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ABSTRACT
Background: Host factors play an important role in pathogenesis and disease outcome in Clos-
tridium difficile infection (CDI), and characterization of these responses could uncover potential 
host biomarkers to complement existing microbe-based diagnostics.

Methods: We extracted RNA from fecal samples of patients with CDI and profiled human mRNA 
using amplicon-based next-generation sequencing (NGS). We compared the fecal host mRNA 
transcript expression profiles of patients with CDI to controls with non-CDI diarrhea.

Results: We found that the ratio of human actin gamma 1 (ACTG1) to 16S ribosomal RNA 
(rRNA) was highly correlated with NGS quality as measured by percentage of reads on target. 
Patients with CDI could be differentiated from those with non-CDI diarrhea based on their fecal 
mRNA expression profiles using principal component analysis. Among the most differentially 
expressed genes were ones related to immune response (IL23A, IL34) and actin-cytoskeleton 
function (TNNT1, MYL4, SMTN, MYBPC3, all adjusted P-values < 1 x 10-3).

Conclusions: In this proof-of-concept study, we used host fecal transcriptomics for non-invasive 
profiling of the mucosal immune response in CDI. We identified differentially expressed genes 
with biological plausibility based on animal and cell culture models. This demonstrates the poten-
tial of fecal transcriptomics to uncover host-based biomarkers for enteric infections.

Keywords: Clostridium difficile; host transcriptomics; fecal transcriptomics; actin-cytoskeleton; 
mucosal immune response

INTRODUCTION
Clostridium (or Clostridioides) difficile is a spore-forming, toxin-producing bacterium that causes 
diarrhea and colitis, most often associated with antibiotic use. It is the most common hospital-as-
sociated infection in the United States, with an estimated 453,000 cases and more than 29,000 
deaths annually [1]. While C. difficile infection (CDI) is most often acquired in healthcare set-
tings, community-associated infections are increasing [2, 3]. The most commonly used diagnos-
tics for CDI are based on detection of the toxin or toxin genes. Due to their high sensitivity and 
rapid turnaround times, nucleic acid amplification tests (NAATs) have been widely adopted for 
the diagnosis of CDI. However, NAAT-based detection of C. difficile genomic DNA is unable to 
differentiate true CDI from colonization in the presence of alternative causes of diarrhea. Adop-
tion of NAATs has led to an increase in CDI diagnoses worldwide, and concerns of over-diagnosis 
of CDI resulting in unnecessary use of antibiotics have sparked renewed interest in improved 
diagnostic strategies [4, 5]. 

Host biomarkers have the potential to complement microbe-based tests in the diagnostic algo-
rithm. Unfortunately, currently available fecal biomarkers, including lactoferrin and calprotectin, 
have on the whole been unable to differentiate CDI from other causes of diarrhea [6, 7]. Fur-
thermore, host factors play an important role in pathogenesis and disease outcome in CDI [8], 
and characterization of the host response could uncover novel biomarkers. Animal models have 
demonstrated that mice deficient for NOD1 [9], MyD88 [10], TLR4 [11], and innate lymphoid 
cells [12] are more susceptible to CDI, and that mice lacking IL-23 are more protected from CDI 
[13]. However, these findings have not been thoroughly tested in human studies. Limited hypoth-
esis-driven studies in humans have identified several host factors associated with disease, such as 
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lower levels of antibody against C. difficile toxin A [14, 15], IL-8 polymorphism [16], and elevated 
fecal cytokines [17, 18].

Attempts at investigating intestinal immune responses in human CDI have been limited by the 
ethical and logistical challenges of invasive procedures. However, recent technological advances 
have enabled the noninvasive profiling of the mucosal immune responses by host transcriptomic 
profiling of fecal specimens using RNA-seq, microarrays, and PCR [19-21]. Thus, the objective of 
this study was to develop and optimize an unbiased method for examining the fecal host tran-
scriptome in patients with C. difficile infection.

METHODS
Patient Selection
We collected de-identified fecal samples from adult patients whose feces were sent to the Inter-
mountain Healthcare microbiology laboratory for C. difficile testing. Patients were defined to have 
CDI by positive results for GDH and toxin enzyme immunoassay (C. diff Quik Chek Complete, 
Alere). Controls were randomly selected from diarrheal samples sent for C. difficile testing but 
had negative GDH and toxin enzyme immunoassay results. Samples were de-identified and only 
data regarding age, gender, CDI status (positive or negative), and CDI severity were linked to 
the stools by a study number. Severe disease was determined by chart review using the modified 
University of Illinois criteria excluding the presence of pseudomembranous colitis [22, 23]. The 
study protocol was submitted to the Institutional Review Boards of the University of Utah and 
Intermountain Healthcare and deemed to be exempt from review.

Sample Collection and Preservation
The primary stool specimens were kept refrigerated after testing. After a positive toxin result, an 
aliquot of up to 4 mL of residual feces, not used for microbiologic testing, was placed into 4 mL of 
RNAprotect Cell Reagent (Qiagen) and stored at -80oC until RNA extraction. 

RNA Extraction
Fecal samples were thawed, vortexed, and filtered through gauze with addition of 5-10 mL of PBS. 
The filtrate was pelleted by centrifugation with the gauze still in the tube for 5 minutes at 500g; 
then the gauze was discarded, the sample vortexed to resuspend the pellet, and the suspension 
was filtered through a 40 µm cell strainer (Fisherbrand). The resulting filtrate was centrifuged 
again at 500g, and the supernatant discarded. The remaining pellet was mixed with lysis buffer 
(PureLink RNA Mini Kit, LifeTechnologies), and cells were lysed by vortexing for 2 minutes in 
tubes containing 0.5 mm glass beads (PowerBead Tubes, MoBio). Equal volumes of 70% ethanol 
were added, the mix centrifuged, and the supernatant transferred to a PureLink spin column. The 
remainder of the RNA isolation steps was completed according to the PureLink RNA Mini Kit 
manufacturer’s instructions, including use of on-column PureLink DNase treatment.

Quantitative RT-PCR
RNA was quantified by Qubit and Nanodrop 1000 (both Thermo Fisher Scientific). An aliquot of 
8 µL of extracted RNA was reverse transcribed with SuperScript IV and VILO master mix (In-
vitrogen) primed with random hexamers. To assess integrity and yield of human mRNA, tran-
scripts for a human housekeeping gene (actin gamma 1, ACTG1, Hs03044422_g1) and bacterial 
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16S rRNA (16S, Ba04230899_s1, both Thermo Fisher Scientific) were quantified by quantitative 
reverse transcriptase PCR (RT-qPCR), TaqMan Fast Advanced Master Mix (Thermo Fisher Sci-
entific), and a QuantStudio 3 real-time thermocycler (Thermo Fisher Scientific). Amplification 
conditions were 50°C for 2 minutes, 95°C for 20 seconds, followed by 40 cycles of 95°C for 1 sec-
ond and 60°C for 20 seconds. Commercial human RNA (Human Control RNA, Thermo Fisher 
Scientific) and total RNA extracted from a pure culture of Escherichia coli (DH5α) were used as 
standards. A ratio of ACTG1 to 16S was calculated and compared to quality transcriptomic data.

Library Preparation for Transcriptome Sequencing
Libraries were prepared with the Ion AmpliSeq Transcriptome Human Gene Expression kit 
(Thermo Fisher Scientific, version 1) using 10 or 100 ng of total RNA, depending on human 
mRNA abundance. Commercial human RNA was used as control. Targets were amplified with 
the Ion AmpliSeq Transcriptome Human Gene Expression Core Panel targeting > 20,000 genes, 
followed by partial digestion of primers, ligation of barcoded adapters, and library amplification 
for 18 cycles. Amplified libraries were eluted in 30 uL of low TE buffer after purification and 
quantified using the Ion Library TaqMan Quantitation Kit (Thermo Fisher Scientific). Libraries 
from 12 samples with ACTG1:16S ratios of above 10-4 were randomly selected for sequencing on 
the Ion Torrent Proton system using a P1 chip according to the manufacturer’s instructions (Ther-
mo Fisher Scientific).

Analysis of Transcriptome Sequencing Data
The resulting sequencing data was analyzed using the Torrent Suite (Thermo Fisher Scientific, 
version 5.0.4 and the human reference genome build hg19) with default analysis parameters 
providing sequencing read counts for each of the targeted genes. The resulting read count matri-
ces were analyzed using DESeq2 [24] within R (R Foundation for Statistical Computing, Vienna, 
Austria; version 3.3.2). Genes with P-values adjusted for multiple testing (Benjamini and Hoch-
berg, generated within DESeq2) < 0.05 were included in subsequent analyses. For quality control 
and to assess adequacy of calculated percentage of reads on target, these resulting sequencing 
reads were also analyzed with Taxonomer [25], and reads binned as human were quantified and 
compared to percentage of reads on target provided by the Torrent Suite software. Functional 
annotations were derived using DAVID [26] analyses using Benjamini-adjusted P-values.

RESULTS
Human Feces mRNA Yield and Effect on Transcriptome Profiling
The AmpliSeq Transcriptome Human Gene Expression kit is intended for analysis of 10 ng of hu-
man RNA. To assess limitations of analyzing mixed bacterial and human RNA from fecal samples, 
we quantified the proportion of human ACTG1 mRNA and bacterial 16S RNA in 34 fecal samples 
by qPCR. Estimated ACTG1 mRNA and 16S rRNA (ACTG1:16S) ratios were calculated to assess 
human mRNA concentrations. ACTG1:16S ratios spanned 5 orders of magnitude (Figure 1A). 
RNA from fecal specimens with ACTG1:16S ratios above the median (6.1 x 10-4) were randomly 
selected for transcriptome analysis (Figure 1A, highlighted in red and blue). A mean of 4.7 x 106 
reads (SD = 1.9 x 106) were generated per sample with a mean 86.0% of base calls having quality 
scores of ≥ Q20 (SD 1.5%). On average, 58.5% of reads contained expected sequences or reads on 
target (ie, sequencing reads aligning to the expected regions of the > 20,000 targeted genes, SD 
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13.1%) and 34.5% of targeted genes were detected (SD 9.2%, Supplementary Figure 1). To assess 
accuracy of data analysis with the Torrent Suite when applying the method to mixed RNA with a 
high abundance of non-human RNA, we also analyzed the sequencing reads with a metagenom-
ics data analysis tool able to enumerate human mRNA reads in highly-mixed data (Taxonomer) 
[25]. The proportion of human mRNA reads as determined by Taxonomer was highly correlated 
with the percentage of reads on target as determined by the Torrent Suite (Supplementary Figure 
2). Subsequent analyses are based on results of the Torrent Suite. The ACTG1:16S ratio correlated 
with the percentage of valid reads (R2 = 0.73, Figure 1B) supporting its use as a predictor for sam-
ple suitability for transcriptome analysis.

Figure 1. Quality control of extracted RNA and sequencing Data. A) ACTG1 mRNA to 16S rRNA ratios 
for 34 fecal samples; samples highlighted in red (CDI) and blue (diarrhea of other causes) were selected for 
sequencing. B) ACTG1:16S ratios correlated with expected sequences (reads on target, Pearson R2 0.396; 
Goodness of Fit (semilog) R2 = 0.73).

Transcriptome Profiling in C. difficile-Positive and C. difficile-Negative Fecal Samples
Of the 12 samples sequenced, 9 (75%) were from patients with CDI and 3 (25%) were from pa-
tients with diarrhea of other causes (Table 1). Of the 9 samples from CDI patients, the median age 
was 62 years (range 17 - 91), 5 were female, 5 had recurrent episodes, and none met Zar criteria for 
severe CDI [23]. A total of 20,046 genes (96.3%) had ≥ 1 read in at least 1 sample, with 6388 genes 
(31.9%) being differentially expressed between patients with CDI and diarrhea of other causes 
based on an adjusted P-value of < 0.05 (DESeq2). To identify genes that were consistently and 
maximally differentially expressed, we limited subsequent analyses to genes with < 80% coefficient 
of variation within each of the 2 groups and > 10-fold difference between group means (n = 922). 
Relative expression levels of the top 50 of these differentially expressed genes are shown in Figure 
2A. Among these genes were several with a known role in the pathogenesis of CDI, including 
IL23A (encoding for the alpha subunit of interleukin 23), IL34 (interleukin 34), TNNT1 (slow 
skeletal troponin type 1), MYBPC3 (myosin-binding protein C isoform 3), and NMRAL1 (NmrA 
like redox sensor 1). Of the 9 patients with CDI, 1 showed an mRNA expression profile that was 
more similar to those of the controls (CDI08), 3 had intermediary mRNA expression profiles 
(CDI23, CDI26, CDI29), while the remaining 5 (CDI10, CDI24, CDI27, CDI35, CDI36) were 
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characterized by high expression levels of most of the differentially expressed genes (Figure 2A). 
In a principal component analysis of these expression profiles > 84% of the variance was explained 
by principal component (PC) 1, which also separated the 3 groups outlined above (Figure 2B). 
There were no clear differences between groups in age, gender, or recurrence status.

Table 1. Demographic and clinical data for patients with CDI and controls with non-CDI diar-
rhea 

Sample ID Group Recurrent Episode Age Gender
08 CDI Yes 73 M
10 CDI No 70 M
23 CDI Yes 62 M
24 CDI No 17 M
26 CDI Yes 46 F
27 CDI Yes 80 F
29 CDI No 80 F
35 CDI Yes 31 F
36 CDI No 19 F
N9 Control - 30 F

N10 Control - 52 F
N11 Control - 64 M

Figure 2. mRNA expression in patients with CDI vs controls. A) Relative expression levels of the top 50 
of these differentially expressed genes between patients with CDI and diarrhea of other causes. B) Princi-
pal component analysis demonstrated 84.3% of the variance explained by principal component (PC) 1.
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DAVID analysis of the top 50 differentially expressed genes (Supplementary Table 1) showed 5 
functional annotations to be significantly enriched (Figure 3). All 5 functional annotations (‘cy-
toskeletal protein binding’, ‘sarcomere’, ‘myofibril’, ‘contractile fiber part’, and ‘actin cytoskeleton’) 
play a known role in the pathogenesis of CDI. The 7 genes linked to these functional annotations 
are shown in Supplementary Table 2 and include TNKS1BP1, JUP, TNNT1, SPTBN1, C22ORF28, 
and BCL2L11.

Figure 3. Functional Annotation. Gene Ontology (GO) terms and accession numbers (in parenthesis) 
for the top 50 differentially expressed genes (DAVID analysis, GO terms with Benjamini-adjusted P-values 
< 0.05) are shown with the number of genes (grey bar) and adjusted P-value (red).

DISCUSSION
Clinical manifestations of Clostridium difficile infection range from asymptomatic carriage to 
fulminant, pseudomembranous colitis and are mainly mediated by the effects of toxins A and/or 
B on intestinal epithelial cells. The expanding reservoir of C. difficile beyond the healthcare setting 
into community-based sources [3], and increasing use of NAAT tests to detect C. difficile and oth-
er gastrointestinal pathogens [27], has created challenges in accurately distinguishing CDI from 
other causes of diarrhea due to frequently overlapping clinical syndromes. When used in patients 
with known alternative causes of diarrhea (eg, laxative use) [28], a positive toxin result can lead 
to overestimation of disease and inappropriate treatment. Given the wide range of clinical mani-
festations of CDI, characterizing the host transcriptional response to infection has the potential to 
improve our understanding of the disease process and to identify expression profiles that correlate 
with outcome.

We demonstrate the potential use of host mRNA-targeted amplicon-based sequencing of fecal 
samples to identify gene transcripts enriched in patients with CDI compared to controls with C. 
difficile-negative diarrhea. We found upregulation of genes associated with cytokine responses 
previously shown to be important in C. difficile pathogenesis, including IL23A, which is associat-
ed with increased colonic inflammation and mortality in animal models of CDI [13, 29, 30], and 
IL34, which is upregulated in tissues of patients with inflammatory bowel disease and in mouse 
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models of experimental colitis [31-33]. Intriguingly, we also found upregulation of genes related 
to actin-cytoskeleton function, including TNNT1, JUP, SPTBN1, and MYBPC3. The toxins of C. 
difficile act through disturbance of the intestinal cell cytoskeleton resulting in apoptosis [34, 35], 
and hypervirulent strains of C. difficile inhibit actin polymerization through production of an 
actin-ADP-ribosylating toxin [36]. Identification of such biologically plausible targets thus pro-
vides proof-of-concept for the use of host fecal transcriptomics to probe human mucosal immune 
responses.

Host transcript profiling has the potential to complement existing microbe-targeted molecular 
tests to improve specificity for detecting clinically relevant C. difficile infections. Existing tests 
have centered on microbial toxin detection in stools by functional assays (ie, cell cytotoxicity as-
say), detection of toxins A and/or B antigen, or NAATs for toxin genes (tcdA and/or tcdB). NAAT 
testing has improved our ability to rapidly detect genes for Toxins A and/or B, which represents a 
significant advance over detection of free toxin by antigen detection methods [37]. An accumu-
lating body of evidence, however, questions the benefit of NAAT testing alone [38]. Specificity of 
NAAT decreases when clinical manifestations are taken into account [39]. Additionally, clinical 
outcomes in patients solely with PCR-positive results are similar to patients with negative results 
for C. difficile by both toxin assay and NAAT [40]. Updated C. difficile guidelines discourage 
testing with NAATs alone and recommend combining NAAT with toxin detection in multistep 
algorithms in conjunction with efforts to avoid inappropriate testing that might identify asymp-
tomatic carriers of toxigenic C. difficile [41]. These recommendations were considered to be weak 
with low quality of evidence so new approaches are needed.

Host mRNA can be detected in feces by nucleic acid amplification tests and next-generation 
sequencing [20, 42-45]. However, host RNA contributes only a minute fraction to the total RNA 
present in fecal specimens with most of the total RNA being of bacterial origin (largely ribosomal 
RNA) [46]. Quantifying expression levels of host mRNA in this overwhelming background of 
bacterial RNA is technically challenging. In addition, the integrity of host cells and nucleic acid 
may be compromised. Next-generation sequencing technologies based on sequence-specific am-
plification of short regions of hundreds to thousands of mRNA transcripts (amplicon sequencing) 
provides a solution to this dilemma. Similar methods have been used for transcriptional profiling 
of RNA that is in low abundance or highly fragmented RNA, such as RNA extracted from forma-
lin-fixed tissue [47, 48].

Our results provide proof-of-concept for the use of amplicon sequencing to noninvasively probe 
the mucosal host immune response to C. difficile infection. If confirmed in larger studies, this 
strategy will also enable noninvasive profiling and diagnosis of other gastrointestinal diseases 
such as other intestinal infections, inflammatory bowel disease, and colon cancer. In respiratory 
tract infections, a similar approach has led to the discovery of host mRNA expression signa-
tures that can be used for diagnostic purposes and to differentiate bacterial from viral infections 
[49-52]. After defining a minimal set of maximally informative transcripts, quantitative reverse 
transcription PCR panels can be designed for faster, cheaper, and more scalable testing and devel-
opment of tests that can be implemented in clinical laboratories [53]. While fecal samples provide 
unique technical challenges for nucleic acid extraction and detection, applications in noninvasive 
gastrointestinal cancer detection and multiplex panels for gastrointestinal pathogens have demon-
strated that these can be overcome. Eliminating the need for colonoscopy and biopsy to assess the 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 3, No 2

www.PaiJournal.com

172

mucosal immune response provides a substantial benefit from our approach and an incentive to 
further optimize testing strategies.

Our study has several limitations. First, despite the large number of samples collected, only 
a small number of samples were analyzed by next-generation sequencing because of variable 
human mRNA yields (as measured by ACTG1:16S ratios), resource constraints, and the explor-
atory nature of this study. Despite the limited sample size, the biological plausibility of results 
(genes with a known role in pathogenesis were differentially expressed) demonstrates the power 
of this noninvasive approach. Second, our convenience sampling of stool specimens with > 4 mL 
and with higher levels of ACTG1 mRNA may have introduced a selection bias towards a certain 
phenotype of diarrhea caused by C. difficile. Future studies will include a carefully selected patient 
population with clinically confirmed C. difficile colitis, patients with diarrhea with a positive C. 
difficile test with an alternative cause of diarrhea identified, and randomly selected specimens to 
address this limitation. Third, further improvements in enriching human cells and/or RNA in 
stool specimens will improve sensitivity for expression analyses of less abundant genes and allow 
for a larger proportion of specimens to be analyzed. Lastly, we did not account for antibiotic use 
among patients, which may influence the host transcriptome. Despite these limitations, our study 
provides proof-of-concept that amplicon-based next generation sequencing of fecal samples can 
be used to probe host gene expression for immune profiling and biomarker discovery.

In summary, in our small, pilot study, we demonstrate differential expression of several genes in 
patients with C. difficile infection compared to those with diarrhea negative for C. difficile. Larger 
numbers of representative samples from patients with known C. difficile infection and diarrhea of 
other causes with C. difficile carriage will need to be tested to confirm and validate our findings 
and assess the power of host transcriptomics to assist in the critical distinction between C. difficile 
infection and carriage.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. Sequencing quality metrics for expression profiling of mRNA extracted 
from feces of patients with CDI and diarrhea of other causes.
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Supplementary Figure 2. Correlation of sample composition and expression profiling by Tax-
onomer (y-axis, percentage of human mRNA reads) and Torrent Suite (x-axis, percentage reads 
on target).

SUPPLEMENTARY TABLES
Supplementary Table 1. Top 50 Genes Used for DAVID Analysis 
UNKL GPRC5C WBP1L
FAM3A NAALADL1 CDC26
AIP HIPK2 FAM3C
PSMD11 MDK SDSL
SNX4 POLD4 TARSL2
ARHGAP35 KCTD5 ALOX15
EXOSC8 NIPA1 TNNT1
SPTBN1 BCL2L11 TNKS1BP1
GTF2F1 EIF4A2 ARHGAP42
PLCB3 MPST OTUD5
C22orf28 BMF JUP
IFT122 SERPINB6 KLHDC8A
CDK8 EFNA3 DUSP23
MTA1 TARS TUBB2A
RAP2A SLC47A1 NFU1
SLC28A1 LZTS2 CHID1
NAA38 ANKRD11
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Supplementary Table 2. Enriched functional annotations of the top 50 differentially expressed 
genes (DAVID analysis) and included genes.

GO Term GO Accession Gene

Cytoskeletal protein binding 0008092 TNKS1BP1, JUP, TNNT1, SPTBN1, 
C22ORF28, BCL2L11

Sarcomere 0030017 JUP, TNNT1, SPTBN1
Myofibril 0030016 JUP, TNNT1, SPTBN1
Contractile fiber part 0044449 JUP, TNNT1, SPTBN1
Actin cytoskeleton 0015629 JUP, TNNT1, SPTBN1, BMF
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