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Schizophrenia (SCH) and bipolar disorder (BD) are characterized by many types

of symptoms, damaged cognitive function, and abnormal brain connections. The

microstates are considered to be the cornerstones of the mental states shown in EEG

data. In our study, we investigated the use of microstates as biomarkers to distinguish

patients with bipolar disorder from those with schizophrenia by analyzing EEG data

measured in an eyes-closed resting state. The purpose of this article is to provide

an electron directional physiological explanation for the observed brain dysfunction of

schizophrenia and bipolar disorder patients.

Methods: We used microstate resting EEG data to explore group differences in the

duration, coverage, occurrence, and transition probability of 4 microstate maps among

20 SCH patients, 26 BD patients, and 35 healthy controls (HCs).

Results: Microstate analysis revealed 4 microstates (A–D) in global clustering across

SCH patients, BD patients, and HCs. The samples were chosen to be matched. We

found the greater presence of microstate B in BD patients, and the less presence of

microstate class A and B, the greater presence of microstate class C, and less presence

of D in SCH patients. Besides, a greater frequent switching betweenmicrostates A and B

and between microstates B and A in BD patients than in SCH patients and HCs and less

frequent switching between microstates C and D and between microstates D and C in

BD patients compared with SCH patients.

Conclusion: We found abnormal features of microstate A, B in BD patients and

abnormal features of microstate A, B, C, and D in SCH patients. These features may

indicate the potential abnormalities of SCH patients and BD patients in distributing neural

resources and influencing opportune transitions between different states of activity.

Keywords: electroencephalographic microstate, resting state, schizophrenia, bipolar disorder, resting-state

networks

INTRODUCTION

Bipolar disorder (BD) and schizophrenia (SCH) are mental illnesses that share a few clinical
manifestations, such as hallucinations and delusions (1, 2). Numerous researchers have questioned
whether SCH and BD constitute 2 separate mental disorders due to their overlapping features
(3–5). Euthymic patients with bipolar disorder still perform poorly on cognitive measures, which
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means that the impairment is not just limited to periods and
residual stage of disease (6–9). The neurocognitive dysfunction
that accompanies SCH is enduring (10, 11). Recent studies have
found that a large number of BD patients have neurocognitive
dysfunction too (12, 13). In contrast to BD, it is widely known
that significant dysfunction is much more unique to SCH. For
both SCH and BD, multiple candidate endophenotypes have
been suggested (14, 15). This potential endophenotype for SCH
is visual backward masking (VBM) (16) particularly the shine-
through approach, and has a far greater sensitivity than most
of the other cognitive and perceptual processes (17). A previous
study indicated that visual backward masking deficiency is
not unique to schizophrenia, but a larger range of functional
psychosis. Both SCH and BD may suffer insufficient objective
strengthening (18). A recent study showed that particular
neurological functions can distinguish SCH from BD and
also indicate a presumptive endogenous phenotype that can
distinguish the genetic susceptibility of SCH from another severe
psychological disease (19).

In SCH patients, key adjustments have mainly been noticed
throughout the interrelationship of the medial pre-frontal cortex
(mPFC) as well as anterior cingulated cortex also with the
limbic striatum; researchers have also identified homogenization
of the default mode network (DMN) of SCH about specific
microstate dynamics (20). Intriguingly, in BD patients the
irregular functional structure and degree of activity of the brain
network during the rest period may be caused by maladjustment
of neurotransmitter activity, such as that of serotonin and
dopamine (21). The complex connection between the mPFC
as well as the posterior cingulate cortex (PCC) changes in BD
patients, and it tends to change less as time goes on (22). A recent
meta-analysis suggests that the dorsolateral pre-frontal cortex
(DLPFC) plays a special role in SCH (23, 24). The instability
of the DLPFC was proposed to be a central characteristic of
SCH (25, 26). Utilizing brain scanning technology, the latest
research findings have contributed to major conceptual changes
in the perception of higher brain function and how specific
brain pathologies impact those functions (27). Additionally, the
understanding of the resting state of the brain has undergone
a fundamental change: the mainstream assumption is that the
brain does not just keep inactive until a new stimulus triggers
a response but is naturally active in an organized manner
during rest, which is the best preparation for processing the
stimulus (28–30).

In our study, we investigated the use of microstates to
distinguish BD patients from the SCH patients by analyzing their
EEG data measured in an eyes-closed resting state. EEG can
record fluctuations with a time scale, so EEG is more suitable
for studying the time dynamics and effects of the resting state
and their impact on stimulus processing (27). The microstates
are considered to be the cornerstones of the mental states shown
in EEG data (31, 32). Studies showed that microstate analysis
can help reveal the importance of the modularity of brain
dynamics and their function in behavioral control, as well as
the characteristics of the cerebral disease (31, 33). Microstate
analysis is increasingly recognized as an innovative method
offering straight-forward characterizations of brain-states. Its use

for understanding brain function has been proven in healthy
people (31) and clinical patients (34). Microstate analysis can be
a very useful method for exploring the brain network functions
of patients with mental illness (35). Scholars are currently
investigating the potential applications of electroencephalograms
(EEGs), and the characteristics of scalp EEG are commonly
applied to distinguish between BD and SCH (36).

Previous studies suggested that human microstates may
be correlated with particular resting-state networks found in
functional magnetic resonance imaging (fMRI) studies due
to the association between the presence of microstates and
particular resting-state network actions (37–39). There are 4
common map modes for microstates, which are labeled A, B, C,
and D. Synchronized EEG and functional magnetic resonance
imaging indicated a correlation of these microstates with all
kinds of neural networks, including audition (microstate A),
vision (microstate B), saliency (microstate C), and frontal-
apical network (microstate D) (37, 38). Microstate abnormalities
in SCH patients could indicate a malfunction of regular
network functions underlying medical pathogenesis since EEG
microstates represent the organized neural activity groups of
the cerebrum. Microstate modifications in SCH, therefore, tend
to indicate impaired coordination, reduced functional structure,
or elevated disturbance in brain functions, which could be
the neurophysiological basis for the symptoms of SCH (34).
The multiple clinical symptoms and cognitive impairment of
SCH have long been interpreted as the dysfunction of extensive
neural systems instead of dysfunction in a particular brain
area (40, 41). Many studies of SCH patients found abnormal
temporal dynamics of EEG microstates compared with HCs
(27, 42). Microstate abnormalities are frequently reported in
SCH (34, 43–46). These abnormalities included the less duration
of 2 microstate classes (B and D) (34, 46–48) and the greater
occurrence of another microstate (class A) (34, 46, 47) compared
with HCs. The main reliable results are greater Class C and less
Class D in SCH, referring to 2 meta-analyses (49, 50).

A large number of research studies have shown that the
EEG microstates in patients with neuropsychiatric disorders are
changed (27, 42); however, while microstate analysis has the
potential to detect global brain dynamic damage, microstates
have not been fully developed in BD. To date, only 2 studies have
studied microstate EEG in BD patients (51, 52).

We need to understand more of the underlying
pathophysiology to determine objective biomarkers for SCH
patients and BD patients, which would be useful for improving
patient diagnosis and treatment stratification. Similar to BD,
the widely distributed neural circuits appear to be changed in
SCH, mainly impacting the frontal, temporal, and subcortical
structures (53). Therefore, the study of EEG microstates could
offer a novel method to clarify the neurophysiological basis of
SCH and BD. The purpose of this article is to provide an electro-
directional physiological explanation for the observed brain
dysfunction of SCH and BD. Is there any mutual mechanism for
these serious neuropsychiatric diseases? How can the findings
help to classify these 2 neuropsychiatric disorders? This study
aims to evaluate the microstate characteristics of EEG in patients
with SCH and BD and HCs. Despite active research using
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microstates, as far as we know, no research-based on microstates
that aims to distinguish between BD and SCH has ever been
conducted. We hypothesized that greater presence of microstate
A and less presence of microstate B in BD patients and a greater
presence of microstate C and less presence of microstate D in
SCH patients based on larger evidence.

MATERIALS AND METHODS

Subjects
Twenty SCH patients (mean age 25.2 ± 6.8, 15 female), 34
patients with BD (mean age 22.8 ± 4.12, 13 female), and
35 HCs (mean age 24.9 ± 6.2, 25 female) took part in our
experiment. All subjects were older than 18 years old and
younger than 40. Fifteen SCH patients took at least 15mg
olanzapine with or without combining another antipsychotic
drug per day, other patients took paliperidone 9mg per day
or risperidone 6mg per day or amisulpride 0.6 g per day or
ziprasidone 120mg combining with aripiprazole 10mg per day
or aripiprazole 20mg. Furthermore, only two SCH patients took
antipsychotic drugs combining withmood stabilizers, such as 900
or 600mg lithium carbonate. Twenty six BD patients took mood
stabilizers (lithium carbonate or sodium valproate or Magnesium
Valproate or lamotrigine) combining with second-generation
antipsychotic drugs (olanzapine or seroquel or aripiprazole
or paliperidone or risperidone). Additionally, all BD patients
were bipolar I and had a history of psychotic symptoms. All
the patients were dexterous. The Second Xiangya Hospital of
Central South University approved our experimental proposal,
and professionals who were trained by the psychiatry department
acquired handwritten informed consent from every participant.
We carried out this research according to the recommendations
of the Ethics Committee for Human Research of Second Xiangya
Hospital of Central South University.

A psychiatrist acquired the demographic information
and psychiatric history of the subjects through face-to-face
interviews. We used ICD-10 and DSM-5 criteria as well as the
MINI-International Neuropsychiatric Interview to diagnose
the SCH patients and patients with BD. We also used the
Montgomery-Asberg Depression Rating Scale (HAMD) and
Young Mania Rating Scale (YMRS) to evaluate depressed and
manic symptoms. We excluded subjects using the following
criteria: a history of head injury, history of drug abuse,
epilepsy history.

EEG Data Collection and Processing
We recorded 3min of resting-state EEG data as participants
closed their eyes and sat on a chair comfortably. We obtained
EEG data using a 64-channel system (Brain Product). EEG data
were recorded and sampled at 5,000Hz. We kept the impedances
under 5 Kohm. We preprocessed the data using Matlab 2013b
and the MATLAB EEGLAB toolbox (54). A 48–52Hz Parks-
McClellan stop-band Notch-filter was used to remove electric-
interference from the 50 Hz-line. Then the data were band-pass
filtered (0.1–40Hz) and downsampled to 250Hz. We segmented
the data into epochs of 2 s and we rejected bad epochs with
obvious muscle activity when we checked visually. Besides, we

used independent component analysis (ICA) to remove the
oculomotor component when necessary. Then, we referenced the
data to the average reference, with a bandpass filtered to 2–20 Hz.

Microstate Analysis
Microstate analysis was performed using Matlab 2013b. The 4
microstate classes for SCH patients, patients with BD, and HCs
are shown in Figure 1. The 4 microstate classes explained 76.2,
74.1, and 76.0% of the global variance in SCH patients, BD
patients, and HCs, respectively, and one-way ANOVA showed
no significant differences (p = 0.126) among SCH patients, BD
patients, and HCs. To eliminate the influence of the difference in
the template maps in different epochs, we calculated the global
field power (GFP) of the EEG data with the longest duration of
each subject. All GFP peaks were from all participants clustered
in the first steps to get the template maps, and then all GFP
peaks from the first step themselves clustered in a second step
to determine which class of the template maps at each time point
of each subject belongs to. The modified k-means algorithm was
used and limit k−100 when clustering.

The EEG data were divided into 4 types of microstate
topographies to keep consistency with previous studies. The
purpose of this research is to investigate the four EEG
microstates, we obtain four conventional microstates for three
different groups and as well for all participants regardless of
patient status (Figure 1). Global segmentation was done across
groups and one set of template maps was fitted to the original
data. These four resulting all group template maps (Figure 1)
were further used to extract the microstate characteristics.

Based on (55) the microstate transition was calculated, which
is the probability of transition between every 2 microstates back
and forth. Twelve observed possible transitions were considered.

RESULTS

According to the results in Table 1, one-way ANOVA showed no
significant differences in educational years, age, and duration of
the disease (p = 0.686, p = 0.286, and p = 0.960, respectively)
among SCH patients, BD patients, and HCs. The chi-square test
showed no significant difference in gender (p = 0.129) among
SCH patients, BD patients, and HCs. One-way ANOVA showed
that there was no significant difference in the BPRS total score,
PANSS total score, MADRS total score, or YMRS total score
(p = 0.492, p = 0.269, p = 0.397, and p = 0.807, respectively),
between SCH patients and BD patients. If pwas smaller than 0.05,
then we considered the findings to be significant.

The details of the time characteristics of 4 microstates are
summarized in Table 2. Duration (in s) was the mean time that a
certain microstate continuously presented. Coverage (in %) was
the centage of the cumulative time that a certain microstate took.
The occurrence was the average times that a certain microstate
was appearing per second. We used repeated-measures ANOVA
and simple effects tests for the analysis of mean occurrence
per second, coverage, and microstate duration, with microstate
(A, B, C, and D) as the within-subject factor and group (SCH
patients, BD patients, andHCs) as the between-subject factor.We
used one-way ANOVA and Bonferroni tests for the analysis of
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FIGURE 1 | The four microstate topographies (A–D) identified in the group clusterings across schizophrenia patients (SCH) and bipolar patients (BD) and healthy

controls (HC) and in the global clustering across all subjects (SCH+BD+HC).

TABLE 1 | Subject features.

Variables SCH BD HC Statistics P-value

Categorical variables: (N) Chi-square test

Gender (n, female/male) 5/15 13/13 10/25 0.129

Continuous variables: mean (SD) ANOVA/F

Educational years 14.1 ± 3.3 14.4 ± 2.2 13.8 ± 2.5 0.379 0.686

Age 25.2 ± 6.8 22.8±4.12 24.9 ± 6.2 1.273 0.286

Duration of disease 5.4 ± 4.5 5.5 ± 3.7 0.003 0.960

BPRS total score 36.3 ± 9.5 34.5 ± 7.3 0.480 0.492

PANSS total score 52.4 ± 12.7 48.6 ± 10.2 1.253 0.269

MADRS total score 9.8 ± 6.5 12.0 ± 10.0 0.730 0.397

YMRS total score 8.3 ± 5.6 8.8 ± 8.1 0.060 0.807

transition probabilities. For the duration, we found a significant
main effect of microstate [F = 23.891; p < 0.001], and no
significant microstate ∗ group interaction effect [F = 1.612; p
= 0.147], but a significant main effect of group [F = 3.686;

p = 0.030]. For the mean occurrence per second, we found a
significant main effect of microstate [F = 30.955; p < 0.001],
as well as a significant microstate ∗ group interaction effect
[F = 3.926; p = 0.001], and there was a significant main effect
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TABLE 2 | Microstate parameters.

Microstate A B C D

Duration (s)

Schizophrenia (mean ± s.d.) 6.79E-2 ± 7.3E-3 6.48E-2 ± 5.5E-3 9.27E-2 ± 1.93E-2 6.53E-2 ± 1.00E-2

Bipolar (mean ± s.d.) 6.48E-2 ± 8.1E-3 6.37E-2 ± 7.6E-3 7.75E-2 ± 2.52E-2 5.87E-2 ± 1.08E-2

Controls (mean ± s.d.) 6.56E-2±9.1E-3 6.29E-2 ± 6.9E-3 7.99E-2 ± 2.16E-2 6.39E-2 ± 1.07E-2

Occurrence (s−1)

Schizophrenia (mean ± s.d.) 3.19 ± 6.8E-1 3.00 ± 5.4E-1 4.19 ± 4.2E-1 3.26 ± 6.1E-1

Bipolar (mean ± s.d.) 3.74 ± 6.8E-1 3.97 ± 8.1E-1 4.20 ± 5.2E-1 3.50 ± 6.0E-1

Controls (mean ± s.d.) 3.62 ± 6.1E-1 3.41 ± 7.4E-1 4.20 ± 5.4E-1 3.65 ± 7.4E-1

Coverage (%)

Schizophrenia (mean ± s.d.) 2.17E-1 ± 5.6E-2 1.94E-1 ± 4.2E-2 3.75E-1 ± 8.8E-2 2.13E-1 ± 5.9E-2

Bipolar (mean ± s.d.) 2.39E-1 ± 4.8E-2 2.49E-1 ± 5.4E-2 3.07E-1 ± 7.4E-2 2.03E-1 ± 5.1E-2

Controls (mean ± s.d.) 2.35E-1 ± 5.1E-2 2.13E-1 ± 5.2E-2 3.22E-1 ± 8.1E-2 2.29E-1 ± 5.7E-2

of group [F = 6.405; p = 0.003]. For the coverage, we found
a significant main effect of microstate [F = 28.505; p < 0.001]
and a significant microstate ∗ group interaction effect [F = 3.076;
p = 0.007], but there was no significant main effect of group
[F = 0.019; p= 0.981].

As shown in Figure 2, we found 10 features that showed a
significant difference between SCH patients and BD patients and
five features that showed a significant difference between SCH
patients and HCs. We also found four features that showed a
significant difference between BD patients and healthy controls.
According to the results of post hoc comparisons, the occurrence
of microstate class A and B (p = 0.006; p < 0.001) and the
coverage of microstate class B (p < 0.001) were significantly
smaller, while the duration ofmicrostate class C andD (p= 0.024;
p = 0.039) and the coverage of C (p = 0.006) were significantly
greater in SCH patients compared with BD patients. Also, the
occurrence of microstate class A, B, and D (p= 0.024; p= 0.045;
p = 0.040) were significantly smaller, while the duration and
coverage of the microstate class C (p = 0.043; p = 0.023) were
significantly increased in SCH patients compared with HCs. The
occurrence and the coverage of microstate class B (p = 0.004;
p = 0.007) were significantly increased in BD patients compared
with HCs.

The transition probability from microstate class A to B
(p = 0.002) and from microstate class B to A (p = 0.001)
was significantly smaller in SCH patients compared with BD
patients. The transition probability from microstate class C to D
(p = 0.019) and from microstate class D to C (p = 0.021) was
significantly greater in patients with SCH comparedwith BD. The
transition probability from microstate class A to B (p = 0.011),
from microstate class B to A (p= 0.007) was significantly greater
in BD patients compared with HCs.

DISCUSSION

We showed that microstate segmentation of the resting-
state EEG recordings provides useful features that successfully
distinguish SCH patients and BD patients and HCs. Several
studies have unanimously confirmed the abnormal time

dynamics of the EEG microstates in SCH patients (34, 44–46, 48,
56–58); however, less focus has been given to BD regarding the
microstate resting EEG. As far as we know, there are no research
studies that have tried to distinguish SCH patients from BD
patients using microstate analysis. In our study, SCH patients did
not differ significantly from BD patients in terms of depression,
mania, or psychiatric symptoms. Despite this fact, SCH patients
showed a significantly greater presence of microstate classes C
and D significantly smaller presence of microstate classes A and
B compared with BD patients.

We found that the occurrence of microstate class A was
significantly less than in SCHpatients comparedwith BD patients
and HCs. For SCH patients, research studies have reported
greater occurrence (47, 59) and coverage of microstate A (34, 59).
For euthymic BD patients, previous research found increased
occurrence and coverage of microstate A (60). For SCH patients,
changes of microstate class A were correlated with auditory
hallucinations (43). Previous fMRI-EEG research has shown
that microstate A was mainly related to the negative blood-
oxygen-level dependent activation of the mid temporal gyrus and
bilateral superior temporal gyrus, which are related to speech
processing (37). In addition, recent studies have estimated the
sources of EEG microstates. The sources of microstate A are
located on the left side of the occipital gyri, insula, temporal
lobe, and medial pre-frontal cortex (mPFC) (61). Previous fMRI-
EEG research reported the microstate A was correlated with
the auditory network (37). Moreover, an fMRI study also found
resting-state functional connectivity abnormality of the insula
(62), the auditory network (63), and the medial pre-frontal cortex
(64) in BD patients. The abnormality of the medial pre-frontal
cortex was as well-reported as an important shared abnormality
in BD patients and SCH patients (65). Previous studies found
the default mode network from the left posterior cingulate
cortex to the bilateral mPFC and bilateral precuneus has low
connectivity, and significant connectivity of the left subgenual
anterior cingulate cortex to the right inferior temporal gyrus also
reduced (64) in BD patients.

We found the occurrence and coverage of microstate B were
significantly greater in BD patients compared with SCH patients
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FIGURE 2 | Properties of microstates in general. All of the 4 microstate classes (MS class) are presented in each segment. (A) occurrence per second; (B) total time

coverage; (C) average duration; (D) transition probability. Transition probabilities were analyzed between microstates for HCs and SCH patients, HCs and BD patients,

or BD patients and SCH patients. Red and blue indicate significant differences between HCs and BD patients or between BD patients and SCH patients. Specifically,

red indicates a higher probability among SCH patients than BD or a higher probability among BD than HCs, and blue indicates a lower probability. *Means significant

difference between two groups.

and HCs. Furthermore, the occurrence of class B was as well-
significantly less in SCH patients compared with HCs. Previous
studies reported decreased (59) occurrences and decreased (59)
coverages of microstate B in SCH patients. Previous studies
report a reduced presence of microstate B in Euthymic BD
patients compared to HC (66). Microstate B was related to the
visual network, according to previous studies (37, 61, 67), and
imagination associated with the awareness of situational personal
memory, that is, the mental visualization of the situation (68).
Compared with the special case of mental arithmetic operations
(mathematical tasks, unrelated to self), greater microscopic state
B was found in participants who were asked to retrieve past
events related to self in fMRI-EEG records (69). Microstate B
was correlated with the mental visualization of a situation (69).
A recent study reported that a greater presence of microstate B
was correlated with more severe anxiety (60).

The duration and coverage of microstate class C were
significantly greater in SCH patients compared with HCs and BD
patients. A previous article found that C microstates appeared
more and D microstates appeared less in schizophrenia patients
compared with controls (49). Some articles found that the
occurrence of class C was significantly greater in schizophrenia
patients compared with healthy controls (34, 45, 47, 56).

Microstate C was positively associated with the activation of
blood oxygen level-dependent (BOLD) in the bilateral inferior
frontal gyri, the posterior part of the anterior cingulate cortex,
and the right anterior insula (37). The activation of microstate
C was derived from the bilateral part of the medial temporal
gyrus and the lateral part of the parietal lobe. We assigned these
areas to the self-experience subsystem according to the fMRI
results (69). Moreover, microstate class C was considered to
mirror the activation of the default mode network (DMN) (27,
37, 70). Furthermore, DMN is important for self-focusing and
self-referencing processing. Therefore, our results might indicate
the abnormality of situational self-memory and abnormal self-
experience in SCH patients.

We found the occurrence of microstate class D was
significantly less in SCH patients compared with HCs. Also,
the duration of microstate D was significantly greater in
SCH patients than BD patients. Tomescu et al. (56) found
that the occurrence of class D was significantly decreased in
schizophrenia patients compared with healthy controls, while
recent studies found that the occurrence of class D was
significantly increased in schizophrenia patients compared with
healthy controls (59). According to the dorsolateral pre-frontal
cortex (DLPFC) seem to have a high pathogenic value in SCH
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(23, 71), and previous researches showed that the frontoparietal
network was involved in SCH (72, 73), the reduction of the
microstate D clearly showed that the function of the network
was impaired (47). Previously, microstate D was thought to be
related to the attention/cognitive control network consisting of
the frontoparietal region (37, 61), and the source of microstate D
was thought to belong in the region of the frontoparietal control
network (FPCN) (74). For SCH patients, the observed increase
in microstate C and decrease in microstate D involved abnormal
activation of the frontal-parietal control network (FPCN) and
default mode network (DMN) during externally directed and
self-directed cognition.

In our study, the transition probability analysis revealed a
greater frequent switching between microstates A and B and
between microstates B and A in BD patients than in SCH
patients and HCs. Besides, we found a less frequent switching
between microstates C and D and between microstates D and
C in BD patients compared with SCH patients. Previous studies
that compared schizophrenia and other diseases indicated that
the imbalance of C and D states might be unique to SCH
patients (27). The change in transition probability between
microstate classes may lead to insufficient activation of the
network therein and may cause abnormal functions of more
than 1 network. Previous magnetic resonance imaging research
showed that a more coherent DMN in temporal regions and
the superior frontal gyrus appeared more frequently in SCH
patients than in BD patients and HCs. In addition, a more
coherent DMN in the insula appeared more frequently in
BD patients than in SCH patients and HCs (65). Our results
suggested that BD affects the auditory and visual sensory
network instead of the higher-order (salience, central executive)
functional networks.

Ellen et al. found functional hyperconnectivity of the default
mode network in SCH patients (75). Compared with BD patients,
SCH patients exhibited decreased structural aggregation in the
forehead region (76). In particular, compared with BD patients,
SCH patients had higher nodal aggregation coefficients in the
left inferior frontal cortex and the left ascending ramus of the
lateral sulcus (77). The connection intensity of SCH patients
was lower than that among BD patients and HCs, but there was
no difference in network topology between groups. In contrast,
BD patients in another study had a less complete network
topology, while the connection intensity was not disturbed (78).
Recent studies have found that the connectivity of the whole
brain network was increased in SCH patients but not in BD
patients. This revealed that a highly synchronized basic state
is widespread, which may hinder the cognitive ability of the
disease (79). All in all, the results from fMRI and EEG research
studies have suggested that both low and high connections exist
in patients and showed complex changes in the functional static
network. Our findings of a greater presence of microstate B in
BD patients might be related to the greater connection strength
of the visual sensory function network, while the greater presence
of microstate C in SCH could be associated with the enhanced
connection strength of the relevant networks that involve the

posterior part of the anterior cingulate cortex as well as the
bilateral inferior frontal gyri, the right anterior insula, and the
left claustrum.

In conclusion, this study represents the first attempt to
compare EEG microstates between SCH patients and those with
BD using EEG data collected during an eyes-closed resting
state. Our results demonstrate the greater presence of microstate
class B in BD patients, and less presence of microstate class
A and B, a greater presence of microstate class C, and less
presence of D in SCH patients compared with BD. In addition,
a greater frequent switching between microstates A and B
and between microstates B and A in BD patients than in
SCH patients and HCs and less frequent switching between
microstates C and D and between microstates D and C in
BD patients compared with SCH patients. Therefore, in clinical
practice, microstate analysis can play an important role in
diagnosing patients more accurately and treating them properly.
Furthermore, EEG microstate analysis, which is a creative and
feasible method, can be used as an index to help identify
different aspects of pathogenesis between SCH patients and
BD patients.

LIMITATION

All the patients were medicated and the sample sizes are small
and the results might not be representative because both SCH and
BD are very heterogeneous.
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