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Background: Personalized management of secondary hyperparathyroidism is a critical

part of hemodialysis patient care. We used a mathematical model of parathyroid gland

(PTG) biology to predict (1) short-term peridialytic intact PTH (iPTH) changes in response

to diffusive calcium (Ca) fluxes and (2) to predict long-term iPTH levels.

Methods: We dialyzed 26 maintenance hemodialysis patients on a single occasion with

a dialysate Ca concentration of 1.75 mmol/l to attain a positive dialysate-to-blood ionized

Ca (iCa) gradient and thus diffusive Ca loading. Intradialytic iCa kinetics, peridialytic iPTH

change, and dialysate-sided iCa mass balance (iCaMB) were assessed. Patient-specific

PTG model parameters were estimated using clinical, medication, and laboratory

data. We then used the personalized PTG model to predict peridialytic and long-term

(6-months) iPTH levels.

Results: At dialysis start, the median dialysate-to-blood iCa gradient was 0.3 mmol/l

(IQR 0.11). The intradialytic iCa gain was 488mg (IQR 268). Median iPTH decrease was

75% (IQR 15) from pre-dialysis 277 to post-dialysis 51 pg/ml. Neither iCa gradient nor

iCaMB were significantly associated with peridialytic iPTH changes. The personalized

PTG model accurately predicted both short-term, treatment-level peridialytic iPTH

changes (r = 0.984, p < 0.001, n = 26) and patient-level 6-months iPTH levels

(r = 0.848, p < 0.001, n = 13).

Conclusions: This is the first report showing that both short-term and long-term

iPTH dynamics can be predicted using a personalized mathematical model of PTG

biology. Prospective studies are warranted to explore further model applications, such

as patient-level prediction of iPTH response to PTH-lowering treatment.

Keywords: precision medicine, secondary hyperparathyroidism, parathyroid hormone, patient-level prediction

model, hemodialysis
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INTRODUCTION

Secondary hyperparathyroidism (sHPT) is a common sequela
of chronic kidney disease (CKD), with intact PTH (iPTH)
levels typically starting to rise once the glomerular filtration
rate drops below approximately 45 ml/min. Most patients with
CKD stage 5 present with sHPT. sHPT is a consequence and
key mediator of CKD mineral bone disorder (CKD-MBD) and
linked to disturbed calcium (Ca) and phosphate homeostasis,
renal osteodystrophy, vascular and valvular calcification,
erythropoietin hypo-responsiveness, and cardiovascular
morbidity and mortality (1–3). The pathogenesis of sHPT
is multifactorial, it involves FGF23-mediated reduction of
active vitamin D levels and decrease of serum ionized Ca
(iCa). The iCa decline causes parathyroid gland (PTG) cells
to increase PTH release and synthesis and to proliferate in
response to reduced stimulation of vitamin D (VDR) and
Ca-sensing (CaSR) receptors. Hyperphosphatemia and blunted
FGF23-mediated inhibition of PTH synthesis further aggravate
sHPT as CKD progresses (4, 5). The resulting PTG changes are
classified into four stages: diffuse hyperplasia, early nodularity,
nodular hyperplasia, and single nodular gland. Initial stages
are characterized by polyclonal PTG cell proliferation. At later
stages, the PTG cells become increasingly monoclonal and show
a concomitant reduction of VDR and CaSR expression. These
processes perpetuate sHPT and render the PTG more and more
refractory to medical therapy (e.g., VDR agonists, calcimimetics)
(6–8). On a population level, sHPT stages are associated with
altered parameters of mineral metabolism (Ca, phosphate,
PTH) and CKD stage (9, 10). On a patient level, the observed
heterogeneity of individual disease characteristics complicates
the clinical assessment of PTG status and the prediction of drug
effects (11). There is an unmet clinical need for novel approaches
to characterize sHPT progression more accurately. To gain
insight into the complex PTG biology, we developed and recently
published a physiology-based mathematical model of PTG
biology (12). In this study we validate the individualization of
this mathematical model by predicting the patients’ short-term
peridialytic iPTH changes in response to diffusive intradialytic
Ca loading. We then used the model to predict the level of iPTH
at 6-months using only readily available clinical data, such as iCa
and phosphate measurements, iPTH history, dialysis vintage and
information about vitamin D therapy.

MATERIALS AND METHODS

Clinical Data
This research utilized biochemical measurements, intradialytic
iCa kinetics, and iCa mass balance (iCaMB) data from 28
previously studied maintenance hemodialysis (HD) patients
(13). In this study, patients received one dialysis treatment
with a dialysate Ca concentration of 1.75 mmol/l to attain a
positive dialysate-to-blood iCa gradient and diffusive Ca loading.
The Fresenius FX100 dialyzer was used for HD treatment.
Two patients received cinacalcet before iCaMB assessment
and were excluded from this study. Dialysate-sided iCaMB
assessment is described in detail elsewhere (13). Long-term

clinical and laboratory data (iCa, phosphate, and iPTH), as
well as medication, was obtained from patients’ electronic
health records over a 6-months period before and after iCaMB
assessment, respectively. iPTH (1–84) was measured using
an electrochemiluminescence immunoassay (Roche Diagnostics,
Mannheim, Germany) in a certified lab (Central Institute
for Medical and Chemical Laboratory Diagnostics; Medical
University Innsbruck, Austria).

Mathematical Model
The mathematical model of PTG biology is described in detail
elsewhere (12) (see also Supplementary Material). Briefly, the
model considers two cell populations, cells in the quiescent state,
which can undergo apoptosis or proliferate, and cells in the
secretory active state. The model captures fast PTH responses,
e.g., the release of pre-formed and stored PTH within seconds
to minutes as a response to a drop in iCa. Moreover, the

TABLE 1 | Baseline characteristics of maintenance hemodialysis patients (n = 26).

Parameter Median Min Max IQR

Female/male (%) 35/65

Age (years) 65 19 84 19

Dialysis vintage (days) 218 26 4479 429

Clinical dry weight (kg) 69.8 52.6 106 29.4

Dialysis treatment time

(min)

240 180 240 0

Ultrafiltration volume (ml) 1,726 0 4,224 2,045

Total serum Ca, average

of last 6 months (mmol/l)

2.2 1.91 2.47 0.18

Serum phosphate,

average of last 6 months

(mmol/l)

1.78 1.05 2.08 0.52

iPTH, average of last 6

months (pg/ml)

326 49 554 240

Alkaline phosphatase,

average of last 6 months

(U/l)

87 47 329 65

Ca, calcium; iPTH, intact parathyroid hormone; IQR, interquartile range.

TABLE 2 | Intradialytic iCa kinetics, iCa mass balance, and peridialytic iPTH

change (n = 26).

Parameter Median Min Max IQR

Serum iCa pre HD (mmol/l) 1.17 1.01 1.31 0.08

Serum iCa post HD (mmol/l) 1.35 1.26 1.49 0.06

iCa gradient (dialysate/serum) (mmol/l) 0.3 0.15 0.56 0.11

Delta iCa (mmol/l) 0.19 0.08 0.34 0.09

iCa mass balance (mg) 488 170 765 268

iPTH pre HD (pg/ml) 277 37 898 291

iPTH post HD (pg/ml) 51 12 115 54

Peridialytic iPTH change (% of pre) −75 −35 −92 15

HD, hemodialysis; iCa, ionized calcium; iPTH, intact parathyroid hormone; IQR,

interquartile range.
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model predicts long-term alterations of PTG biology, such as
a decreased intracellular PTH degradation rate, increased PTH
production rate, and increased cellular proliferation rate. In
order to individualize the PTG model and allow for patient
specific short and long-term iPTH predictions we estimate key
model parameters (i.e., individual optimal iCa and phosphate
levels, PTG gland size, intracellular degradation rate, PTH
production rate, and PTH clearance rate) from individual
patients’ longitudinal data (i.e., dialysis vintage as well as calcitriol
therapy and all available iCa, phosphate and iPTH concentrations
within 6 months before calcium mass balance assessment) (see
also Supplementary Material for details).

We use the PTG model with patient specific model
parameters to:

(1) validate individual model parameters by simulating short-
term iPTH dynamics during dialysis based on intradialytic
iCa changes.

(2) predict long-term iPTH under different conditions, such as
a rise or drop of either iCa or phosphate over the next
6 months.

(3) validate long-term iPTH predictions by using available
iCa and phosphate measurements over 6 months as input

FIGURE 1 | Intradialytic iCa and iPTH kinetics in two patients. (A,B) Left:

Interpolated iCa (black line) is based on measured iCa concentrations (red

circles). Right: iPTH dynamics (black line) as predicted by the patient specific

PTG model. The red circles indicate measured iPTH levels pre- and

post-dialysis, respectively. The black circles indicate simulated iPTH levels

pre- and post-dialysis, respectively. HD, hemodialysis; iCa, ionized calcium;

iPTH, intact parathyroid hormone.

parameters to predict the iPTH level measured closest to 180
days post iCaMB assessment. The median of predicted iPTH
values in the week of actual iPTHmeasurement was used for
calculating the correlation between predicted and measured
iPTH values since iCa and phosphate measurements were
not necessarily available at the same day. Data sets for this
validation include iCa and phosphate concentrations until
180 days post iCaMB assessment as well as the reference
iPTH around 180 days post iCaMB assessment. Patients
on calcimimetic treatment or kidney transplantation within
180 days post iCaMB assessment were excluded from the
analysis. From the initial 26 patients, 13 either received
kidney transplantation, calcimimetic treatment, moved to
another HD facility or died during the 180 days post
iCaMB assessment. Complete validation data sets, thus, were
available in 13 patients.

FIGURE 2 | (A) Correlation between measured and predicted post-minus-pre

HD iPTH (n = 26). (B) Bland Altman plot for differences between measured

and predicted post-minus-pre HD iPTH. (A) Measured (x-axis) and predicted

(y-axis) peridialytic iPTH change (r = 0.984, p < 0.001). The peridialytic

change was calculated as post-HD iPTH minus pre-HD iPTH levels. HD,

hemodialysis; iPTH, intact parathyroid hormone; SD, standard deviation.
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Statistical Analysis
Baseline characteristics and iCa kinetic data are presented as
median values or frequencies. Associations among intradialytic
iCa kinetic parameters and peridialytic iPTH change were
assessed by simple linear correlation analysis. Kendall’s Tau-
b coefficients were computed for non-parametric correlation
of metric variables. Pearson regression analysis was used to
assess the correlation between measured and predicted iPTH
concentrations. In addition, we present Bland Altman plots for
the difference between measured and predicted iPTH values.
Statistical analysis was performed with SPSS version 24.0 and
Matlab (Mathworks). The level of significance (p-value) was set
to 0.05.

Statement of Ethics
The study was conducted in accordance with the World Medical
Association Declaration of Helsinki. The study protocol was
approved by the Innsbruck Medical University ethics committee
prior to study initiation (protocol number AN2014-0313 343/4.7
391/5.3). Written informed consent was obtained prior to
study inclusion from each participant using a standardized
information and consensus form. Data collection was conducted
using a standardized evaluation form (case report form)
according to GCP recommendations. All patient associated
samples and clinical data are subject to privacy protection

according to the current European General Data Protection
Regulation. Patient information was managed entirely coded.
This study complies with the STROBE standards for reporting
of observational studies.

RESULTS

We utilized long-term clinical and laboratory data, intradialytic
iCa kinetics, and peridialytic iPTH levels of 26 maintenance HD
patients (see Table 1 for patient baseline characteristics).

Intradialytic iCa Mass Balance and
Peridialytic iPTH Change
At dialysis start, the median dialysate-to-blood iCa gradient was
0.3 mmol/l (IQR 0.11). The iCaMB was 488 mg/HD (IQR 268).
Median iPTH decrease was 75% (IQR 15) from 277 to 51 pg/ml
(Table 2). Neither the iCa gradient (b = 0.129, p = 0.354) nor
iCaMB (b = 0.031, p = 0.826) correlate with peridialytic iPTH
change. Two examples of individual intradialytic iCa kinetics are
depicted in Figures 1A,B. The two patients had comparable iCa
at HD start (1.08 and 1.09 mmol/l, respectively) and post-to-pre
dialysis iCa ratios (1.22 and 1.28, respectively). However, their
peridialytic iPTH changes differ significantly (−684.8 and−80.12
pg/ml). Nevertheless, the personalized PTG model accurately

FIGURE 3 | Measured and predicted iPTH levels over 6-months period in two patients. (A,B) Upper: Measured (red circles) and predicted (dashed and solid lines)

iPTH levels based on four different scenarios: (i) a decrease of phosphate by 25% (dashed red line); (ii) an increase of phosphate by 25% (solid red line); (iii) a decrease

of iCa by 10% (dashed blue line); (iv) an increase of iCa by 10% (solid blue line). Middle: Measured iCa (black circles). The dotted line represents the baseline iCa

concentration at the time of iCa mass balance assessment. The solid and dashed line represent +10% and −10% of the baseline value, respectively. Lower:

Measured phosphate (red circles). The dotted line represents the baseline phosphate concentration at the time of iCa mass balance assessment. The solid and

dashed line represent +25% and −25% of the baseline value, respectively. HD, hemodialysis; iCa, ionized calcium; iPTH, intact parathyroid hormone; P, phosphate.
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predicted post-dialysis iPTH levels in both patients. Across all
26 patients, measured and predicted peridialytic iPTH changes
were highly correlated (r = 0.984; p < 0.001) (Figure 2A) thus
the PTG model accurately predicts treatment-level peridialytic
iPTH change. Furthermore, the Bland Altman plot for differences
between measured and predicted iPTH showed no proportional
bias (r=−0.19, p= 0.35, the lower and upper limits of agreement
are−21.2 and 65.6 pg/ml, respectively) (Figure 2B).

Long-Term iPTH Dynamics
The individualized PTG model was used to predict long-term
iPTH dynamics based on changes of either iCa or phosphate in
26 patients. Two patients were arbitrarily chosen to present 6-
months iPTH predictions based on different clinical scenarios,
specifically a 25% rise or fall of phosphate or 10% rise or fall
of iCa. The PTG model predictions are shown together with
the corresponding observed levels of iCa, phosphate, and iPTH
(Figures 3A,B). While iPTH increased over time in patient 1
(Figure 3A), it decreased in patient 2 (Figure 3B). The main
difference between these two patients is the iCa trend over time:
In patient 1, iCa declined by an average of 10% and measured
and predicted iPTH are close (in Figure 3A, the dashed blue line
is based on a 10% iCa decline). In patient 2, mean iCa increased
over time; again, measured and predicted iPTH levels are close
(in Figure 3B, the solid blue line is based on a 10% iCa rise).
The depicted predictions consider only the impact of the change
of either phosphate or iCa while the other electrolytes are kept
constant. Long-term iPTH predictions were then validated by
using available iCa and phosphate measurements over 6 months.
The correlation betweenmeasured and predicted 6-months iPTH
is high (r = 0.848, p < 0.001, n = 13) (Figure 4A). The Bland
Altman plot for differences between measured and predicted 6-
months iPTH showed no proportional bias (r = 0.09, p = 0.76,
upper and lower limits of agreement are 142.6 and 312.5 pg/ml,
respectively) (Figure 4B).

DISCUSSION

Our study reveals two important insights: First, a personalized
mathematical model of PTG biology can accurately predict short-
term, patient-specific peridialytic iPTH responses to diffusive
Ca loading; second, the model can predict iPTH trends over
6 months in individual patients. The personalized PTG gland
model requires two essential components, a generic (i.e., non-
personalized) model of PTG biology which we have recently
published and readily available clinical data, such as iCa and
phosphate measurements, iPTH history, dialysis vintage, and
information about vitamin D therapy to estimate patient-specific
model parameters.

Management of sHPT is among the top priorities of precision
medicine approaches in HD patients; however, available evidence
is based only on studies of dialysis populations (11). The
complex biology of PTG during CKD progression is reflected
by ambiguous clinical situations. For example, incident dialysis
patients with mildly elevated iPTH levels (suggestive for early-
stage sHPT) are unresponsive to PTH lowering drugs (i.e.,
vitamin D and its analogs, phosphate binders; calcimimetics)

FIGURE 4 | (A) Correlation between measured and predicted 6-months iPTH

(n = 13). (B) Bland Altman plot for differences between measured and

predicted 6-months iPTH. (A) Measured (x-axis) and predicted (y-axis)

6-months iPTH (r = 0.848, p < 0.001). HD, hemodialysis; iPTH, intact

parathyroid hormone; SD, standard deviation.

with the subsequent need for parathyroidectomy or maintenance
dialysis patients with persistently high iPTH levels (suggestive
for advanced sHPT) respond well to pharmacologic treatment.
In this regard, several genetic variants of genes related to VDR
and CaSR and Ca and phosphorus transport have been recently
identified that may, in part, account for the heterogenous clinical
phenotypes, including diverse responses to drug therapy (14).

Current Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines recommend iPTH target levels of 2-9 times
the upper limit of normal for the assay, reflecting the increased
risk with both low (adynamic bone disease) and high (high bone
turnover disease) PTH levels (1). A recent Dialysis Outcomes
and Practice Patterns Study (DOPPS) analysis demonstrated that
in more than two thirds of incident HD patients with initial iPTH
levels above 600 pg/ml, the levels decrease to KDIGO targets
in the first year on dialysis. However, despite PTH-lowering
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medication, about 30% of these patients do not achieve target
levels. High PTH at dialysis initiation predicted higher PTH
levels at 1-year follow-up despite higher doses of PTH-lowering
medication (15). These findings highlight the relevance of iPTH
history and dialysis vintage for the estimation of patient specific
model parameters, i.e., individualization of the PTG model.

The pharmaco-epidemiological Étude PHarmaco
Épidémiologique de l’hYperparathyroïdie secondaire en
Lorraine (EPHEYL) study, a 2-year, open-cohort, prospective,
observational study on incident sHPT, identified four distinct
iPTH trajectories: (i) A “rapid PTH drop” group with iPTH
decrease over weeks; (ii) a “gradual PTH decrease” group with
iPTH decrease over months with mildly elevated phosphate
levels; (iii) a “slow PTH decrease” group with iPTH decrease
over months with high phosphate levels; and (iv) a “uncontrolled
sHPT” group with high PTH and phosphate throughout the
study. Most interestingly, the total length of PTH-lowering
medication prescribed did not significantly differ between these
groups (16). Thus, factors other than PTH-lowering medication
most likely account for individual differences in the evolution of
iPTH over time. Individual variations in PTG cell proliferation
pattern (polyclonal; monoclonal) and in expression and
genetics of VDR and CaSR call for novel approaches to predict
short- and long-term iPTH kinetics. While previous studies
exclusively investigated associations of clinical parameters with
population-level iPTH dynamics, we utilized computational and
mathematical analysis and modeling of the PTG to make patient-
specific predictions of short- and long-term iPTH dynamics.
In this study we used the generic PTG model and applied it to
real-world data from maintenance HD patients from a previous
iCaMB study (13). We were able to validate the individualized
model parameters by using short-term changes of iCa as well as
long-term iCa and phosphate changes. Moreover, we found that
our model allowed 6-months iPTH predictions which closely
matched measured levels of iPTH in individual patients.

The limitations of our study are the small sample size
and the infrequent iPTH measurements. A single iPTH value
prior to diffusive Ca loading might not be representative for
current PTG status in general; iPTH measurements in the
days before iCaMB assessment would most likely improve
model individualization. Measured iPTH values might not fully
agree with iPTH prediction curves as the latter consider only
changes of either phosphate or iCa while the other electrolytes
are kept constant. Two out of 28 patients took cinacalcet
prior to iCaMB assessment and were thus excluded. Cinacalcet
effectively reduces iPTH levels (17–19) and alters PTG biology
[(20, 21)]. The current PTG model cannot be individualized to
these patients. Nevertheless, our PTG model can predict iPTH
control in response to certain therapeutic interventions, such
as phosphate lowering in calcimimetic-naïve patients. Based on
HD vintage, iPTH history, phosphate and iCa values as well as

information about calcitriol therapy a PTH risk predictor tool
can be developed and implemented. Future model iterations
may integrate the effect of calcimimetic drugs on PTG model
parameters which will allow estimation of the effect of this
PTH-lowering intervention on a patient level.

In summary, this is the first report showing that a physiology-
based mathematical model of PTG biology can predict short- and
long-term iPTH levels in maintenance HD patients. Prospective
studies are warranted to understand the utility of this precision
approach on sHPT management.
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