs (CD11c+) are major producers of

IL-23 in the skin,38 Tip-DCs (a subset of CD11c+ DCs that express

inducible nitric oxide synthase) are a source of TNF,39 and plas-

macytoid DCs produce high levels of type 1 interferon (IFN).40,41

CD163+-activated macrophages are also more abundant in psoria-

sis compared with normal skin42 and express products typical of

classically activated macrophages, including IL-23p19 and IL-12/

23p40.42 Although their exact role in the pathogenesis of psoriasis

remains unclear, IL-17A–expressing neutrophils are known to

aggregate in the epidermis, forming Munro’s microabscesses in

psoriatic lesions.43 Finally, keratinocytes are a skin-specific source

of IL-23 and, in health, maintain cutaneous immunity through

activation of T-17 pathways.44

It has been suggested that the localized activation and recruit-

ment of inflammatory cells to plaques are the result of an autoim-

mune response in the skin.45,46 The human leucocyte antigen

(HLA) class I allele, HLA-C*06:02, is the main risk allele in psori-

asis.17,18 As HLA-class I molecules present peptide antigens from

intracellular antigens to CD8+ T cells, a HLA-class I restricted

autoimmune response must be directed against a particular target

cell.47 An unbiased analysis of epidermal CD8+ T-cell reactivity
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unveiled an autoimmune response against melanocytes mediated

by HLA-C*06:02 and identified ADAMTS-like protein 5

(ADAMTSL5) as a melanocyte autoantigen.45 ADAMTSL5,

expressed by epidermal melanocytes, activates CD8+ T cells in the

epidermis and has been proposed as an explanation of why psori-

asis manifests in the skin.45 ADAMTSL5 stimulation increased

production of IL-17A and IFNc by peripheral blood mononuclear

cells in 62% of patients with psoriasis.45 Cathelicidin (LL-37) is

another likely autoantigen.48 LL-37 is a cationic peptide involved

in antimicrobial defence and is known to stimulate T cells.48

Complexed with nucleic material, LL-37 has been shown to acti-

vate the production of IFN by DCs through ligation of endosomal

Toll-like receptors (TLRs).49,50 Circulating T cells specific to

LL-37 were present in 46% of tested patients with psoriasis.48 In

addition, when complexed to bacterial DNA, IL-26 (a T-17 cell-

derived cytokine) also activates DCs to produce IFN via ligation

of TLRs.51 More recently, psoriatic T cells have been shown to

recognize neolipid antigens generated by mast cell phospholipase

delivered by exosomes and presented by CD1a.52

The IL-23/TH17 immune axis
When the immune system was initially considered dichotomous,

being composed primarily of TH1 and TH2 cells, psoriasis was

thought to involve a TH1 response, driven by the cytokines IFNc
and IL-12.53 However, clinical trials evaluating the efficacy of

anti-IFNc therapies for the treatment of psoriasis were not suc-

cessful, indicating that IFNc does not hold a bottleneck position

in the pathophysiology of psoriasis.54 IL-12 is composed of two

subunits, p35 and p40.55 When increased expression of p40 was

discovered in psoriatic lesions, this led to the initial conclusion

that IL-12 expression was elevated in psoriasis.56 However, when

it was later shown that the p40 subunit of IL-12 is also found in

IL-23,57 Lee and colleagues were able to attribute the increased

expression of p40 in psoriatic skin to IL-2338 and not IL-12, as

previously suggested.56 As IL-23 is involved in the TH17 axis,
57,58

while IL-12 drives TH1 cell development, the IL-23/TH17

immune axis is now thought to be central to the pathogenesis of

psoriasis. The main cytokines involved in psoriasis pathogenesis,

IL-23, TNF and IL-17, can be subdivided into regulatory and

effector cytokines based on their mode of action. IL-23 exerts

regulatory effects on the maintenance of TH17 cells, whereas

IL-17 and TNF mediate effector functions of innate (TNF) and

adaptive (TNF, IL-17) immune cells.

IL-23: a critical upstream cytokine in the pathogenesis
of psoriasis
IL-23 is a key cytokine involved in protective immune responses

to bacterial and fungal infections59; however, dysregulated IL-23

production also promotes autoimmune inflammation.60,61 IL-23

was identified in 2000 as a heterodimer composed of the

IL-12/23p40 subunit and a newly discovered p19 subunit that is

exclusive to IL-23.57 IL-23 signals through a heterodimeric recep-

tor complex composed of two subunits, IL-23R and IL-12Rb1.62

This complex predominantly activates signal transducer and
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activator of transcription 3 (STAT3), leading to IL-23–dependent

gene expression.62 IL-23 is an upstream regulatory cytokine that

acts early in the inflammatory cascade in psoriasis (Fig. 1)58,63,64

to maintain the TH17 cell phenotype65 and is critical in the

production of downstream effector cytokines, such as IL-17A,

IL-17F and TNF (Table 1).63,65,66 It is important to note that

IL-23 cannot directly promote TH17 cell differentiation as

the IL-23 receptor is not expressed on na€ıve T cells.61,65,67,68 IL-6

and transforming growth factor b (TGF-b) released by dermal

DCs elicit RORct-dependent differentiation of na€ıve T cells into

TH17 cells,
67–70 and the phenotype is then maintained by IL-23.

Human studies and animal models of psoriasis have confirmed

the critical role of IL-23 signalling in the pathogenesis of psoria-

sis. For example, IL-17A and IL-17F inductions were completely

abolished in IL-23p19 knock-out mice,71 and intradermal injec-

tion of IL-23–induced skin changes was consistent with human

psoriasis in wild-type mice.63 In humans, expression of IL-23p19

messenger RNA is increased in psoriatic lesions compared with

normal skin.38 In patients with psoriasis, the IL-23 receptor is over-

expressed on dermal DCs and epidermal Langerhans cells72;

whereas, in psoriatic lesions, IL-23 itself is overproduced by dermal

DCs and keratinocytes.38,44,73 In mice, nociceptors interact with

dermal DCs and induce the production of IL-23, which drives skin

inflammation associated with psoriasis.74

IL-17: a downstream effector cytokine
The IL-17 cytokine family consists of six isoforms termed IL-17

A–F.75 Increased expression of IL-17A, E and F in psoriatic lesions

has been described.76–78 TH17 (CD4+) cells are a major source of

IL-17A, although this cytokine can also be produced by CD8+ T

cells and cd T cells,64 natural killer T cells,79,80 mast cells and neu-

trophils.43,81 IL-17 is an effector cytokine downstream of IL-2361

that mediates psoriatic inflammation (Fig. 1).82–85 In health,

TH17 cells act to regulate protective immune responses, promote

microbial killing (via IL-26), and clear bacterial and fungal patho-

gens by inducing tissue inflammation.51,86 The IL-17 receptor is

expressed on many cell types, including T cells, epithelial cells and

fibroblasts.86 IL-17 induces IL-17 receptor–dependent prolifera-

tion of keratinocytes and production of pro-inflammatory cytoki-

nes, including IL-1b, IL-6 and TNF, and antimicrobial peptides,

including b-defensin and matrix metalloproteinase 9.82–85,87

Blockade of either IL-17A or the IL-17 receptor has been shown

to be an effective therapy in plaque psoriasis.88–90

Therapeutic targeting in psoriasis
The evolution of biologics for the treatment of psoriasis has mir-

rored the evolving understanding of the immunopathogenesis of

the disease (Fig. 1). Early treatment options centred on broad

immunosuppression; however, as our understanding of the

pathogenesis has improved, more-targeted therapies have

become available.

TNF inhibitors
Efficacy of TNF blockade in psoriasis was identified in patients

with inflammatory bowel disease (IBD) and psoriasis who were

prescribed TNF inhibitors for the treatment of IBD.91,92 This

observation initiated the clinical development of TNF inhibitors

for psoriasis.93,94 TNF inhibitors currently approved for the

treatment of psoriasis are etanercept,95 adalimumab96 and inflix-

imab.97 These agents have proven efficacy, but their broad mech-

anism of action is associated with safety issues, including an

increase in the risk for severe bacterial and viral infections and

potentially cancer.98,99 Concerns regarding the safety of TNF

inhibition have driven a need for new, more-targeted biologics.

IL-17A inhibitors
The first IL-17A inhibitor for the treatment of moderate-to-

severe plaque psoriasis, secukinumab, was approved for the

Table 1 Effects of IL-23 vs IL-17A in psoriasis

IL-23 IL-17A

Cytokine type Upstream cytokine Effector (downstream) cytokine

Primary source Activated monocytes and dendritic cells145,146 TH17 cells146,147

Primary target TH17 cells58,146 Keratinocytes146

Role Promotes maintenance of TH17 cells37,103,147,148 Key inflammatory effector cytokine that induces
keratinocyte activation and proliferation and
reduces differentiation83,146

Effect Activation of TH17 cells to produce cytokines including
IL-17A/F, IL-22, IL-26, IFNc, and GM-CSF, which drives
the inflammatory response64,147

Stimulates keratinocyte expression of antimicrobial
peptides (LL-37 and b-defensins), pro-inflammatory
cytokines (TNF, IL-1b, IL-6) and chemokines
(CXCL8–CXCL11, CCL20), which feed back into the
pro-inflammatory cycle, resulting in a continued
immunopathologic progression of psoriasis145,149

Potential consequences of blockade Prolonged downregulation of immune activation,
potential for a lower risk of AEs compared with
IL-17 blockade

Short-term interference with effector immune
mechanisms, potential for higher risk of AEs/infections
compared with IL-23 blockade

AEs, adverse events; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; LL-37, cathelicidin; TH17, T-helper 17;
TNF, tumour necrosis factor.
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treatment of moderate-to-severe plaque psoriasis in 2015,100 fol-

lowed by ixekizumab in 2016.101 Both compounds have demon-

strated strong efficacy with a fast onset of action. However, they

require significant loading doses and frequent dosing to main-

tain responses.100,101 In addition, candidiasis occurred more fre-

quently in patients with psoriasis receiving secukinumab

compared with those taking etanercept, although the overall

incidence was low.102 Increased susceptibility to infections has

been identified in mice lacking IL-17 and the IL-17 receptor, but

this effect has not been reported in humans who have mutations

in the IL-23/TH17 immune axis.103 Targeting IL-17 and the

IL-17 receptor has also been associated with exacerbated IBD in

mice104 and was ineffective in treating patients with moderate-

to-severe Crohn’s disease (CD).105

Brodalumab, which targets the IL-17 receptor, has recently

been approved for the treatment of moderate-to-severe plaque

psoriasis.106 In three phase 3 studies of brodalumab in moder-

ate-to-severe plaque psoriasis (AMAGINE-1 [NCT01708590],

AMAGINE-2 [NCT01708603], AMAGINE-3 [NCT01708629]),

a ≥ 75% improvement in the Psoriasis Area and Severity Index

(PASI 75) was observed at Week 12 compared with base-

line.107,108 An additional biologic, bimekizumab, an antibody

targeting IL-17A, IL-17F, and the heterodimer IL-17A/F, is cur-

rently in development. A phase 1, first-in-human study of

bimekizumab in patients with mild-to-moderate plaque psoria-

sis (NCT02529956), showed dose-dependent improvements in

clinical features of plaque psoriasis, including PASI and Physi-

cian’s Global Assessment scores, compared with placebo.109

IL-12/23 inhibitors
Ustekinumab is currently the only approved drug that inhibits

the IL-12/23p40 subunit, thus antagonizing both IL-12 and

IL-23.110 Ustekinumab is generally considered safe and well-tol-

erated based on both clinical111,112 and longitudinal, real-world

studies113 and long-term follow-up.114

Development of a second IL-12/23p40 antibody, briak-

inumab, was discontinued before all safety data were made avail-

able115,116; some speculate that this decision was associated with

cardiovascular safety concerns.117 However, meta-analyses and

long-term follow-up of therapies targeting IL-12/23p40 show an

overall reduced risk of cardiovascular events,118–120 so further

data are needed to fully exclude a possible association between

major cardiovascular events and the use of anti–IL-12/23 agents.
Development of biologics that specifically target IL-23 via

IL-23p19, as opposed to the shared IL-12/23p40 subunit, may be

of clinical benefit as IL-12 signalling is spared. A protective role

for IL-12 in tumorigenesis has been suggested. In humans, IL-12

levels are significantly reduced in patients with breast cancer

compared with healthy controls,121 and mutations in the

IL-12(p40) gene lead to a higher risk of prostate cancer.122 IL-12

has also been shown to have a protective role, limiting skin

inflammation by restricting the infiltration of IL-17-expressing

cd T cells in the imiquimod mouse model of psoriasis.123

IL-23 inhibitors in development
Three inhibitors specifically targeting IL-23p19 are currently in

active development for the treatment of moderate-to-severe

Table 2 Comparison of efficacy for biologics targeting IL-23p19*

Characteristic Tildrakizumab†
100 mg125

Tildrakizumab†
200 mg125

Guselkumab‡
100 mg126,127

Risankizumab
180 mg130

Phase Phase 3 Phase 3 Phase 3 Phase 2

Dosing schedule

Initial Weeks 0, 4 Weeks 0, 4 Weeks 0, 4 Week 0

Maintenance q12w q12w q8w q12w

Efficacy, % Week 12 Week 12 Week 16 Week 12

PASI 75 61–64 62–66 86–91 88

PASI 90 35–39 35–37 70–73 79

PASI 100 12–14 12–14 34–37 48

PGA 0 or 1 55–58 59 84–85§ NR

Long-term efficacy, % Week 28¶ Week 28¶ Week 24 Week 36

PASI 75 73–80 73–82 89–91 88

PGA 0 or 1 65–66 69 84§ NR

*Data are not from head-to-head comparisons.
†Data from reSURFACE1 and reSURFACE2 trials.
‡Data from VOYAGE 1 and VOYAGE 2 trails.
§IGA 0 or 1 reported.
¶Responder analysis includes only PASI 75 responders at Week 16.
IGA, investigator global assessment; IL, interleukin; NR, not reported; PASI, Psoriasis Area Severity Index; PGA, Physician’s Global Assessment;
q8w, every 8 weeks; q12w, every 12 weeks.
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psoriasis (Table 2): tildrakizumab, guselkumab and risankizu-

mab. A further antibody, LY3074828 (mirikizumab), is now

entering phase 2 development.124

Two phase 3 studies of tildrakizumab have been completed:

reSURFACE 1 (NCT01722331) and reSURFACE 2

(NCT01729754). These studies demonstrated the efficacy of til-

drakizumab at Week 12 compared with placebo (reSURFACE 1

and 2) or etanercept (reSURFACE 2 only) (PASI 75: reSURFACE

1: 200 mg 62%, 100 mg 64%, placebo 6%; reSURFACE 2:

200 mg 66%, 100 mg 61%, placebo 6%, etanercept 48%;

P ≤ 0.001 in all comparisons).125 Of the patients who responded

to tildrakizumab 200 mg at Week 28 (achieved PASI 75 response:

reSURFACE 1: 200 mg 82%; reSURFACE 2: 200 mg 73%),

94% and 97% of patients maintained the response at Week 64

(reSURFACE 1) and Week 52 (reSURFACE 2), respectively.125

The results from the guselkumab phase 3 trials, VOYAGE 1

(NCT02207231) and VOYAGE 2 (NCT02207244), showed effi-

cacy in treating moderate-to-severe psoriasis compared with pla-

cebo and adalimumab at Week 16 (PASI 90 [co-primary

endpoint]: VOYAGE 1: guselkumab 73%, adalimumab 50%, pla-

cebo 3%; VOYAGE 2: guselkumab 70%, adalimumab 47%, pla-

cebo, 2%), Week 24 (VOYAGE 1: guselkumab 80%, adalimumab

Table 3 Most common adverse events and adverse events of special interest for biologics targeting IL-23p19*

Characteristic Tildrakizumab†
100 mg125

Tildrakizumab†
200 mg125

Guselkumab‡
100 mg126,127

Risankizumab
180 mg130

Phase Phase 3 Phase 3 Phase 3 Phase 2

Dosing schedule

Initial Weeks 0, 4 Weeks 0, 4 Weeks 0, 4 Week 0

Maintenance q12w q12w q8w/q12w q12w

Safety, % Weeks 0–12 Weeks 0–12 Weeks 0–16 Weeks 0–24

AE 44–47 42–49 48–52 57

SAE 1–2 2–3 2 2

Severe infections <1 <1 <1§ NR

Malignancies <1 <1 0 NR

MACE <1§ 0¶ <1** NR

Drug-related hypersensitivity reactions <1 <1 NR NR

Long-term safety, % Weeks 12–28 Weeks 12–28 Weeks 16–48†† NR

AE 44–46 40–45 65 NR

SAE 2–3 2 3 NR

Severe infections ≤1 ≤1 1§ NR

Malignancies <1 ≤1 0 NR

MACE 0 0 0 NR

*Data are not from head-to-head comparisons.
†Data from reSURFACE1 and reSURFACE2 trials.
‡Data from VOYAGE 1 and VOYAGE 2 trials.
§Serious infections.
¶Includes non-fatal myocardial infarction, non-fatal stroke and CV deaths that are confirmed as ‘cardiovascular’ or ‘sudden’.
**Includes sudden cardiac death, myocardial infarction and stroke.
††VOYAGE 1 trial only.
AE, adverse event; IL, interleukin; MACE, major adverse cardiac event; NA, not available; NR, not reported; Q8w, every 8 weeks; q12w, every 12 weeks;
SAE, serious adverse event.

Table 4 Additional research needs

To fully understand the mechanism of action of IL-23 and IL-17 blockade in psoriasis and other chronic inflammatory diseases, there is a need
for research that explores:

� Cellular sources of IL-23 and IL-17 in psoriasis and conditions for the expression of the IL-23R and the IL-17R

� The effect of IL-23 inhibition on TH17 cells in the skin and/or lymph nodes, and the downstream effects on cytokine profile in psoriatic lesions

� The role of IL-23 inhibition in modulating the immune response and the effect on cytokines other than IL-17

� Contribution of innate immunity (e.g. recruitment of neutrophils to lesions)

� Genetic differences between responders and non-responders to IL-17 or IL-23 inhibition

� Autoantigens and triggers in psoriasis, including environmental triggers

IL, interleukin; TH17, T-helper 17.
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53%; VOYAGE 2: guselkumab 75%, adalimumab 55%), and over

a 1-year period (VOYAGE 1 only: Week 48, guselkumab 76%,

adalimumab 48%; P < 0.001 in all comparisons).126–128

Phase 1 data on risankizumab in moderate-to-severe chronic

plaque psoriasis (NCT01577550) reveal significant improve-

ments in the proportion of patients achieving PASI 75 at Week

12 (PASI 75: risankizumab 87%, placebo 0%, P < 0.001) and

Week 24 (risankizumab 71%, placebo 13%, P = 0.009) com-

pared with baseline.129 In addition, a phase 2 study

(NCT02054481) demonstrated superior clinical responses com-

pared with ustekinumab at Week 12 (PASI 75: risankizumab

180 mg 88%, ustekinumab 45/90 mg 73%) and at Week 36

(risankizumab 180 mg 88%, ustekinumab 45/90 mg 55%).130

Overall, preliminary data suggest that anti–IL-23p19 agents

have a favourable safety profile (Table 3). As the p19 subunit is

exclusive to IL-23, whereas the p40 subunit is common to both

IL-12 and IL-23, therapies that selectively target IL-23p19 should

avoid unnecessary effects associated with IL-12/23p40 inhibition

by sparing the function of IL-12. This is supported by animal data

in which IL-12–deficient mice are susceptible to chemical carcino-

genesis, whereas IL-23–deficient mice are resistant.131 In patients

with solid tumours, 1-year survival was significantly greater in

patients with elevated serum levels of IL-12.132 However, when

targeting IL-12/23p40, it is not possible to attribute individual

adverse events to specific inhibition of either IL-12 or IL-23. The

relative contributions of each subunit to the safety profile will

become apparent as more data from selective IL-23 inhibitors

become available. To date, IL-23p19 inhibitors currently in devel-

opment have not encountered signals for opportunistic infections,

malignancy or worsening of IBD or CD.129,133,134

Dosing regimens
Comparison of treatment regimens across clinical trials suggests

that biologics blocking effector cytokines may require more fre-

quent dosing compared with biologics that block upstream cyto-

kines. Approved agents that block IL-17 require large loading

doses with frequent administration within the first 4–12 weeks

(secukinumab loading dose of 300 mg administered weekly for

4 weeks; ixekizumab loading dose of 160 mg administered once

and 80 mg administered every 2 weeks for 12 weeks), with a

reduction to one dose every 4 weeks for response mainte-

nance.100,101 These dosing intervals correspond to one to two

serum half-lives.100,101 In comparison, biologics that target IL-23

require less loading and allow a greater dosing interval for

response maintenance (Table 2), corresponding to approxi-

mately four serum half-lives.129,135,136 This is probably due to

differing pharmacokinetic properties and antibody affinity for

IL-23p19129,135,136 but might also suggest that blocking regula-

tory upstream cytokines may have a longer lasting effect on the

pathogenic immune response in psoriasis compared with block-

ing effector cytokines. We propose that neutralizing IL-23 pre-

vents the maintenance of the ongoing pathogenic TH17 response

without affecting the induction of TH17 differentiation, which

depends on IL-6 and TGF-b.65,67–70

IL-23 inhibition in other inflammatory diseases
The aetiologies of psoriasis, psoriatic arthritis and CD share sev-

eral candidate genes and common pathogenetic pathways, which

is not surprising considering the clinical overlap of the disor-

ders.26,137–140 Mutations in genes upregulated in these conditions,

including IL23R, affect the IL-23/TH17 immune axis,139,141 sug-

gesting anti–IL-23 agents may have potential as treatments for

CD, psoriatic arthritis and other genetically related disorders. For

example, the TNF inhibitors adalimumab and infliximab are

approved for the treatment of psoriasis and CD,96,97 and ustek-

inumab was recently approved for the treatment of CD.110 In

addition, several anti–IL-23 agents are undergoing clinical devel-

opment in psoriatic arthritis142,143 and CD.144

Conclusions
There is robust evidence that the IL-23/TH17 immune axis is a

key driver of psoriatic inflammation, which has led to the devel-

opment of biologics that specifically target key elements of this

pathway. Although there are still gaps in our understanding

(Table 4), IL-23 is now acknowledged to have a critical role in

this pathway and is required for the maintenance of inflammatory

TH17 cells. Early indications from clinical trials support the use of

IL-23p19–specific inhibitors as a viable treatment option that

may bring additional benefits to patients with plaque psoriasis.
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