

POSTER PRESENTATION

Multiplanar 4D strain analysis with spatial mapping to 3D LGE quantification: relationships in chronic Ischemic Cardiomyopathy

Alessandro Satriano^{1,2*}, Vijay Kandalam¹, Yoko Mikami¹, Nita Guron³, Hanna Medwid⁴, Bobby Heydari^{1,3}, Naeem Merchant^{1,3}, Andrew G Howarth^{1,2}, Carmen Lydell^{1,3}, Teresa A Whitman⁵, Maria Drangova⁷, Raymond Yee⁶, James A White^{1,2}

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

Background

Myocardial strain analysis has been proposed as a surrogate for regional replacement fibrosis (scar) in patients with ischemic cardiomyopathy (ICM). However, contractile function is often degraded in non-scarred tissue, conceivably due to a composite of interstitial fibrosis, metabolic aberrations and abnormal electro-mechanical coupling. We tested a novel 4D strain analysis tool to examine strain characteristics of scarred and nonscarred myocardium in patients with advanced ICM.

Methods

Nineteen patients with ICM and 10 healthy controls were studied. Cine and Late Gadolinium Enhancement (LGE) imaging was performed using 3.0T MRI. LV signal threshold-based (>6SD) %LGE maps were obtained using cvi42 (Circle Cardiovascular Inc., Calgary, Canada). 4D strain analysis (Figure 1) was performed using novel prototype software employing a 4D displacement field, providing spatially matched Green-Lagrange 2nd principal, radial, circumferential and longitudinal strain maps. %LGE and strain were co-registered to a 72-segment model.

Results

Mean age of ICM patients was 72.3 ± 6.8 years with LVEF of $26.5\pm7.7\%$. Among 1368 analyzed segments, 823 had no LGE(<5%), 299 had 5-50%LGE, 246 had LGE \geq 50%(transmural). Mean age of healthy controls

¹Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada

Full list of author information is available at the end of the article

was 28.2±7.5 years with LVEF of 61.8±7.4%, all segments with no LGE. Segmental strain analysis using all 4 metrics showed substantial reductions in mean peak amplitude for ICM segments without LGE versus healthy controls (p<0.05). Within the ICM cohort, LGE≥50% segments showed reduced strain amplitudes versus segments without LGE (mean reduction 29.0 ±13.6% - Figure 2) for all strain metrics (p<0.05). Significant difference was found between LGE<50% and LGE≥50% segments. ROC analysis identified AUCs for detection of LGE≥50% of 0.63, 0.28, 0.62, and 0.62, respectively. Using optimal cut-offs, corresponding sensitivity was 59.8%, 32.5%, 58.5%, and 57.7%, while specificity was 59.1, 32.3%, 58.2 and 57.8%. AUCs for identifying viable (LGE<50%) segments were 0.37, 0.72, 0.38 and 0.38, the greatest sensitivity and specificity being 68.5% and 67.5%, respectively, for Radial Strain. The PPV and NPV achieved for identifying a viable segment were 90.6% and 32.0%, respectively.

Conclusions

In chronic ICM, spatially matched 4D strain/LGE analysis identifies reduced strains in scarred segments, however also significant pathology in remote tissue compared to healthy controls. The latter limits the NPV of strain analysis for identifying non-scarred segments. However, this study demonstrates a novel capacity of CMR-based strain quantification to characterize the global health of remote tissue. As such, this provides a novel imaging marker for the quantification of remote tissue remodeling / functional integrity and warrants investigation for its prognostic value in ICM.

© 2015 Satriano et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Funding

Dr. Satriano receives support from Mitacs Canada and Medtronic of Canada, Ltd. Dr. White is supported by a New Investigator Award from Alberta Heart and Stroke Foundation.

Authors' details

¹Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada. ²Division of Cardiology, Department of Medicine, University of Calgary, Calgary, AB, Canada. ³Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada. ⁴Queen's University, Kingston, ON, Canada. ⁵Medtronic, Inc., Minneapolis, MN, USA. ⁶Department of Medicine, Western University, London, ON, Canada. ⁷Robarts Research Institute, Western University, London, ON, Canada.

Published: 3 February 2015

doi:10.1186/1532-429X-17-S1-P33

Cite this article as: Satriano *et al.*: **Multiplanar 4D strain analysis with spatial mapping to 3D LGE quantification: relationships in chronic Ischemic Cardiowyopathy.** *Journal of Cardiovascular Magnetic Resonance* 2015 **17**(Suppl 1):P33.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central