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Abstract: Soil organic carbon (SOC), as the largest carbon pool on the land surface, plays an important
role in soil quality, ecological security and the global carbon cycle. Multisource remote sensing data-
driven modeling strategies are not well understood for accurately mapping soil organic carbon. Here,
we hypothesized that the Sentinel-2 Multispectral Sensor Instrument (MSI) data-driven modeling
strategy produced superior outcomes compared to modeling based on Landsat 8 Operational Land
Imager (OLI) data due to the finer spatial and spectral resolutions of the Sentinel-2A MSI data. To
test this hypothesis, the Ebinur Lake wetland in Xinjiang was selected as the study area. In this study,
SOC estimation was carried out using Sentinel-2A and Landsat 8 data, combining climatic variables,
topographic factors, index variables and Sentinel-1A data to construct a common variable model for
Sentinel-2A data and Landsat 8 data, and a full variable model for Sentinel-2A data, respectively. We
utilized ensemble learning algorithms to assess the prediction performance of modeling strategies,
including random forest (RF), gradient boosted decision tree (GBDT) and extreme gradient boosting
(XGBoost) algorithms. The results show that: (1) The Sentinel-2A model outperformed the Landsat
8 model in the prediction of SOC contents, and the Sentinel-2A full variable model under the XGBoost
algorithm achieved the best results R2 = 0.804, RMSE = 1.771, RPIQ = 2.687). (2) The full variable
model of Sentinel-2A with the addition of the red-edge band and red-edge index improved R2 by 6%
and 3.2% over the common variable Landsat 8 and Sentinel-2A models, respectively. (3) In the SOC
mapping of the Ebinur Lake wetland, the areas with higher SOC content were mainly concentrated
in the oasis, while the mountainous and lakeside areas had lower SOC contents. Our results provide
a program to monitor the sustainability of terrestrial ecosystems through a satellite perspective.

Keywords: ensemble learning algorithms; Landsat 8; Sentinel-2A; Sentinel-1A; soil organic carbon;
digital soil mapping

1. Introduction

Soil is the largest reservoir of carbon in terrestrial ecosystems and soil organic carbon
(SOC) plays an important role in the global carbon cycle and soil ecosystems [1–3]. SOC
far exceeds the amount of carbon in the atmosphere and vegetation, with almost twice
the amount of carbon in the atmosphere and three times that in plants [4]. Thus, small
changes in the carbon contents of soils can alter the concentration of carbon dioxide in
the atmosphere, leading to global warming [5]. Countries around the world are actively
addressing this challenge through a range of carbon sequestration policies [6]. SOC plays
a key role in maintaining ecosystem services and agricultural productivity by improving
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soil structure, enhancing water retention and maintaining nutrient availability [7]. Further-
more, the UN Sustainable Development Goals have identified SOC as a key indicator for
estimating degraded land areas in the context of achieving land degradation neutrality and
targets by 2030 [1,8]. Therefore, a timely understanding of the spatial distribution of soil
organic carbon content is important for the terrestrial carbon cycle, future climate change
monitoring and ecosystem restoration.

SOC measurement methods have traditionally utilized chemometric methods; how-
ever, the collection and processing of large numbers of samples and indoor experimental
analysis are labor intensive and time consuming [9,10]. With the rapid development of
remote sensing technology, remote sensing has become widely used for digital mapping of
soil properties (DSM) [11–13]. DSM is an effective method to reduce the field sampling and
experimental costs associated with monitoring, analyzing and managing SOC from spatial
and temporal perspectives [14,15]. However, the spatial distribution of SOC is constrained
by the spatial environment, and previous studies have demonstrated that variability in
environmental variables can significantly affect the spatial distribution of SOC [16].

The response mechanism of SOC exists in the electromagnetic spectrum (e.g., visible,
near-infrared, shortwave infrared and microwave). The absorption of radiant energy by the
molecule causes the amplitude of the chemical bond vibrations to become larger, leading
to stretching and bending of the N-H, O-H and C-H groups. The strongest correlations
of these stretching and bending vibrations with SOC occur in the red, near-infrared and
shortwave infrared bands [17,18]. However, due to the limitations caused by the spectral
resolution of satellite data, the use of individual band response relationships with SOC does
not yet satisfy the need for high accuracy. Spectral indices exploit the synergy of two or
more bands to effectively mine spectral information. Therefore, some spectral indices with
strong correlations with SOC (e.g., the soil-adjusted vegetation index (SAVI), normalized
difference vegetation index (NDVI) and normalized burn ratio 2 (NBR2)) are used to
estimate SOC [2,19]. Because Asa Gholizadeh [20] demonstrated that of the Sentinel-2
multispectral sensor information (MSI) data, band 4 and band 5 (red-edge bands and red-
edge information) are most sensitive to SOC, we hypothesize that there may be potential
to construct spectral indices from red-edge bands to estimate SOC with high accuracy. In
addition, a complex subsurface (e.g., vegetation cover, soil roughness, topographic relief,
etc.) affects the quality of optical imagery, and recent studies have introduced topographic
data and synthetic aperture radar (SAR) data. This is because SAR data are not only
independent of cloud and rain imagery, but can also capture soil–vegetation relationships
to predict soil chemistry [21].

The estimation of soil properties using remote sensing is related to the spatial and
spectral resolution of the image. The higher the spectral and spatial resolution, the better the
estimation accuracy. This is because from a spatial perspective, a coarse spatial resolution
contains more mixed pixels. From a spectral perspective, a higher spectral resolution can
better represent the differences in reflectance spectra at the surface. Landsat 8, applied in
past moderate-resolution satellite monitoring, has six bands in the VIS-NIR-SWIR range,
but the low spatial resolution (30 m) of these images limits the accuracy of SOC predictions.
Sentinel-2A has 10 bands in the VIS-NIR-SWIR range, which is four more red-edge spectra
(Red Edges 1, 2, 3 and 4) than Landsat 8. However, the role of the red-edge spectra is
usually unconsidered in the current SOC studies. This is because the Red band, near-
infrared and shortwave infrared have a corresponding relationship with SOC, and finer
spectral information will help to detect the relationship between the spectrum and the SOC.
Therefore, SOC estimation in Sentinel-2A should not only take into account the improved
SOC prediction results due to spatial resolution, but should also fully exploit the synergy
of spectra, especially the combination of variables containing red-edge bands.

In terms of SOC prediction methods, early studies used linear regression models,
including linear mixed effects models [22], multiple linear regression and geographically
weighted regression models [23,24], to link spectral data to SOC. The advantage of such
linear models is their simplicity of application and ease of interpretation. However, the re-



Sensors 2022, 22, 2685 3 of 21

lationship between SOC and variables is commonly complex and nonlinear [25]. The rapid
rise of data mining and machine learning provides favorable conditions for establishing
nonlinear relationships between soil properties and remotely sensed data. Cubist [26,27],
support vector machines (SVM) [28,29], categorical regression trees (CART) [30,31], ran-
dom forests (RF) [32,33], gradient boosted decision trees (GBDT) [34] and extreme gradient
boosted decision trees (XGBoost) [35] are widely used. Among these methods, tree-based
model algorithms have demonstrated good prediction results [36]. RF is an extension
of CART, which can effectively control the risk of overfitting and has been shown to be
superior in dealing with nonlinear relationships [37]. XGBoost, an improvement of the
GBDT algorithm, can perform regression tasks quickly and accurately through an additive
training strategy and parallel computing [38]. Most previous SOC mapping studies, while
using indices derived from remote sensing data as valid variables for SOC prediction,
lack the ability to explore the application of red-edge bands when using Sentinel-2A data.
Therefore, it is necessary to explore the capability of red-edge indices in SOC prediction. In
addition, the applicability of the excellent XGBoost algorithm in this study area is not yet
known. The Ebinur Lake wetland is located in an arid and semiarid zone, where extreme
climatic conditions lead to fragile ecosystems. To prevent land degradation and achieve
sustainable development goals, accurate monitoring of SOC is an important mission, and
there is currently a lack of high-precision spatial mapping of SOC in the region. We expect
good prediction results from the red-edge index and multivariate modeling strategies with
superior ensemble learning algorithms.

Most of the SOC predictions were executed using a single Sentinel-2A or Landsat
8 image. Relatively little is known about the comparison between multiple modeling
strategies and the two sensors. We conducted the Sentinel-2A and Landsat 8 model input
variables identical by controlling for variables so that the effect of spatial resolution on SOC
prediction can be presented. The development of the Sentinel-2A red-edge variable also
provides more insight into how much the red-edge variable improved the accuracy of SOC
predictions. The final high accuracy SOC prediction and spatial distribution map of SOC
were obtained. To better compare the effects of spatial resolution and Sentinel-2A red-edge
bands and red-edge indices on SOC predictions, we designed three sets of models, two of
which were based on Landsat 8 and Sentinel-2A data, respectively, using the same variables
but differing in spatial resolution. We refer to these two sets of models as the common
variable Landsat 8 and common variable Sentinel-2A models. The other group is based
on the common variable Sentinel-2A with the addition of the red-edge variable, which we
call the full variable Sentinel-2A model. These three groups of models are used to estimate
SOC by three machine learning algorithms, XGBoost, GBDT and RF, respectively. The aim
was to (1) compare the performances of Landsat 8 and Sentinel-2A data in predicting SOC;
(2) explore the contribution of the red-edge band and red-edge-derived index variables of
Sentinel-2A in the prediction of SOC; and (3) explore the SOC prediction performance of
the three machine learning algorithms.

2. Materials and Methods
2.1. Study Area

The Ebinur Lake wetland is located in Northwest China (44◦30′–45◦09′ N, 82◦36′–83◦50′ E)
and is the largest alkaline lake wetland in the Xinjiang Uygur Autonomous Region of China,
with characteristics typical of an arid zone lake wetland. It is also the lowest waterlogged
point on the southwestern boundary of the Junggar Basin in Xinjiang [39]. The area is
surrounded by mountains on three sides, with Maili Mountain to the north, Borokhoro
Mountain to the south and Alatau Mountain to the west of the study area. The Ebinur
Lake wetland has a typical mid-temperate arid continental climate. The mean annual
temperature (MAT) is 6–8 ◦C. The mean annual precipitation (MAP) is 100–1600 mm.
Evaporation is about 1600 mm [40]. The study area is rich in soil types, with widespread
Arenosols, Solonetz and Solonchaks, according to the World Reference Base (WRB) for Soil
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Resources [41,42]. In addition, land cover and land use contain a variety of land types, such
as water bodies, vegetation, wetlands, deserts and saline soils [43].

2.2. Soil Data Source

Soil samples were obtained from field sampling at Ebinur Lake in July 2017. We set up
a total of 95 sampling points in the study area, each consisting of a 10 m × 10 m sample
square (Figure 1). Within each sample square, five soil surface samples (0–10 cm) were
collected using a soil sampler following a five-point sampling method and mixed uniformly.
The coordinates of the center of the sample square were recorded using a handheld GPS
(UniStrong G120, error less than 5 m, Beijing UniStrong Science & Technology Corporation
Limited, Beijing, China). Each soil sample was sealed and labeled in a soil collection bag
and transported to the laboratory. The soil samples that were brought back to the laboratory
underwent two steps: preprocessing and organic carbon testing. During soil preprocessing,
the soil samples were first naturally air-dried; second, the air-dried soil samples were
stripped of stones, weed roots and other impurities; and finally, the soil samples were
ground and passed through a 0.149 mm grid sieve to obtain clean soil samples. In the
organic carbon experiments, pretreated soil samples were pretreated with hydrochloric
acid, mainly to eliminate the effect of soil salinity on the SOC prediction results. Finally, the
soil organic carbon content was determined using the potassium dichromate method.
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Figure 1. The study area is located in the Xinjiang Uyghur Autonomous Region within China:
(A) Xinjiang Uyghur Autonomous Region within China; (B) The Ebinur Lake basin; (C) Sentinel-2A
image; (D) Landsat 8 image; (E) landscape around the Ebinur Lake; (F) farmland landscape within the
oasis. Images A, C and D were created using the Red, Green and Blue bands of remote sensing images.

2.3. Environmental Variables
2.3.1. Topographic Variables

Topographic analysis was carried out using Shuttle Radar Topography Mission (STRM)
digital elevation data with a spatial resolution of 30 m, which were obtained from GEE
(https://earthengine.google.com/, accessed on 21 October 2021). The projection of the
digital elevation data was transformed in the GEE platform (WGS_1984_UTM_Zone_44N),

https://earthengine.google.com/
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cropped to the study area boundary and finally resampled to 10 m using the NEAREST
method. We used digital elevation data at two resolutions (10 m and 30 m) and SAGA GIS
software to calculate 15 terrain indices: the digital elevation model (DEM), analytical hill-
shading (AH), Slope, aspect, cross-sectional curvature (CSC), longitudinal curvature (LC),
convergence index (ConI), closed depressions (CD), flow accumulation (FA), topographic
wetness index (TWI), LS factor (LSF), channel network base level (CNBL), vertical distance
to channel network (VDCN), valley depth (VD) and relative slope position (RSP).

2.3.2. Remote Sensing Variables and Processing

The Landsat 8 Operational Land Imager (OLI) used for the study was launched by
NASA in 2013. The data were acquired on 27 July 2017 from the USGS (http://glovis.usgs.
gov/, accessed on 22 April 2021). The Landsat 8 data were radiometrically calibrated using
the Radiometric Correction tool in ENVI5.3 software, and then atmospheric corrections
were completed using the FLAASH atmospheric correction tool. Six bands were selected
from the preprocessed Landsat 8 data to participate in the band calculation and modeling, as
shown in Table 1. Sentinel-1A (Table 2) and Level 1-C Sentinel-2A data acquisition from ESA
(https://scihub.copernicus.eu/dhus/#/home/, accessed on 21 October 2021) was accessed
on 26 July 2017. Sentinel-1A provides data from a 5.405 GHz (C-band) dual-polarized
C-band Synthetic Aperture Radar (SAR) instrument with a spatial resolution of 10 m. The
GRD data obtained were speckle filtered, radiometrically calibrated, geocoded and data
exported by the radar module of SNAP software [44]. We used ArcMap’s resampling tool
to resample the preprocessed Sentinel-1A data to 30 m following the NEAREST method.
In this way, we obtained two resolutions (10 m and 30 m) of data as input variables in the
SOC prediction. Sentinel-2 carries a multispectral sensor instrument (MSI) for terrestrial
detection that provides vegetation, soil and water cover imagery from two satellites, 2A and
2B; depending on the time of field sampling, we selected the Sentinel-2A_MSI L1C product
data. Level 1-C Sentinel-2 is an orthorectified and geometrically corrected atmospheric
surface reflectance product that has not been processed with atmospheric correction. The
Level 1-C Sentinel-2 data were therefore converted to surface reflectance data using the ESA
Sen2Cor plug-in in SNAP software with a bottom-of-atmosphere (BOA) correction [45]. In
this study, 10 bands from Sentinel-2A were extracted to include in the band calculation and
modeling, as shown in Table 2. We used the resampling tool with the NEAREST method in
ArcMap software to resample the red-edge band, converting the spatial resolution from
20 m to 10 m.

Table 1. Landsat 8 and Sentinel-2A data band information.

Satellite Sensor Name Band Name
Spectral
Position

(nm)

Central
Wavelength

(nm)

Original
Resolution

(m)

Sentinel-2A/MSI

B2-Blue 458–523 490 10
B3-Green 543–578 560 10
B4-Red 650–680 665 10

B5-Red Edge 1 698–713 705 20
B6-Red Edge 2 733–748 740 20
B7-Red Edge 3 773–793 783 20

B8-NIR 785–900 842 10
B8A-Red Edge 4 855–875 865 20

B11-SWIR1 1565–1655 1610 20
B12-SWIR2 2100–2280 2190 20

Landsat 8/OLI

B2-Blue 450–515 483 30
B3-Green 525–600 560 30
B4-Red 630–680 660 30
B5-NIR 845–885 865 30

B6-SWIR1 1560–1660 1650 30
B7-SWIR2 2100–2300 2220 30

http://glovis.usgs.gov/
http://glovis.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home/
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Table 2. Sentinel-1A data information.

Date Sensor Mode Polarization Direction

26 July 2017 IW VV Ascending
26 July 2017 IW VH Ascending

2.3.3. Index Variables for Remote Sensing Data

Constructing a spectral index variable was effective in reducing spectral reflectance
errors when building SOC prediction models; therefore, constructing a spectral index to be
included as an input variable in an SOC prediction model is considered a fast and effective
method. In this study, we selected several vegetation indices, moisture indices and soil
brightness index variables to which SOC is sensitive. Among the vegetation indices selected
were the normalized difference vegetation index (NDVI) [46,47], enhanced vegetation
index (EVI) [48], difference vegetation index (DVI) [49], ratio vegetation index (RVI) [50],
transformation vegetation index (TVI) [51], soil-adjusted vegetation index (SAVI) [52],
soil-adjusted total vegetation index (SATVI) [53] and normalized burn ratio 2 (NBR2) [19].
The moisture indices include land surface water index (LSWI) [54] and moisture stress
index (MSI) [20]. The soil brightness indices include brightness index (BI) [55], brightness
index 2 (BI2) [55], redness index (RI) [56] and color index (CI) [56]. These indices were
calculated as shown in Table 3. In addition, to compare the spectral differences between
Sentinel-2A data and Landsat 8 data, we proposed involving the red-edge indices derived
from the red-edge bands of Sentinel-2A in the construction of the SOC prediction model.
The red-edge indices derived from the Sentinel-2A data were calculated as shown in Table 4.
We referred to these four bands as B5, B6, B7 and B8A, where B5, B6 and B7 replaced B4
and B8A replaced B8; in this way, various combinations of the new red-edge bands were
calculated to generate potential spectral indices as input variables for SOC prediction.

Table 3. Spectral index information for Landsat 8 and Sentinel-2A data.

Index Formula Sentinel-2A MSI Equation Landsat 8 OIL Equation

NDVI NIR − R
NIR + R

B8 − B4
B8 + B4

B5 − B4
B5 + B4

VI 2.5 × NIR − R
NIR + 6 × R − 7.5 × B + 1 2.5 × B8 − B4

B8 + 6 × B4 − 7.5 × B2 + 1
2.5 × B5 − B4

B5 + 6 × B4 − 7.5 × B2 + 1

VI NIR − R B8 − B4 B5 − B4

VI NIR
R

B8
B4

B5
B4

TVI
√

NIR − R
NIR + R + 0.5 × 100

√
B8 − B4
B8 + B4 + 0.5 × 100

√
B5 − B4
B5 + B4 + 0.5 × 100

SAVI (NIR − R) × 1.5
NIR + R + 0.5

(B8 − B4) × 1.5
B8 + B4 + 0.5

(B5 − B4) × 1.5
B5 + B4 + 0.5

SATVI SWIR1 − R
SWIR1 + R + 1 × 2 − SWIR2

2
B11 − B4

B11 + B4 + 1 × 2 − B12
2

B6 − B4
B6 + B4 + 1 × 2 − B7

2

NBR2 SWIR1 − SWIR2
SWIR1 + SWIR2

B11 − B12
B11 + B12

B6 − B7
B6 + B7

BI
√

(R × R) + (G × G)
2

√
(B4 × B4) + (B3 × B3)

2

√
(B4 × B4) + (B3 × B3)

2

BI2
√

(R × R) + (G × G) + (NIR × NIR)
2

√
(B4 × B4) + (B3 × B3) + (B8 × B8)

2

√
(B4 × B4) + (B3 × B3) + (B5 × B5)

2

RI R × R
G × G × G

B4 × B4
B3 × B3 × B3

B4 × B4
B3 × B3 × B3

CI R − G
R + G

B4 − B3
B4 + B3

B4 − B3
B4 + B3

LSWI NIR − SWIR1
NIR + SWIR1

B8 − B11
B8 + B11

B5 − B6
B5 + B6

MSI SWIR1
NIR

B11
B8

B6
B5
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Table 4. The newly proposed red-edge spectral indices.

Index Formula Sentinel-2 MSI Equation

NDVI re1 RE 4 − RE 1
RE 4 + RE 1

B8A − B5
B8A + B5

NDVI re2 RE 4 − RE 2
RE 4 + RE 2

B8A − B6
B8A + B6

NDVI re3 RE 4 − RE 3
RE 4 + RE 3

B8A − B7
B8A + B7

EVI re1 2.5 × RE 4 − RE 1
RE 4 + 6 × RE 1 − 7.5 × B + 1

2.5 × B8A − B5
B8A + 6 × B5 − 7.5 × B2 + 1

EVI re2 2.5 × RE 4 − RE 2
RE 4 + 6 × RE 2 − 7.5 × B + 1

2.5 × B8A − B6
B8A + 6 × B6 − 7.5 × B2 + 1

EVI re3 2.5 × RE 4 − RE 3
RE 4 + 6 × RE 3 − 7.5 × B + 1

2.5× B8A − B7
B8A + 6 × B7 − 7.5 × B2 + 1

DVI re1 RE 4 − RE 1 B8A − B5

DVI re2 RE 4 − RE 2 B8A − B6

DVI re3 RE 4 − RE 3 B8A − B7

RVI re1 RE 4
RE 1

B8A
B5

RVI re2 RE 4
RE 2

B8A
B6

RVI re3 RE 4
RE 3

B8A
B7

TVI re1
√

RE 4 − RE 1
RE 4 + RE 1 + 0.5 × 100

√
B8A − B5
B8A + B5 + 0.5 × 100

TVI re2
√

RE 4 − RE 2
RE 4 + RE 2 + 0.5 × 100

√
B8A − B6
B8A + B6 + 0.5 × 100

TVI re3
√

RE 4 − RE 3
RE 4 + RE 3 + 0.5 × 100

√
B8A − B7
B8A + B7 + 0.5 × 100

SAVI re1 (RE 4 − RE 1) × 1.5
RE 4 + RE 1 + 0.5

(B8A − B5) × 1.5
B8A + B5 + 0.5

SAVI re2 (RE 4 − RE 2) × 1.5
RE 4 + RE 2 + 0.5

(B8A − B6) × 1.5
B8A + B6 + 0.5

SAVI re3 (RE 4 − RE 3) × 1.5
RE 4 + RE 3 + 0.5

(B8A − B7) × 1.5
B8A + B7 + 0.5

SATVI re1 SWIR1 − RE 1
SWIR1 + RE 1 + 1 × 2 − SWIR2

2
B11 − B5

B11 + B5 + 1 × 2 − B12
2

SATVI re2 SWIR1 − RE 2
SWIR1 + RE 2 + 1 × 2 − SWIR2

2
B11 − B6

B11 + B6 + 1 × 2 − B12
2

SATVI re3 SWIR1 − RE 3
SWIR1 + RE 3 + 1 × 2 − SWIR2

2
B11 − B7

B11 + B7 + 1 × 2 − B12
2

BI re1
√

(RE 1 × RE 1) + (G × G)
2

√
(B5 × B5) + (B3 × B3)

2

BI re2
√

(RE 2 × RE 2) + (G × G)
2

√
(B6 × B6) + (B3 × B3)

2

BI re3
√

(RE 3 × RE 3) + (G × G)
2

√
(B7 × B7) + (B3 × B3)

2

BI2 re1
√

(RE 1 × RE 1) + (G × G) + (RE 4 × RE 4)
2

√
(B5 × B5) + (B3 × B3) + (B8A × B8A)

2

BI2 re2
√

(RE 2 × RE 2) + (G × G) + (RE 4 × RE 4)
2

√
(B6 × B6) + (B3 × B3) + (B8A × B8A)

2

BI2 re3
√

(RE 3 × RE 3) + (G × G) + (RE 4 × RE 4)
2

√
(B7 × B7) + (B3 × B3) + (B8A × B8A)

2

RI re1 RE 1 × RE 1
G × G × G

B5 × B5
B3 × B3 × B3

RI re2 RE 2 × RE 2
G × G × G

B6 × B6
B3 × B3 × B3

RI re3 RE 3 × RE 3
G × G × G

B7 × B7
B3 × B3 × B3

CI re1 RE 1 − G
RE 1 + G

B5 − B3
B5 + B3

CI re2 RE 2 − G
RE 2 + G

B6 − B3
B6 + B3

CI re3 RE 3 − G
RE 3 + G

B7 − B3
B7 + B3

NDWI re1 RE 4 − SWIR1
RE 4 + SWIR1

B8A − B11
B8A + B11

MSI re1 SWIR1
RE 4

B11
B8A

2.3.4. Climate Variables

The mean annual temperature (MAT) and mean annual precipitation (MAP) data for
the climate variables were obtained from the 0.1 ◦C and 0.1 mm datasets from the Resource
and Environment Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn/,
accessed on 14 January 2021). These datasets are based on daily observations from more

http://www.resdc.cn/
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than 2400 meteorological stations across the country, and national MAT and MAP data
(1 km spatial resolution) are generated using the ANUSPLIN interpolation technique. We
used the resampling tool in ArcMap software to resample the MAT and MAP data to
resolutions of 10 m and 30 m, respectively, following the NEAREST method; this provided
a good database with which to determine the accuracy of the climate variables in this
study [57].

2.4. Modeling Techniques
2.4.1. Random Forest

The machine learning random forest (RF) algorithm is an integrated decision tree-
based algorithm that uses booststrap resampling to perform regressions [58]. Booststrap
sampling methods reduce the sensitivity of RF to overfitting and thus control the risk
of overfitting [59]. RF has become an efficient model widely used in the prediction of
soil properties or soil types [32,60]. We implemented the RF algorithm using the Sklearn
machine learning library in a Python 3.7 environment. A grid search strategy and a 10-fold
cross-validation technique were used to adjust the number and maximum depth of the
model regression trees. In this way, the optimal parameters were selected for the prediction
of the SOC. RF is a parallel algorithm and its tree model grows in a parallel way. In the RF
framework, variable importance is primarily affected by two main parameters: the size of
the input variables subset and the number of trees in the forest. Currently, the performance
of RF is mostly evaluated by the out-of-bag (OOB) error. Variable importance of Xi is then
equal to:

VI
(

Xi
)
=

1
ntree ∑t

(
errÕOBt

i − errOOBt

)
where the sum is over all trees t of the RF; ntree denotes the number of trees of the RF;
OOBt represents the associated section not included in the bootstrap processes used to
construct t; errOOBt is the error of a specific tree t on the associated OOBt sample; and
errÕOBt

i represents a perturbed sample affected by the permuted values of Xi.

2.4.2. Gradient Boosted Decision Tree

GBDT are boosting-based tree models that accomplish the regression task through
iterative operations [61]. GBDT trains each decision tree in sequence, with each iteration
feeding the residuals from the previous decision tree fit into the next decision tree for fitting.
In this way, GBDT is highly adaptable and gives good results in soil property inversion.
We implemented the algorithm using the Sklearn machine learning library in a Python 3.7
environment. The grid search strategy adjusted the maximum depth of the decision tree,
the minimum number of samples required for internal node redivision, the learning rate
and the number of regression tree parameters to control the risk of model overfitting. Next,
the 10-fold cross-validation technique was used to obtain the optimal GBDT model. In the
GBDT algorithm, the global importance of a variable is measured by the average of the
importance of feature j in a single tree.

ĵ2j =
1
M

M

∑
m=1

ĵ2j (Tm)

where M is the number of trees. The importance of variable j in a single tree is calculated
as follows:

ĵ2j (T) =
L−1

∑
t=1

Î2
t 1(vt = j)

where the L is the number of leaf nodes of the tree, L− 1 is the number of non-leaf nodes of
the number, vt is the feature associated with node t, and Î2

t is the reduction in squared loss
after node t splits. When this value is larger, it means that this node has a greater ability to
reduce the loss and a greater predictive power.
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2.4.3. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a gradient boosting algorithm that has been
widely used in regression tasks [62]. XGBoost makes model learning more efficient through
parallel computation and uses an additive decision tree training strategy to convert from
multiple weak learners to strong learners. With this strategy, XGBoost can handle both
classification tasks and regression tasks. In contrast to previous decision tree algorithms,
XGBoost is based on a second-order Taylor formula expansion, incorporates a regularization
module, and makes predictions through a number of additive functions, effectively control-
ling the overfitting phenomenon. We implemented the XGBoost algorithm in the Python 3.7
environment using the Sklearn machine learning library. Important hyperparameters such
as the number of trees, maximum tree depth, maximum number of nodes or leaves in the
decision tree and learning rate are adjusted by means of 10-fold cross-validation and grid
search to find the optimal model parameters. In the XGBoost algorithm, the contribution
of the corresponding variable through each tree model is obtained using gain, which is
calculated as follows:

gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ

where the GL and HL are associated with the left leaf of the tree model. G2
L

HL+λ denotes

left subtree scores. GR and HR are associated with the right leaf of the tree model. G2
R

HR+λ

denotes right subtree scores. (GL+GR)
2

HL+HR+λ denotes the score of the node when not split. γ and
λ are regularization parameters that prevent overfitting by controlling the simplicity of
the tree structure. A higher gain value means that the variable is more important for the
prediction of the model.

2.5. Modeling Strategy and Validation Metrics

To evaluate and compare the ability of Landsat 8 and Sentinel-2A data to predict
SOC, we developed the Landsat 8 and Sentinel-2A common variable models (Model A
and Model B) and Sentinel-2A full variable model (Model C). Vegetation, soil moisture,
topographic features, precipitation and temperature are the main factors influencing the
spatial distribution of SOC [16,63]. The Ebinur Lake wetland is located in an arid and
semiarid region with an uneven precipitation distribution and significant topographic
variation, so it is necessary to explore the influence of environmental variables on SOC
prediction. Sentinel-1A has the advantage of all-weather detection to capture vegetation
and soil data, and as a variable added to the SOC prediction model, it can yield good
prediction results. To fully consider the effects of different variables on SOC estimation
and mapping, different combinations of environmental variables were used to improve
prediction accuracy. Therefore, four sub-models were developed under each of the three
models, as shown in Table 5. It is worth noting that the difference between Sentinel-2A
Model B and Model C was that the remote sensing data variables in Model B did not
include the four red-edge bands. This was conducted so that the data corresponded to the
six Landsat 8 bands. All 10 band variables were included in Model C. The index variables
in Model B included the 14 variables listed in Table 3, while the index variables in Model
C included not only the data in Table 3 but also the red-edge index variables in Table 4.
The model dataset was divided into a training dataset (70%) and a validation dataset (30%)
(test_size = 0.3 in Python 3.7 was used to divide the dataset).
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Table 5. Details of the Landsat 8 and Sentinel-2A modeling strategies.

Model Name Variable Combinations

Model A-I Landsat 8(6band)
Model A-II Landsat 8(6band) + Spectral index
Model A-III Landsat 8(6band) + Spectral index + Climate variables + Topographic variables
Model A-IV Landsat 8(6band) + Spectral index + Climate variables + Topographic variables + Sentinel-1A

Model B-I Sentinel-2A(6band)
Model B-II Sentinel-2A(6band) + Spectral index
Model B-III Sentinel-2A(6band) + Spectral index + Climate variables + Topographic variables
Model B-IV Sentinel-2A(6band) + Spectral index + Climate variables + Topographic variables + Sentinel-1A

Model C-I Sentinel-2A(10band)
Model C-II Sentinel-2A(10band) + Spectral index + Red-edge index
Model C-III Sentinel-2A(10band) + Spectral index + Red-edge index + Climate variables + Topographic variables

Model C-IV Sentinel-2A(10band) + Spectral index + Red-edge index + Climate variables + Topographic variables +
Sentinel-1A

In this study, different forecasting models were evaluated using the following three
evaluation metrics: coefficient of determination of use (R2), root mean square error (RMSE)
and relative prediction error in quartiles (RPIQ). The larger the R2 and RPIQ and the smaller
the RMSE, the better the prediction accuracy of the model.

R2 = 1− ∑n
i=1( p̂i − pi)

2

∑n
i=1(pi − p)2 (1)

RMSE =

√
1
n ∑n

i=1( p̂i − pi)
2 (2)

RPIQ =
IQ

RMSEP
(3)

where pi is the measured value, p̂i is the predicted value, p is the average of the measured
values, and n denotes the number of samples. IQ is the interquartile spacing of the
measured values in the validation dataset (IQ = Q3− Q1) where Q3 denotes the third
quartile and Q1 denotes the first quartile, and RMSEP is the RMSE of the validation dataset.

3. Results
3.1. Descriptive Statistics

The statistical values of the training and validation datasets for SOC prediction are
shown in Table 6. The range of the entire SOC dataset was 1.487–25.015, with a mean of
7.723, median of 7.715 and standard deviation (SD) of 4.380. The final statistics indicated
that the overall datasets and the training and validation datasets were similarly distributed.
Therefore, the samples in the training and validation datasets were representative of the
entire SOC sample and could be used to build and validate an accurate model.

Table 6. Descriptive statistics for the entire SOC dataset, the training dataset and the validation dataset.

Dataset Sample Size Minimum
(g/kg)

Maximum
(g/kg)

Median
(g/kg)

Mean
(g/kg)

Standard Deviation
(g/kg)

Whole dataset 95 1.487 25.015 7.715 7.723 4.380
Training dataset 66 1.487 25.015 7.889 7.905 4.582

Validation dataset 29 1.699 17.245 7.036 7.310 3.926

3.2. Analysis of the Importance of Variables

We obtained the importance ranking of each variable in the SOC prediction using the
importance calculation of the RF algorithm. The RF variable preference method is widely
used and has better generalization capabilities. In Python 3.7, we calculated the importance
values for each feature by way of Sklearn using the feature importance function. To increase
comparability between variables, we normalized the importance of the variables to 100%
and analyzed the extent to which the modeled variables influenced the SOC predictions
for this study area (Figure 2a,b). We counted the share of each type of variable among all
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variables according to their importance and separately in each category itself. In the Landsat
8 model, the top five variables in band variables, spectral index variables and topographic
variables accounted for 91.7%, 90.2% and 90.4%, respectively. In the Sentinel-2A model,
the top five variables in band variables, spectral index variables, red-edge spectral index
variables and topographic variables reached 90.1%, 90.7%, 91% and 90.6%, respectively.
We ultimately found that the top five accounted for over 90% of the variables in each
category. The top five variables can represent this category of variables well for modeling
and prediction. The Landsat 8 model ranked Red, SWIR1, SWIR2, Green and NIR in the
top five in terms of importance of band variables by variable importance. SAVI, BI, NDVI,
BI2 and SATVI ranked in the top five for the importance of the spectral index variables.
Aspect, LC, CSC, Slope and FA ranked in the top five for the importance of the topographic
variables. The Sentinel-2A model has Red, RE 1, Blue, NIR and Green in the top five for the
importance of the band variables. SAVI, NDVI, RI, NBR2 and SATVI ranked in the top five
for the importance of the spectral index variables. RI re1, EVI re1, CI re3, BI re1 and NDVI
re2 ranked in the top five in importance for the red-edge spectral index variables. CSC,
TWI, LC, Slope and CD ranked in the top five in importance for the topography variables.
We found the highest proportion of spectral index variables (42.5%) in the Landsat 8 model
(Figure 2a), with SAVI being the most important, followed by BI, NDVI and BI2. The band
index variables accounted for 26.5% of the importance of the variables, with Red being the
most important, followed by SWIR1, SWIR2,Green and NIR. The topographic variables
accounted for 15.2% of the importance of the variables, with the aspect being the most
important topographic variable, followed by LC, CSC, Slope and FA. In the full variable
Sentinel-2A model (Figure 2b), the band variables accounted for the greatest proportion
(31.3%) of the importance, with the Red band being most important, followed by RE 1. The
spectral index variables accounted for 22.4% of the total importance, with SAVI having the
highest importance, followed by NDVI. The red-edge index accounted for 25.2% of the
importance, with RI re1 having the highest importance, followed by EVI re1.Topographic
variables accounted for 11.8% of the importance, with CSC being the most important of the
topographic variables, followed by TWI, LC, Slope and CD topographic variables.

In the Landsat 8 model, the sum of the importance of the band and index variables
for remotely sensed data was 69%. In the full variable Sentinel-2A model, the sum of the
importance of the band variables and index variables was 78.9%. Overall, remotely sensed
data and derived variables were significantly more important than other variables in the
SOC predictions, and the importance of data derived from Sentinel-2A was greater than
that of data derived from Landsat 8.
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Sentinel-2A model.

3.3. Comparison of the Performances of Different Models

To compare the effects of different combinations of variables on the SOC prediction
results, the predictive performances of the three machine learning algorithms (RF, GBDT
and XGBoost) were assessed. In the SOC prediction model, valuable variables will improve
the prediction accuracy of the model, but a large number of variables with low importance
will reduce the prediction accuracy of the model. We therefore used all variables for
modeling and prediction, and we selected the top five variables in each category for
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modeling and prediction based on the variable importance results. This is because the top
five variables in each category accounted for more than 90% of the explanatory power in
the variable importance results and can represent this category of variables well. Based
on the modeling of these two sets of experiments, we obtained the final results, as shown
in Table 7. The results, where all variables were involved in the modeling, showed that
Model A-IV with the XGBoost algorithm had the best predictive performance (R2 = 0.701,
RMSE = 2.291, RPIQ = 2.007) among the models built with Landsat 8 (Model A). The R2

of the XGBoost models was improved by 2% and 1.2% compared with those of the RF
and GBDT algorithms, respectively. In the Sentinel-2A common variable model (Model
B), Model B-IV created with the XGBoost algorithm had the best prediction performance
(R2 = 0.735, RMSE = 2.037, RPIQ = 2.337), with the XGBoost algorithm improving the model
R2 by 3.4% and 2.7% compared with those of the RF and GBDT models, respectively. In
the Sentinel-2A full variable model (Model C) with the addition of the red-edge band and
red-edge index, Model C-IV combined with the XGBoost algorithm had the best predictive
performance (R2 = 0.771, RMSE = 1.899, RPIQ = 2.506), with the XGBoost algorithm
improving the model R2 by 6.6% and 2% compared with those of the RF and GBDT models,
respectively. The modeling results using the top five variables in each category showed that
of the models built with Landsat 8 (Model A), Model A-IV built with the XGBoost algorithm
had the best predictive performance (R2 = 0.759, RMSE = 2.033, RPIQ = 2.376). The R2 of the
XGBoost models was improved by 5% and 3.6% compared with those of the RF and GBDT
algorithms, respectively. In the Sentinel-2A common variable model (Model B), Model
B-IV created with the XGBoost algorithm had the best prediction performance (R2 = 0.788,
RMSE = 1.921, RPIQ = 2.477), with the XGBoost algorithm improving the model R2 by 5.2%
and 3.5% compared with those of the RF and GBDT models, respectively. In the Sentinel-2A
full variable model (Model C) with the addition of the red-edge band and red-edge index,
Model C-IV combined with the XGBoost algorithm had the best predictive performance
(R2 = 0.804, RMSE = 1.771, RPIQ = 2.687), with the XGBoost algorithm improving the
model R2 by 6% and 3.2% compared with those of the RF and GBDT models, respectively.
In addition, the prediction accuracy of the different models increased with increasing
environmental variables under the XGBoost algorithm. The optimal R2 for the common
variable Landsat 8 model was 0.709, 0.723 and 0.759 under the RF, GBDT and XGBoost
algorithms, respectively. The optimal R2 for the common variable Sentinel-2A model was
0.736, 0.753 and 0.788, respectively. The optimal R2 for the full variable Sentinel-2A model
was 0.744, 0.772 and 0.804, respectively.

Overall, better predictions were achieved using the first five variables after variable
filtering to complete the modeling. Compared to full variable modeling, the RF best
R2 improved by 3.9%, the GBDT best R2 improved by 2.1% and the XGBoost best R2

improved by 3.3%. Among the three machine learning algorithms, the XGBoost algorithm
provided better predictions than the GBDT algorithm and the RF algorithm, and the GBDT
algorithm performed better than the RF algorithm. In terms of the combination of variable
factors, the combination of remote sensing data band variables, index variables of remote
sensing data, terrain variables, climate variables and Sentinel-1A could provide better
prediction results. The red-edge variables involved in the modeling had better prediction
accuracy than the other models. In the top five variable models, the contribution of the
red-edge variables resulted in better predictions for Model C-III than Model B-III. Model
C-III improved R2 by 2.8%, 1.4% and 3.2%, respectively, over Model B-III under the three
machine learning algorithms.



Sensors 2022, 22, 2685 14 of 21

Table 7. Predictive performances of the models.

Modeling Technique Model Name
All Variables Top 5 Variables

R2 RMSE (g/kg) RPIQ R2 RMSE (g/kg) RPIQ

RF

Model A-I 0.583 2.781 1.711 0.606 2.474 1.924
Model A-II 0.633 2.692 1.768 0.648 2.343 2.031
Model A-III 0.627 2.640 1.803 0.661 2.299 2.070
Model A-IV 0.681 2.447 1.945 0.709 2.141 2.223
Model B-I 0.615 2.660 1.789 0.624 2.617 1.818
Model B-II 0.632 2.502 1.902 0.655 2.426 1.962
Model B-III 0.569 2.537 1.876 0.685 2.179 2.184
Model B-IV 0.701 2.401 1.982 0.736 2.067 2.303
Model C-I 0.615 2.596 1.833 0.654 2.252 1.885
Model C-II 0.693 2.405 1.979 0.694 2.230 2.135
Model C-III 0.640 2.387 1.994 0.713 2.148 2.216
Model C-IV 0.705 2.106 2.260 0.744 2.005 2.374

GBDT

Model A-I 0.531 2.630 1.810 0.641 2.393 1.976
Model A-II 0.689 2.463 1.933 0.695 2.237 2.128
Model A-III 0.670 2.369 2.009 0.704 2.236 2.129
Model A-IV 0.671 2.374 2.004 0.723 2.132 2.233
Model B-I 0.626 2.483 1.917 0.654 2.367 2.010
Model B-II 0.649 2.364 2.014 0.699 2.244 2.121
Model B-III 0.681 2.229 2.135 0.713 2.110 2.255
Model B-IV 0.708 2.132 2.232 0.753 2.057 2.334
Model C-I 0.659 2.347 2.028 0.682 2.238 2.126
Model C-II 0.663 2.370 2.008 0.708 2.190 2.174
Model C-III 0.687 2.267 2.100 0.727 2.084 2.284
Model C-IV 0.751 2.104 2.262 0.772 1.965 2.423

XGBoost

Model A-I 0.600 2.483 1.917 0.637 2.327 2.045
Model A-II 0.677 2.394 1.988 0.702 2.155 2.209
Model A-III 0.693 2.420 1.966 0.726 2.124 2.241
Model A-IV 0.701 2.291 2.077 0.759 2.003 2.376
Model B-I 0.685 2.236 2.129 0.701 2.175 2.188
Model B-II 0.693 2.342 2.033 0.722 2.242 2.223
Model B-III 0.712 2.111 2.254 0.754 1.987 2.395
Model B-IV 0.735 2.037 2.337 0.788 1.921 2.477
Model C-I 0.694 2.290 2.079 0.727 2.119 2.246
Model C-II 0.715 2.161 2.203 0.749 2.000 2.380
Model C-III 0.726 2.028 2.347 0.786 1.830 2.600
Model C-IV 0.771 1.899 2.506 0.804 1.771 2.687

3.4. SOC Spatial Predictions from Landsat 8 and Sentinel-2A

We used the XGBoost algorithm with the best prediction results to generate a model
of the spatial distribution of SOC in the study area (Figure 3a,b). By comparing Figure 3a,b,
we found that the overall trends of the spatial distribution of SOC on the maps created with
Landsat 8 and Sentinel-2A data were similar, showing that the areas with high SOC contents
were mainly concentrated in the oasis and that the oasis SOC content was higher than that
around Ebinur Lake and in the mountainous area. The model based on Sentinel-2A data
predicted SOC contents of approximately 10.00–28.31 g/kg in the interior of the oasis, while
the SOC contents in the interior of the oasis were generally predicted to be lower by the
model based on Landsat 8 data, with SOC contents ranging from 10.00 g/kg to 19.32 g/kg.
Comparisons of Figure 3a-I,a-II,b-I,b-II show that the Sentinel-2A mapping results were
much clearer than the Landsat 8 mapping results, making it easier for us to observe the
spatial distribution of the SOC content. Overall, the models based on Sentinel-2A data
provided a better prediction of the spatial distribution of SOC content, showing greater
differences in the spatial distribution of SOC in both detail and overall.
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4. Discussion
4.1. Comparison of Models Based on Landsat 8 and Sentinel-2A Data

With the development of remote sensing technology, various multispectral sensors are
able to obtain useful geographic information based on the reflected spectral information
of target objects on the land surface. Therefore, multisource satellite remote sensing data
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provide new perspectives and possibilities for SOC spatial mapping. In this study, Landsat
8 and Sentinel-2A common variables and Sentinel-2A full variables were used to build
the models, respectively. This comparison method of common variables and full variables
can effectively compare the differences between different remote sensing data. When the
Landsat 8 and Sentinel-2A models created with the same variables were applied for SOC
prediction, the Sentinel-2A model performed better, which may be because the Sentinel-2A
data (10 m) have a higher spatial resolution than the Landsat 8 data (30 m). More mixed
image elements may be included at a spatial resolution of 30 m [64], which reduces the SOC
prediction accuracy. Fabio, C. obtained similar results when estimating topsoil properties in
agricultural fields [19]. The predictive performances of the models based on Landsat 8 and
Sentinel-2A data were similar under the three ensemble learning algorithms. The majority
of the models with R2 > 0.7 were in the sub-model IV. This phenomenon is most evident in
the XGBoost algorithm, which has good prediction results for all models (R2 > 0.7) except
Model A-I in the Landsat 8 model. The full variable Sentinel-2A models predicted better
performance than the common variable Sentinel-2A models at the same resolution. This
difference may be due to the inclusion of the red-edge band and the red-edge index in the
full variable Sentinel-2A models. The significance analyses we conducted supported this
result, with the red-edge index accounting for a significant share of the variables predicting
SOC; indeed, there has been strong support for the use of red-edge bands and derived red-
edge indices for modeling soil properties [65,66]. This study speculates that the red-edge
index exploits the potential of the Sentinel-2A band combination to provide more effective
spectral information for SOC prediction models. Overall, a prediction model with high
spatial resolution and finer spectral information is the optimal choice for SOC mapping.

4.2. Analysis of Environmental Variables

Indicators of the importance of environmental variables are shown in Figure 2. We
found that remotely sensed data and derived index variables had the highest proportions in
the Landsat 8 and Sentinel-2A models (68.9% and 74%). This is mainly because vegetation
and soil characteristics are the dominant factors in determining SOC content under similar
climatic conditions [67]. Therefore, vegetation indices derived from remotely sensed data,
soil moisture and brightness indices can represent vegetation biomass and soil characteris-
tics [36,68]. Wang, K. found NDVI, BI, BI2 and SATVI to be the most important variables for
predicting farmland SOC in autumn [69], which is consistent with the results of this paper.
Due to the sensitivity of SAVI to soil properties [70], it is considered the most important
variable in agricultural soil organic carbon prediction. Topographic variables accounted
for a large proportion of the variables in this study (Figure 2). Some studies have shown
that the spatial distribution of SOC content is significantly influenced by topographic
factors [71], showing a specific distribution trend [72]; these findings are consistent with
those of this paper. Among the topographic variables, LC links the erosion and spatial
distribution of surface material, reflecting the soil profile and geological structure [73]. In
studies of SOC contents, the CSC can be applied to distinguish areas of lower elevation and
less pronounced topographic variation, which are not conducive to humus accumulation.
The introduction of the CSC has improved the accuracy of soil identification [74]. TWI is
an effective topographic variable affecting the spatial distribution of SOC contents. It has
been shown that on steep slopes and in uphill areas, the accumulation of SOC increases
with increasing TWI values [75]. In this study, the FA, Slope and aspect likewise provide
valuable information for SOC prediction, each with a certain degree of contribution. These
DEM-derived variables were used in the studies of Dharumarajan, S. and Kabindra, A. as
important topographic factors for predicting the spatial distribution of SOC contents [76,77].
In the present study, Sentinel-1A was used as a variable to obtain better SOC prediction
performance than a single optical image model when combined with optical images. This
finding is consistent with those of previous research [36]. Vegetation productivity is consid-
ered to be an important factor in the spatial distribution of soil organic carbon because it
determines the amount of organic carbon input, so capturing information on vegetation and
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soils is essential for SOC prediction [78]. SAR backscatters better reflect soil attributes, and
SAR data can effectively identify the relationship between vegetation and soil organic car-
bon [79]. In addition, the quality of SAR data is independent of weather and daylight and
is an important dataset for explaining spatial variability in soil properties [80]. Sentinel-1A,
as freely available SAR data, offers better opportunities for soil property estimation. Most
of the current studies use a single optical image combined with SAR data, thus obtaining
better results [81–83]. Combinations including more sensor data should be considered
in the future, but the uniformity of spatial resolution between different sensors will be a
challenge for image processing by image calculation and mapping. In this study, a high
SOC content was found in the interior of the oasis, which we speculate is due to frequent
agricultural activities and land use.

4.3. Uncertainty Analysis

In this study, we chose three machine learning algorithms (RF, GBDT and XGBoost)
to predict the SOC content in the study area. Although RF, GBDT and XGBoost are all
ensemble learning algorithms, there are differences in their interpretation of multisource
remote sensing data. Among the three machine learning algorithms, RF is only a basic
parallel algorithm. GBDT uses only first-order derivative information in the optimization
process. XGBoost uses a second-order Taylor expansion, using both first- and second-order
derivatives. Therefore, among the three ensemble learning algorithms, XGBoost had the
best prediction performance (R2 = 0.804, RMSE = 1.771, RPIQ = 2.687), which is consistent
with studies by Liang and Nguyen [2,38]. The XGBoost algorithm has demonstrated
excellent prediction results in recent studies [84,85]. Landsat 8 and Sentinel-2A data are
predicted with higher accuracy by the XGBoost algorithm, which is supported by the
findings of recent studies [86,87]. For machine learning, more variables are not better, and
even though XGBoost achieved the best results, the prediction was only slightly improved
in the model with the addition of environmental variables. If environmental variables
are costly to obtain, relatively good and similar results can be obtained by using SOC
estimation performed with spectral information. This consideration causes a slight loss of
model accuracy while reducing the high cost of prediction, as Sentinel-2A data can provide
finer spatial resolution and effective spectral information [20]. Furthermore, the advantage
of ensemble learning is that the potential relationships between data and variables can be
fully explored through an ensemble of multiple weak learners. There will be differences
in the selection of variables in the models constructed by machine learning algorithms.
Because different machine learning algorithms calculate the importance of variables in
different ways, these algorithms also differ in the way they decide on decision tree splits.
The uncertainty that this bias creates in the predictive performance of machine learning
models is inevitable. We can control that the input variables and samples are the same
during the input of different algorithms to reduce this uncertainty as much as possible. In
future research, the applicability of ensemble learning algorithms should be considered
and the XGBoost algorithm should be applied to different study areas as a way to validate
the applicability of the XGBoost algorithm.

5. Conclusions

The common variable models of Landsat 8 with Sentinel-2A and the full variable
model of Sentinel-2A were constructed to assess the superiority of Sentinel-2A data in
soil organic carbon (SOC) prediction models. Sentinel-2A data provided more effective
red-edge information, such as constructed red-edge indices to joint SOC and spectral re-
mote sensing. Compared with the models constructed with Landsat 8 data, the models
constructed with Sentinel-2 data demonstrated superior estimation accuracy and more
legible mapped details. This highlighted that SOC spatial estimation relies on finer spatial
and spectral resolutions. In addition, the majority of the IV sub-models predicted better per-
formance in all models, with R2 > 0.7 for all IV sub-models in the extreme gradient boosting
(XGBoost) algorithm. The XGBoost algorithm was a powerful machine learning algorithm
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(R2 = 0.637~0.804) and outperformed the random forest (RF) models (R2 = 0.606~0.744)
and gradient boosted decision tree (GBDT) models (R2 = 0.641~0.772). We noticed that
the spatial distribution of the SOC content in the Ebinur Lake wetland varied significantly.
The oasis was predicted to have a higher SOC content, while the foothills and lakeshore
had lower SOC contents. In conclusion, the combination of a Sentinel-2-driven multi-
source remote sensing modeling strategy and XGBoost enables reliable assessment of SOC,
which provides strong support for local governments to formulate appropriate carbon
sequestration policies to prevent land degradation and ultimately achieve sustainable
development goals.
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