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Abstract

Purpose: To evaluate the influence of respiratory motion on the robustness
of radiomic features on four-dimensional computed tomography (4DCT)-based
average intensity projection (AIP) images by employing an anthropomorphic
chest phantom.

Methods: Three spherical objects (30 mm), namely, acrylic (100 Hounsfield
unit [HU], homogeneous), rubber (—140 HU, homogeneous), and cork (—630 HU,
heterogeneous), were moved with motion amplitudes of 0, 1, 2.5, 4, 6, 8, and
10 mm in the phantom, and 4DCT scans were repeated at four different loca-
tions. Thereafter, the AIP images were generated considering the average of the
10 respiratory phases of the 4DCT images. Further, the targets were manually
delineated on the AIP images in the lung window setting. A total of 851 radiomic
features, including 107 unfiltered features and 744 wavelet filter-based features,
were extracted from the region of interest for each material. The feature robust-
ness among the different target motion amplitude (¢) was evaluated by normal-
izing the feature variability of the target motion relative to the variability of data
from 573 patients with early-stage non-small cell lung cancer. The features with
absolute ¢ values <0.5 were considered highly robust to target motions.
Results: The percentage of robust unfiltered and wavelet filter-based features
with a motion amplitude of 1 mm was greater than 83.2% and 93.4%, respec-
tively; however, the percentage decreased by more than 24.3% and 17.6%,
respectively, for motion amplitudes greater than 2.5 mm. The movement of cork
had a small effect on the feature robustness compared to that of acrylic and
rubber, regardless of the target motion amplitudes.

Conclusions: Our phantom study demonstrated that target motion amplitudes
<1 mm led to the robustness of radiomic features on the 4DCT-based AIP
images of thoracic regions. The frequency components and directions of the
wavelet filters may be essential factors in 4DCT-based radiomic analysis.

KEYWORDS
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1 | INTRODUCTION

Radiotherapy plays a crucial role in all stages of non-
small cell lung cancer (NSCLC)." Stereotactic body
radiation therapy (SBRT) is an effective therapeutic
method for early-stage NSCLC patients with inoperable
tumors or those refusing surgical resection? Although
lung SBRT substantially improves clinical outcomes
compared with conventional fractionated radiotherapy,
certain patients may develop local recurrence and
distant metastasis following the treatment® Several
studies have reported that many clinical factors (e.g.,
tumor size, histological type, and smoking history) influ-
ence the post-SBRT prognosis; however, the prediction
accuracy remains limited *°

Recently, radiomic analysis has attracted consider-
able research attention owing to the extraction and
analysis of multiple quantitative features as nonin-
vasive biomarkers from medical images. For lung
cancer, planning computed tomography (CT)-based
radiomic features are typically used to predict post-
SBRT prognosis®® Although radiomic features may
predict prognosis, the lack of generalization and stabil-
ity is a challenge when performing radiomic analysis.
Several studies have reported that the robustness of
radiomic features depends on acquisition parameters
such as slice thickness, scanner signal-to-noise ratio,
and CT image reconstruction algorithm % In addition to
the above variabilities, respiratory-induced tumor motion
is considered as one of the largest uncertainties in lung
cancer radiotherapy.'! Liu et al. demonstrated that the
largest tumor motions in lung SBRT were observed in
the superior—inferior (SI) direction, specifically, in the
lower lung lobe.'?> Moreover, they reported that 39.2% of
lung tumors moved greater than 5 mm, while 10.8% of
them moved greater than 10 mm. Four-dimensional CT
(4DCT) images are widely used in treatment planning
to precisely capture these respiratory-induced motions
and accurately delineate patient-specific internal gross
tumor volumes.">'® Larue et al. showed that 4DCT-
based phase images could be used to assess the
radiomic feature robustness in the thoracic region.'® Fur-
ther, Li et al. reported that respiratory motion-related fac-
tors such as the respiratory amplitude, frequency, and
4DCT pitch exerted significant effects on the robust-
ness of radiomic features from average intensity pro-
jection (AIP) images.!” Moreover, Du et al. investigated
the stability of radiomic features across eight individ-
ual respiratory phases.'® To date, most 4DCT-based
radiomic analyses for the evaluation of feature robust-
ness have been performed using patient data.'®~"® How-
ever, no previous study has investigated the effect of
respiratory amplitude on the robustness of radiomic
features from 4DCT-based AIP images in humans. As
respiratory-induced tumor motion cannot be accurately
assessed owing to the large patient-specific effects, a
phantom study using an anthropomorphic chest phan-

tom with a moving target was conducted to address this
issue.

The purpose of this study was to evaluate the effects
of target motion on the robustness of unfiltered and
wavelet filters-based radiomic features on 4DCT-based
AIP images using an anthropomorphic chest phantom.
Inter-target motion analysis was performed using three
different homogeneous or heterogeneous materials with
several target motion amplitudes.

2 | MATERIALS AND METHODS

21 | Phantom and experimental design
Figure 1 illustrates an anthropomorphic chest phantom
and the experimental design. An anthropomorphic chest
phantom (Kyoto Kagaku Co., Ltd, Kyoto, Japan) was
used to simulate the human thoracic region (Figure 1a).
The phantom consisted of a body structure and internal
vasculature (Figure 1b).In the current study, three spher-
ical objects (30 mm), namely, acrylic, rubber, and cork,
were analyzed as target-simulated materials (Figure 1c).
Each material has different CT values (Hounsfield unit
[HU]) and texture characteristics: acrylic (100 HU, homo-
geneous), rubber (—140 HU, homogeneous), and cork
(—630 HU, heterogeneous).

The three target materials were connected to a
QUASAR programmable respiratory motion phantom
(Modus Medical Devices Inc.,London, ON, Canada) and
made to move in the Sl direction (Figure 1d,e). The res-
piratory signal of the moving targets was recorded using
a real-time positioning management system for respira-
tory gating in the axial cine mode (version 1.7; Varian
Medical Systems, Palo Alto, CA, USA) during the 4DCT
scanning.'® Moreover, to simulate the different respira-
tory amplitudes, we analyzed seven motion amplitudes
of 0,1,2.5,4,6,8,and 10 mm (i.e., target motion ranges
of 0,2,5, 8,12, 16, and 20 mm) for each target material.
The target position can be expressed as

y(t) = Asin <2—77Et—C>, (1)

where y(f) denotes the target position at time f, A
denotes the target motion amplitude, T denotes the
motion period of 4 s, and C denotes the constant used
to determine the starting phase of the target motion.

2.2 | 4DCT data acquisition and image
reconstruction process

The 4DCT images were obtained in cine mode using
a CT scanner system (LightSpeed RT16 11BW 46.3;
General Electric Medical Systems, Waukesha, WI,
USA). These image scans were repeated for each
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FIGURE 1

target material and motion amplitude at four different
locations (upper central, upper peripheral, lower central,
and lower peripheral) in the anthropomorphic chest
phantom. The 4DCT scan parameters were as follows:
tube voltage, 120 kV; tube current, 100 mA; gantry rota-
tion time, 1.0 s/rot; scan duration, 6.0 s; and interscan
delay, 1.3 s. Thereafter, the 4DCT images obtained
were reconstructed employing a filtered back projection
algorithm, with a slice thickness and field of view of
2.5 mm and 500 mm, respectively. Further, the 4DCT
images and target motion data were transferred to an
Advantage 4D Workstation (AW 4.5; General Electric
Medical Systems), and AIP images were generated
considering an average of 10 respiratory cycle phases
of the 4DCT images. Subsequently, the AIP images
were transferred to an Eclipse radiation treatment plan-
ning system (RTPS) (version 13.7.14; Varian Medical
Systems) in the form of digital imaging and communica-
tions in medicine (DICOM) files. The data that support
the findings of this study will be available from the
corresponding author upon reasonable request.

2.3 | Feature extraction

The target materials were manually delineated on
the AIP images using Eclipse RTPS in the lung win-
dow setting (window width 1,500 HU; window level
—600 HU). The contour information and CT image
data were exported as DICOM files, which were sub-

Chest phantom and experimental setup. (a) Anthropomorphic chest phantom body, (b) internal vasculature, (c) three spherical
objects (30 mm): acrylic, rubber, and cork, (d) phantom and real-time position management (RPM) system setup architecture, (e) target
material insertion and RPM marker design

sequently converted to NRRD files using 3D slicer
(version 4.10.2), an open-source image processing and
visualization system?? For each scan data, a total of
851 CT-based radiomic features were extracted from
the region of interest (ROI) using a feature extraction
software, Pyradiomics (version 2.2.0), with a resampled
voxel size of 1 x 1 x 1 mm and a bin width of 25 HU?'
These features were defined with feature definitions
as described by the Imaging Biomarker Standard-
ization Initiative?? (Table S1). The texture features
were derived from the gray-level co-occurrence matrix
(GLCM), gray-level dependence matrix (GLDM), gray-
level run-length matrix, gray-level size-zone matrix, and
neighboring gray-tone difference matrix. Further, during
the first order and texture feature extraction, wavelet
filters, which decompose CT images into high- and low-
frequency components in the x (left-right), y (anterior—
posterior), and z (Sl) directions, were applied to extract
multidimensional features. We analyzed 107 features
(14 shape, 18 first order,and 75 texture features) without
preprocessing and 744 features (144 first order and 600
texture features) with wavelet filters to 8 decompositions
(i.e., LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH).

2.4 | Evaluation of the effect of target
motion on radiomic features

To relate the radiomic phantom studies to clinical
applications, previous studies have converted different
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Workflow of the radiomic evaluation in this study. AIP, average intensity projection; Mean, ,,n, average of feature values

extracted from four computed tomography images for target motion amplitude of x mm; Meang ,,m, average of feature values extracted from four
computed tomography images for nontarget motion; RTPS, radiation treatment planning system; SDjinical, Standard deviation of each feature

value extracted from the clinical data

feature scales to the same scale in phantom data using
the feature variability in patient data?®?* Thus, the
current study used data from 573 early-stage NSCLC
patients who previously underwent SBRT at 11 institu-
tions (Kyoto University Hospital and other institutions).?
The DICOM data consist of CT images with various
scanner settings (i.e., 120 to 140 kV with tube currents
controlled through the automatic exposure control tech-
nique) and contouring information as the structure sets.
In the data of 573 patients, radiomic features were
extracted from the gross tumor volume with the same
parameter settings as in the current phantom study (i.e.,
resampled voxel size of 1 x 1 x 1 mm and bin width
of 25 HU). To evaluate the effect of target motion on
feature robustness (inter-target motion comparison), we
introduced an index, which is calculated as follows:

Mean, ——Meang
E= ’ (2)
SDcIinicaI

where Mean, ,,, denotes the average of feature values
extracted from four CT images for target motion ampli-
tude of x mm, Meang ,m denotes the average of feature
values extracted from four CT images for nontarget
motion, and SDgjnica denotes the standard deviation
(SD) of each feature value extracted from the clinical
data?®> This normalization assessed the feature vari-
ability of the target motion relative to the variability of
patient data. Because the CT parameters of the present
phantom study were the most frequently used in the
clinical study from 11 different institutions, the impact of
differences in CT parameters on the robustness of the
radiomic features would be small. Thereafter, referring
to a previous study,24 all features were classified into

the following: € < 0.5, high robustness; 0.5 < ¢ < 1.0,
intermediate; and 1.0 < ¢, low robustness. The overall
workflow of this study is shown in Figure 2.

3 | RESULTS
3.1 | Representative 4DCT-based AIP
images

A total of 84 4DCT-based AIP images (three mate-
rials x seven motion amplitudes x four experimental
times) were acquired. Figure 3 shows representative AIP
images of acrylic, rubber, and cork with different tar-
get motion amplitudes at the lower peripheral locations
in the anthropomorphic chest phantom. The motion of
each target material in the Sl direction was visually con-
firmed on the AIP image.

3.2 | Radiomic feature robustness for
target motion amplitudes

Before assessing the impact of target motion on
radiomic features, we evaluated the repeatability of the
phantom experiment by performing the same experi-
ment twice without the target movement. The number of
highly repeatable features was 92.5%—100.0%, 86.0%—
100.0%, and 86.9%—100.0% in the acrylic, rubber, and
cork, respectively (Figure S1).

Figure 4 shows the percentage of highly robust fea-
tures regarding the target motion amplitudes for each
material for different ¢ value thresholds. The percent-
age of robust unfiltered and wavelet filter-based features
with motion amplitudes of 1 mm for acrylic, rubber, and
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FIGURE 3 Representative images of three different materials, acrylic, rubber, and cork, at lower peripheral location in the anthropomorphic

chest phantom. Target motion amplitude is 0, 1, 2.5, 4, 6, 8, and 10 mm for each material. Each image is displayed in a coronal plane at a window
width of 1500 Hounsfield unit (HU) and window level of —600 HU. Each material has different computed tomography (CT) density and texture
characteristics as follows: acrylic (100 HU, homogeneous), rubber (=140 HU, homogeneous), and cork (—630 HU, heterogeneous)

cork were determined to be 83.2 and 94.2,85.0 and 93.4,
and 93.5 and 95.2%, respectively. However, for motion
amplitudes greater than 2.5 mm, these percentages for
acrylic, rubber, and cork decreased by more than 31.8%
and 31.5%, 29.9% and 30.8%, and 24.3% and 17.6%,
respectively. It was observed that the robust features of
the cork were greater than those of the acrylic and rub-
ber at any ¢ value threshold, regardless of the target
motion amplitudes.

3.3 | Effects of wavelet filters on the
robustness of radiomic features

Figure 5 depicts the proportion of radiomic features
based on the ¢ value that evaluates target motion ampli-
tudes for (a) acrylic, (b) rubber, and (c) cork. For the
acrylic and rubber, the wavelet filter-based features
with LHL/HLL/HHL and LHH/HLH/HHH decompositions
improved the robustness to target motion compared to
unfiltered features. Specifically, the percentage of robust
wavelet filter-based features with LHL/HLL/HHL decom-
positions for acrylic and rubber at motion amplitudes of
2.5, 4, and 6 mm increased by more than 22.8, 20.7,
and 22.5% and 11.5, 18.0, and 20.6%, respectively. Fur-
ther, when the motion amplitudes of the acrylic and
rubber were greater than 2.5 mm, the effects of dif-
ferent motion amplitudes on the robustness of wavelet
filter-based features with LHH/HLH/HHH decomposi-
tions were small, that is, in the range of 40.9%—58.1%
and 43.0%—63.4%, respectively. By contrast, when the
motion amplitude of the cork was greater than 2.5 mm,

the percentage of robust wavelet filter-based features
with LHH/HLH/HHH decompositions was increased by
more than 15.8%, compared to unfiltered features.

3.4 | Overlapped robust radiomic
features

Figure 6 shows a Venn diagram that visualizes the
overlap of highly robust features regarding the acrylic,
rubber, and cork for all motion amplitudes. Compared
to the unfiltered features, the percentage of robust
wavelet filter-based features with LHL/HLL/HHL and
LHH/HLH/HHH decompositions increased by more than
15.4% and 19.7%, respectively. Table 1 summarizes
the overlapped radiomic feature groups considering the
three target materials for all motion amplitudes. In the
case of wavelet filters with HHL and HHH decomposi-
tions, the most robust feature group was the first order,
followed by the GLCM and GLDM feature groups.

4 | DISCUSSION

Respiratory motion is a major uncertainty in lung cancer
radiotherapy. Thus, it is important to assess the uncer-
tainty caused by respiratory tumor motion in radiomic
analysis for prognostic prediction after lung cancer
radiotherapy. To the best of our knowledge, no previ-
ous studies have evaluated the effect of various tar-
get movements on the robustness of features using
several target materials with different CT values and
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FIGURE 4 Percentage of highly robust (a) unfiltered and (b) wavelet filter-based features regarding target motion amplitudes of 1,2.5, 4,6,
8, and 10 mm for different thresholds of ¢ value for the acrylic, rubber, and cork. Vertical axis shows the number of highly robust features;
horizontal axis shows different thresholds of ¢ value

homogeneity. In this study, we observed that a tar- CT values of each voxel within the ROls. Further,
get motion amplitude greater than 2.5 mm significantly as the AIP images used in the current study were
affected the robustness of radiomic features on 4DCT- obtained by averaging 10 respiratory phases of 4DCT
based AIP images regardless of the target materials. images, an increase in the target motion resulted in
Further, we found that for target motion amplitudes a decrease in the brightness because of the low CT
of 2.5, 4, and 6 mm, low-frequency decomposition of value (lung fields) inside the ROls. In addition, cork
wavelet filters (i.e., wavelet filters with LHL/HLL/HHL (heterogeneous material) exhibited greater robustness
decompositions) in the Sl direction improved the robust- compared to that of acrylic and rubber (homogenous
ness of radiomic features.

Our results indicated that the number of robust material has no movement, there is a contrast in the
features decreased as the target motion increased.  CT value of each voxel inside the target. Conversely,
The radiomic features were calculated based on the when the homogenous material does not move, the

materials). This is because when the heterogeneous
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FIGURE 5 Proportion of radiomic features based on ¢ value to evaluate target motion amplitudes for (a) acrylic, (b) rubber, and (c) cork.

Radiomic features were classified into the following: € < 0.5; high robustness; 0.5 < ¢ < 1.0; intermediate; 1.0 < ¢; low robustness. Wavelet filters
were used in eight frequency decompositions—LLL, LLH, LHL, HLL, LHH, HLH, HHL, and HHH. Vertical axis shows the number of highly robust
features; horizontal axis shows different target motion amplitudes of 1,2.5,4,6, 8,and 10 mm

CT value is approximately uniform, resulting in a small
contrast inside the target. Hence, when the robustness
of the feature is calculated based on the case of no
movement, it can be considered that the robustness
of the homogeneous material decreased owing to the
significant effect of the variation in CT value. Moreover,

the effects of the CT value on the feature robustness
were small compared to the homogenous materials of
acrylic (100 HU) and rubber (—140 HU). The acrylic
with a higher CT value had greater noise in the voxel
compared to the rubber. However, these effects may
be minimal when lung regions with extremely low CT
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33.3% 29.0% 64.5%
36.6% 0.0% 35.5% 0.0% 3.2% 2.2%
% 4.3% 10.8%
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FIGURE 6 Venn diagram visualizing the overlap of highly robust (a) unfiltered features and wavelet filter-based features with (b) LLL, (c)
LLH, (d) LHL, (e) HLL, (f) HHL, (g) LHH, (h) HLH, and (i) HHH regarding the acrylic, rubber, and cork for target motion amplitudes of 1,2.5,4,6, 8,

and 10 mm

TABLE 1

Overlapped radiomic feature groups regarding target materials for all motion amplitudes

Feature groups Wavelet filters

(number of features)  Unfiltered LLL LLH LHL HLL HHL LHH HLH HHH
Shape (14) 5 (35.7%) - - - - - -

First order (18) 2(111%)  2(11.1%) 1(5.6%) 5(27.8%) 3(16.7%) 13(72.2%) 5(27.8%) 4(22.2%) 15(83.3%)
GLCM (24) 0 (0.0%) 0 (0.0%) 2 (8.3%) 9(37.5%) 6(25.0%) 16(66.7%) 9(37.5%) 7(29.2%) 18(75.0%)
GLDM (14) 0 (0.0%) 0 (0.0%) 2(12.5%) 5(31.3%) 3(18.8%) 7(43.8%) 4(25.0%) 3(18.8%) 11 (68.8%)
GLRLM (16) 0 (0.0%) 0 (0.0%) 2(12.5%) 5(31.3%) 4(25.0%) 6 (37.5%) 5(31.3%) 5(31.3%) 6 (37.5%)
GLSZM (16) 1(7.1%) 0 (0.0%) 2(14.3%) 7 (50.0%) 3(21.4%) 6 (42.9%) 5(35.7%) 5(35.7%) 7 (50.0%)
NGTDM (5) 2(40.0%) 2(40.0%) 2(40.0%) 4(80.0%) 4 (80.0%) 4(80.0%) 3(60.0%) 3(60.0%) 3 (60.0%)

Note: Each value represents the number of robust features (percentage) of the target materials.
Abbreviations: GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix;

NGTDM, neighboring gray-tone difference matrix.

values are included owing to the target movement.

Therefore, the heterogeneity of the material affects the
robustness of radiomic features on 4DCT-based AIP
images regarding target movements compared to CT
values.

Considering the current clinical situation, the effec-
tive management of respiratory motion is essential

for achieving clinical goals. However, certain concerns
regarding the techniques used to assess the effects of
tumor motion on the robustness of radiomic features
exist. Several studies have reported that the gated or
breath-hold CT approach is required to minimize the
impact of tumor motion to enable the selection of gen-
eralizable and robust radiomic features?®2?’ However,
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clinical protocols for CT imaging may not be standard-
ized in each institution, and it may be difficult to acquire
gated or breath-hold CT owing to technical problems
or poor patient conditions. In this study, different target
motion amplitudes were employed to investigate the
precise target motion effects on the robustness of
radiomic features. As shown in Figure 5, the feature
robustness decreased as the target motion amplitudes
increased from 2.5 to 10 mm. Therefore, the results
suggest that the robustness of radiomic features on
4DCT-based AIP images can be improved in 4DCT by
suppressing the target movement as much as possible.
Thus, the suppression of respiratory motion may be
essential for the robustness of radiomic analysis of
4DCT-based AIP images.

The application of the wavelet filters is one of
the important factors that affects the robustness of
radiomic features. Larue et al. investigated the stabil-
ity of radiomic features on 4DCT images (from eight
breathing phases) in the thoracic region and found
that the stability of unfiltered features was higher than
that of wavelet filter-based features.'® Although they
applied wavelet filters to their radiomic analysis, the
frequency components or direction of wavelet filters
was not considered. Our findings indicated that apply-
ing low-frequency decompositions of wavelet filters (i.e.,
wavelet filters with LHL/HLL/HHL decompositions) in the
S| direction improved the robustness of radiomic fea-
tures for the target motion amplitudes of 2.5-6 mm
(Figure 5). This is because the wavelet filters with
low-frequency components smoothed out the blurring
caused by the target movement on AIP images. By con-
trast, for motion amplitudes of 2.5-10 mm, the robust-
ness of wavelet filters with LHH/HLH/HHH decompo-
sitions was almost the same because it enhanced the
blurring caused by target movement on the AIP images.
Therefore, the frequency components and directions of
the wavelet filters are the essential factors in radiomic-
based prognostic prediction for thoracic regions on AIP
images.

For radiomic analysis in lung SBRT, Huynh et al.
reported that AIP images outperformed free-breathing
(FB) images for the prediction of distant failure following
SBRT because AIP images contain greater prognostic
information than FB images.?’ The radiomic features
on 4DCT-based AIP images express the respiratory
movement of the target and contain various respi-
ratory phase information; thus, the AIP images may
be effective for radiomics-based prognosis prediction.
By contrast, Davey et al. investigated the most stable
4DCT phase for radiomic analysis?® and reported that
although the most stable phase varies among indi-
vidual patients, the selection of radiomic features for
predicting distant failure improved the model perfor-
mance compared to the use of nonselective methods.
To rephrase, in the radiomic analysis of lung tumors
with respiratory movement, it may be appropriate to
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use 4DCT images that include the information of
respiratory tumor movement. Furthermore, in the prog-
nosis prediction by radiomic analysis based on 4DCT
images with various respiratory phases, the details
of the feature extracted images and the robustness
assessment scenario of the radiomic analysis must be
reported.

However, several limitations exist in the present study,
which warrant further discussion. First, because the tar-
get motion was simulated only in the Sl direction, the
direct clinical implementation is limited. Each patient
had an irregular respiratory movement pattern in the
three-dimensional directions, such as various motion
amplitudes and respiratory cycles during imaging, which
may affect the blurring of 4DCT-based AIP images.
However, the tumor predominantly moves in the SlI
direction,'?"” and previous phantom study simulated
the tumor movement predominantly in the Sl direction."”
Further studies are required to identify the effects of
precise target motions in three-dimensional directions
on radiomic feature reproducibility. Another limitation is
the feature evaluation index used for evaluating the
radiomic feature robustness owing to the small sam-
ple sizes of the phantom experiments. Several stud-
ies have assessed radiomic robustness using the con-
cordance correlation coefficient (CCC) or coefficient of
variation (COV).'%-16-18 However, the CCC attains an
extremely small value when the sample size is limited.
In addition, although the COV can be used to evaluate
feature variability regardless of the feature scale using
the mean and SD of each feature, it is not appropriate for
the current study because the SD differs for each mate-
rial. It is desirable to compare the results of this study
with those of other studies directly using CCC and COV.
However, referring to a previous study,24 the feature eval-
uation index, which is derived from the SD of patient
data, is appropriate for addressing both of the above
issues in the current study. The third limitation is the
slice thickness of the 4DCT images. In the present study,
the motion amplitude of 1 mm had a small effect on
the robustness of radiomic features, but this amplitude
was smaller than the current slice thickness of 2.5 mm.
It is unknown whether similar results regarding feature
robustness would be obtained when the slice thickness
is set to 1 mm. However, according to the report of the
American Association of Physicists in Medicine Task
Group 101, the recommended slice thickness for lung
SBRT is 1-3 mm.2° Furthermore, because a slice thick-
ness of 2—-3 mm is most frequently used in Japan° the
results of this study are clinically reasonable.

5 | CONCLUSIONS

This phantom study investigated the effect of tar-
get motion of three different materials (acrylic, rub-
ber, and cork) on the radiomic features extracted from
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4DCT-based AIP images. Our results demonstrated that
a smaller target motion led to the robustness of unfil-
tered and wavelet filter-based radiomic features, irre-
spective of the different textured materials. Notably, it
was determined that the robustness of the cork (het-
erogeneous) to target movement was greater than that
of acrylic and rubber (homogeneous). For acrylic and
rubber, the radiomic features would be robust to target
motion when applying wavelet filters with low-frequency
decomposition in the direction of target movement.
In a clinical situation, the suppression of respiratory
motion may support the development of a standardized
radiomic approach for thoracic regions.
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