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Abstract
Given a set of species whose evolution is represented by a species tree, a gene family
is a group of genes having evolved from a single ancestral gene. A gene family evolves
along the branches of a species tree through various mechanisms, including—but not
limited to—speciation (S), gene duplication (D), gene loss (L), and horizontal gene
transfer (T). The reconstruction of a gene tree representing the evolution of a gene fam-
ily constrained by a species tree is an important problem in phylogenomics. However,
unlike in the multispecies coalescent evolutionary model that considers only specia-
tion and incomplete lineage sorting events, very little is known about the search space
for gene family histories accounting for gene duplication, gene loss and horizontal
gene transfer (the DLT-model). In this work, we introduce the notion of evolutionary
histories defined as a binary ordered rooted tree describing the evolution of a gene
family, constrained by a species tree in the DLT-model. We provide formal gram-
mars describing the set of all evolutionary histories that are compatible with a given
species tree, whether it is ranked or unranked. These grammars allow us, using either
analytic combinatorics or dynamic programming, to efficiently compute the number
of histories of a given size, and also to generate random histories of a given size
under the uniform distribution. We apply these tools to obtain exact asymptotics for
the number of gene family histories for two species trees, the rooted caterpillar and
complete binary tree, as well as estimates of the range of the exponential growth factor
of the number of histories for random species trees of size up to 25. Our results show
that including horizontal gene transfers induce a dramatic increase of the number of
evolutionary histories. We also show that, within ranked species trees, the number
of evolutionary histories in the DLT-model is almost independent of the species tree
topology. These results establish firm foundations for the development of ensemble
methods for the prediction of reconciliations.
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1 Introduction

A gene tree represents the evolution of a gene family, a group of genes assumed to
descend from a single ancestral gene. The reconstruction of gene trees from molecu-
lar sequence data is a central but difficult problem in computational biology. Indeed,
while species are mostly expected to evolve through speciation, gene families evolve
through a wider variety of mechanisms including gene duplication, gene loss, hor-
izontal gene transfer (HGT) and incomplete lineage sorting (ILS). As a result, it is
common to observe an incongruence between gene trees and species trees (Maddison
1997; Degnan and Rosenberg 2006; Degnan et al. 2012; Disanto and Rosenberg 2014;
Disanto et al. 2019). This discrepancy has motivated an intense research activity on the
problem of reconstructing the gene tree of a gene family, conditional to a given species
tree for the considered species. We refer to Szöllősi and Daubin (2012), Szöllősi et al.
(2015) for extensive reviews discussing how gene trees evolve within a species tree,
describe existing models and methods for reconstructing gene trees within species
trees.

In the case where a gene family contains a single gene per species, observed incon-
gruences between a gene tree and a species tree can be analyzed through the prism of
ILS in the multispecies coalescent model (see Degnan and Rosenberg 2009 and ref-
erences there). The natural question is then to compute the probability of coalescent
histories conditional to the given species tree (Degnan and Salter 2005; Wu 2012,
2016; Pei and Wu 2017). For gene families that might contain duplicate copies (or no
copy) of a gene in a given species, the multispecies coalescent model is not appropri-
ate, and gene trees need to be inferred in a model including gene duplication, gene loss
and, ideally, transfers. Most methods developed to understand the evolution of gene
families in this context rely on the concept of gene tree-species tree reconciliation,
illustrated in Fig. 1. In this framework, given a gene tree G and a species tree S, one
aims to embed G within S, often optimizing a parsimony or probabilistic criterion
with regard to the considered evolutionary model.

Early reconciliationmethodswere developed for an evolutionarymodel considering
only gene duplications and gene losses (the DL-model), and considered a parsimony
criterion. This problem, introduced by Goodman et al. (1979), is computationally
tractable through dynamic programming. Extending the model to include HGT, while

Fig. 1 Left: a species tree S. Center: a DL-history for S. Right: the associated gene tree. Green squares
(resp. blue circles, red diamonds, black rectangles) correspond to nodes x such that e(x) = D (resp.
e(x) = S, e(x) = L, e(x) = Extant). The mapping s is represented by the location of the internal nodes
of the history within the species tree in the center tree and by the species names in the nodes in the right
tree (color figure online)
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ensuring that HGT events are time-consistent, makes the problem of predicting of the
most parsimonious reconciliation intractable in general (Ovadia et al. 2011; Tofigh
et al. 2011). However, if the provided species tree is ranked, i.e. is provided with
a total ordering of its internal nodes—consistent with the partial ordering induced
by the tree structure—describing the order of speciation events, the reconciliation
problem becomes tractable [see the discussion in Doyon et al. (2011)]. Over the last
20 years, various efficient dynamic programming algorithmswere designed to compute
a parsimonious reconciliation, implemented in widely used phylogenomics packages
(Durand et al. 2006; Bansal et al. 2018; Scornavacca et al. 2015; Jacox et al. 2016).
Similar to parsimony-based methods, probabilistic reconciliation methods were first
developed in a model considering only gene duplication and gene loss (Arvestad et al.
2009; Åkerborg et al. 2009; Górecki et al. 2011; Górecki and Eulenstein 2014), before
being extended to include HGTs (Szöllősi et al. 2013a; Sjöstrand et al. 2014).

Most methods that reconstruct a gene tree conditional to a species tree, rely on
the exploration of the space of possible evolutionary histories. It is then important to
develop conceptual tools that can describe this combinatorial space and further enable
its efficient exploration. This naturally raises the questions to compute the size of the
space of evolutionary histories for a given gene family and a given species tree, and
to be able to sample such histories. Both questions are naturally related, as precise
counting results often translate into efficient sampling algorithms (Wilf 1977; Flajolet
et al. 1994). The former (counting) question has been studied by Rosenberg et al. in
the case of the multispecies coalescent model (Degnan and Salter 2005; Rosenberg
2007, 2019; Wu 2012, 2016; Disanto and Rosenberg 2015, 2016, 2017a, 2019a, b;
Disanto and Munarini 2019). However similar questions have not been explored as
thoroughly for evolutionary models including gene duplication, gene loss and HGT. In
this framework, dynamic programming equations aimed at computing a parsimonious
reconciled gene tree can be turned into a specification of the corresponding search
space (Górecki and Tiuryn 2006; Ranwez et al. 2016). This then leads to efficient
algorithms for counting or sampling parsimonious reconciliations (Doyon et al. 2009;
Bansal et al. 2013) or sampling reconciled gene trees under the Boltzmann probability
distribution (Jacox et al. 2016). However, to the best of our knowledge, such questions
have not been considered in the case where a gene tree is not specified at first, i.e. we
are only given a species tree and gene family.

This paper provides analytic and algorithmic answers to those questions. We show
that, for a given species tree, whether ranked or unranked, the space of all possible
evolutionary histories of a fixed size in the DLT-model can be described using a
formal grammar, an approach already used for ranked evolutionary trees (Gavryushkin
et al. 2018). This allows us to compute, in polynomial time and space, for given
species tree and gene family size, the number of evolutionary histories of this size
conditional to the given species tree, as well as to sample among these histories under
the uniform probability distribution. Using these algorithms, we can provide estimates
of the exponential growth factor of the number of histories in theDL-model andDLT-
model. We show that, as expected, including HGT in a model results in an exponential
increase of the number of histories. We also notice that with a ranked species tree, the
exponential growth factor of the number of histories in the DLT-model seems to be
almost independent of the chosen species tree. Finally, using enumerative and analytic
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combinatorics, we provide exact values for the asymptotic number of histories for two
specific species tree: the rooted caterpillar tree and the rooted complete binary tree.

2 Model: gene families evolutionary histories

In this section, we introduce the combinatorial objects modeling the evolution of a
gene family within a given species tree, that we call histories.

Preliminaries on trees. For a given rooted tree1 T, we say it is uniquely labeled if
every node has a label, and the set of labels is totally ordered. For a node x in T, we
denote by Tx the subtree of T rooted at x . In this work, we consider only binary and
unary-binary trees: in a binary tree, every internal node has exactly two children, while
in a unary-binary tree, an internal node can have either one child or two children. If
a uniquely labeled tree T is unordered we take advantage of the nodes labeling to see
it as an ordered tree, with the two children of an internal node x being ordered from
left to right in increasing order of their labels; so from now on all trees we consider
are ordered. If an internal node x of a tree T is binary, we denote by x� the left child
of x and by xr its right child; if x is unary, i.e. has a single child, we denote it by xc.
We denote by r(T) the root of T. For a node x of T, we denote by p(x) its parent in
T. The size of a tree T is the number of its leaves.

A rooted tree describes a partial order on the set of its nodes, and two nodes are said
to be comparable if one is an ancestor of the other one and incomparable otherwise.
For a node u, we denote by C(u) the set of nodes that are incomparable with u.

Ranked trees. A ranking of a tree T of size n is a mapping π from the nodes of T to
{1, . . . , n} such that (1) π(x) = n if x is a leaf, (2) π(x) �= π(y) if x and y are internal
nodes, and (3) π(x) < π(y) if x is an ancestor of y. A tree augmented with a ranking
is called a ranked tree; in our context it models the evolution of a set of species, the
ranking providing the relative order of speciation events, under the assumption that
no two speciations can occur at the same time.

Given a binary tree T and a ranking π , we define an unranked unary-binary tree
Tπ that encodes the ranking information as follows: for each internal node u, con-
sidered iteratively in increasing ranking order, and for every edge (p(v), v) such that
π(p(v)) < π(u) < π(v), we subdivide the edge (p(v), v) into two edges (p(v), vu)

and (vu, v), so adding a unary node vu on this edge. We denote by t(u) the set of all
unary nodes created in this way and we call this set of nodes together with u a time
slice. Additionally, we also define the set of all leaves as a time slice (see Fig. 2). Note
that in this way we create n different time slices which correspond to the n different
values of the ranking. We modify the notion of incomparability for such unary-binary
trees as follows: for a node u, C(u) = t(u)\{u}.
Gene Families Evolutionary Histories. The objects we study in this work model the
evolution of a gene family within a species tree. A species tree, which will be denoted
by S from now on, is a uniquely labeled rooted binary tree that represents the evolution
of a set of species through speciation events; S can be either unranked or ranked. A

1 In the present work we consider only rooted trees.
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Fig. 2 An example of a ranked tree with time slices. Left: the complete binary tree T of size 4. Cen-
ter: the unary-binary tree Tπ for the ranking π defined by π(A) = 1, π(B) = 2, π(C) = 3 and
π(D) = π(E) = π(F) = π(G) = 4; the time slices in Tπ are the following sets of nodes: {A}, {B,C ′},
{C, D′, E ′},{D, E, F,G}; Right: alternative unary-binary tree Tπ ′

, induced by exchanging the rankings
of B and C

gene family evolves within S from a single ancestral gene, present in the species r(S),
through four possible kinds of evolutionary events:

– Speciation S: a gene x present in species u splits into two descendant genes x�

present in species u� and xr present in species ur .
– Duplication D: a gene x present in species u is duplicated, with a new copy xd of

x appearing in species u; x is said to be the original gene while xd is the novel
gene.

– Loss L: a gene x present in species u has exactly one descendant either in x� or in
xr , that is, after a speciation at species u, exactly one of the two resulting genes is
lost along the branch toward either u� or ur .

– Horizontal Gene Transfer T (HGT): this is similar to a duplication but the novel
copy, denoted xt here, appears in a species v different from u and incomparable
with u, called the receiver of the HGT, while u is called the donor of the HGT. If
S is ranked, with ranking π , the receiver species v is required to exist at the same
time as u, i.e. to satisfy two ranking constraints, π(p(v)) < π(u) < π(v).

Definition 2.1 An evolutionary history for a gene family within a species tree S is a
unary-binary ordered rooted tree T together with two mappings s : V (T) → V (S)

and e : V (T) → {S,D,L,T, Extant} satisfying the following constraints:

– if x is a leaf, e(x) ∈ {Extant,L};
– if x is internal and binary, e(x) ∈ {S,D,T};
– if x is internal and unary then e(x) = S

2;
– if e(x) = S and s(x) = u is binary then s(x�) = u� and s(xr ) = ur ;
– if e(x) = S and s(x) = u is unary then s(xc) = uc;
– if e(x) = D then s(x�) = s(xr ) = s(x);
– if e(x) = T then s(x�) = s(x) and s(xr ) ∈ C(s(x)).

The size of a history is the number of leaves x such that e(x) = Extant .

Intuitively, this definition states that a history is represented by a tree where each node
corresponds to a gene present in a species, either extant or ancestral (the mapping

2 Note that technically the event associated to a unary node in the species tree is not speciation in the
biological meaning, but we chose to label it as such for expository reasons.
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Fig. 3 An example of time-inconsistent DLT-history

s), and each ancestral gene either was lost (e(x) = L) or evolved toward extant
genes through a duplication (e(x) = D), an HGT to an incomparable receiver species
(e(x) = T) or a speciation (e(x) = S), while extant genes belong to extant species; the
constraints on the species mapping s ensure that this history can be embedded within
S as illustrated in Fig. 1.

By convention, for duplications, we consider that the novel copy of a gene x is its
right child xr , x� representing the original copy.Histories considered by theDL-model,
which allows both duplications and losses (resp. duplications, losses and HGTs), are
called DL-histories (resp. DLT-histories).

Remark 2.2 By modeling the evolution of a gene family with ordered trees we differ
from the classical notion of reconciliation, that also models the evolution of a gene
family but considers that when a gene duplication occurs, the original gene and the
novel gene are indistinguishable. As a result, the children of a duplication are ordered
within a history, whereas they are not in a reconciliation.

Remark 2.3 Gene losses are modeled as speciation events with one disappearing gene.
As a consequence, we can not have a duplication or a HGT that results in one of the
resulting two gene copies being lost. This is necessary to avoid creating an infinite
number of histories of a given size, due to an arbitrary number of duplications within
a species, each followed by a loss, or an arbitrary long sequence of HGT, again each
followed by a loss, leading to at most one extant gene.

TimeConsistency of DLT -histories.Given an unranked species tree S, aDLT-history
as defined above is time inconsistent if there exists a gene x belonging to a species u
such that one of its ancestors belongs to a species v and one of its descendants belongs
to a species v′ ancestral to v. This pattern can be observed due to the fact that, in the
definition of a DLT-history, the choice of the receiver species v of an HGT of gene x
belonging to species u is not restricted to the set of species that are also incomparable
with all species containing genes that are ancestral to x ; see Fig. 3 for an illustration.

The problem of computing gene family evolutionary scenarios that are both parsi-
monious and time-consistent has been shown to be intractable when such scenarios are
modeled by reconciliations with an unranked species tree (Tofigh et al. 2011; Ovadia
et al. 2011), while, when the provided species tree S is ranked, the problem becomes
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tractable (see Doyon et al. 2011 and references therein). Similarly, when S is ranked,
we can ensure time-consistency of evolutionary histories, by requiring that the donor
and receiver of any HGT belong to the same time slice in Sπ , i.e. the receiver of an
HGT of a gene belonging to a species u belongs to C(u) = t(u)\{u}.

3 Methods

Our results (counting and sampling algorithms) are based on the design of formal gram-
mars specifying, for a given species tree S, the combinatorial families of DL-histories
and DLT-histories constrained by S. These grammars are then used as templates to
design dynamic programming algorithms for counting and sampling (under the uni-
form distribution) the number of histories of a fixed size. Moreover, these grammars
are amenable to techniques of analytic combinatorics that allow us to compute the
asymptotic growth constant for the number of histories. We first describe our gram-
mars, then the counting and sampling algorithms, and finally the asymptotic analysis
of these grammars.

3.1 General grammars specifyingDLDLDL-histories andDLTDLTDLT-histories

In this section we describe grammars specifying histories evolving within a species
tree using the formalism developed in Flajolet and Sedgewick (2009). We describe
grammars for DLT-histories, for both an unranked and a ranked species tree; these
grammars can then be specialized into grammars for DL-histories by omitting the
rules related to HGT.

Let S be a species tree. If S is unranked, it is a binary tree, otherwise, if it comes with
a ranking π , we consider the unary-binary species tree Sπ . So in the statements below,
when mentioning a ranked species tree we mean the unary-binary tree Sπ defined by
the ranking, i.e., we omit the ranking π in the sequel.

Recall that Su denotes the subtree rooted at node u. Likewise, we denote by Hu the
set of DLT-histories for the tree Su . In the most general setting, following (Flajolet
and Sedgewick 2009), these grammars contain both terminal symbols, corresponding
to atomic elements of the histories (nodes) and non-terminal symbols, corresponding
to combinatorial operators applied to sets of histories.We use the non-terminal symbol
Zu to encode a gene present in extant species u; moreover, we useXu for a gene lost at
species u,Yu for a duplication at species u andWu for a HGTwith donor species u.We
consider two combinatorial operators,∪ the disjoint union and× theCartesian product.

Theorem 3.1 The set Hr(S) defined by the grammar below specifies the set of allDLT-
histories for a species tree S.

Hu = Su ∪ Du ∪ Tu if u is internal (1)

Hu = Zu ∪ Du ∪ Tu if u is a leaf (2)

Su = Hu�
× Hur ∪ Hu�

× Xur ∪ Xu�
× Hur if u is internal and binary (3)

Su = Huc if u is internal and unary (4)

Du = Hu × Hu × Yu (5)
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Tu =
⋃

v∈C(u)

Hu × Hv × Wu (6)

where C(u) is the set of nodes that are incomparable with u in S. The set of DL-
histories is specified by the same grammar where rule (6) is removed and the terms
Tu are removed from rules (1) and (2).

Proof The grammar follows the definition of histories, Definition 2.1. Rule (1) simply
states that the root (i.e. the first evolutionary event of the history) of a DLT-history
within the subtree Su , assuming it is not reduced to a leaf, is either a speciation,
a duplication or a transfer of the ancestral gene present in species u: non-terminal
symbols Su , Du and Tu represent respectively these three subsets of Hu . Rule (2)
addresses the case where Su is composed of a single leaf, in which case there can not
be a speciation event, but a history reduced to a single gene in species u.

Rule (3) describes a speciation event at species u. The ancestral gene can either
evolve into a gene in each of the two children of u (first term of the union) or into a
gene in a single child of u due to a gene loss in the other child of u. In the case where
u is unary (due to being a node created by the time slicing in a ranked S), the ancestral
gene evolves into a copy in the unique child uc of u.

Rule (5) addresses the case of a duplication. It results in two ordered independent
histories starting at species u: the first one being the history of the original copy of the
starting ancestral gene and the second one the history rooted at the novel gene created
by the duplication.

Last, Rule (6) addresses the case of histories starting by a HGT. Generally, a HGT
has a structure similar to a duplication but for the fact that the novel gene appears in
a species that is incomparable with u.

These various rules cover all cases for describing the possible first event of a history
and are mutually exclusive, thus providing a complete recursive specification ofDLT-
histories for a given species tree S. It follows immediately that removing the rule and
non-terminals associated to HGT gives a grammar specifying DL-histories for S. ��

Remark 3.2 For many applications the grammar given in Theorem 3.1 is too detailed
in the sense that it considers e.g. the precise distribution of extant species. In the sequel
we will be only interested in the total number of extant species, as well as speciation,
duplications and transfer events. Therefore, we replace all non-terminal symbols Zu

(resp. Xu , Yu , Wu) by a single variable Z (resp. X , Y ,W).

3.2 Counting and sampling algorithms

The grammar defined above can naturally be turned into a dynamic programming
algorithm computing the number of histories of a given size. This algorithm computes
tables H , D, S, T where, for a given node u of S and a given history size n, H [u, n]
(respectively, D[u, n], S[u, n], T [u, n]) is the number of DLT-histories of size n
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evolving within Su (respectively, starting with a duplication, a speciation, and an
HGT). We illustrate this in the case ofDLT-histories with an unranked species tree S.

H [u, n] = S[u, n] + D[u, n] + T [u, n] if u is internal (7)

H [u, n] = 1n=1 + D[u, n] + T [u, n] if u is a leaf (8)

S[u, n] =
n−1∑

m=1

(H [u�,m]H [ur , n − m]) + H [u�, n] + H [ur , n] if u is internal (9)

D[u, n] =
n−1∑

m=1

(H [u,m]H [u, n − m]) (10)

T [u, n] =
n−1∑

m=1

⎛

⎝
∑

v∈C(u)

H [u,m]H [v, n − m]
⎞

⎠ (11)

A random generation algorithm can then be adapted from the counting recurrences,
resulting in an instance of the so-called recursive method (Wilf 1977). Right-hand
sides of the counting equation are split into sums of multiplicative terms. Starting
from the initial state H [r(S), n], the algorithm randomly chooses a term from the
right-hand side of the current state, with probability proportional to its contribution
to the counting. When the selected term is a multiplication of two terms, the length n
needs to be distributed across the two terms, and a pair of lengths (m, n−m), is chosen
with probability proportional to the associated count. For the sake of performances,
the various alternatives can be explored in Boustrophedon order, ensuring an overall
O(n log(n)) worst-case complexity (Flajolet et al. 1994). Recursive calls are then
performed over the states associated with the chosen term, until a leaf is chosen (term
1). This leads to the following result.

Theorem 3.3 The number of histories of size n constrained by a species tree of size k
canbe computed in polynomial timeO(Φ(n, k))and spaceO(Ψ (n, k)), whereΦ(n, k)
and Ψ (n, k) both depend on the model (DL orDLT) and the ranked/unranked nature
of the species tree, as summarized in Table 1.

The uniform random generation of h histories of size n can be performed in time
O(Φ(n, k) + h · Υ (n, k)).

3.3 Asymptotic number of histories in theDLDLDL-model

The grammar given in Theorem 3.1 defines a combinatorial specification of the set
of histories for a given species tree in a given evolutionary model. In this section,
we derive the asymptotic number of histories in the DL-model and use it later on two
specific species trees: the caterpillar and complete binary trees. The following theorem
is the main result of this section and describes their asymptotic growth for n tending
to infinity.
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Table 1 Leading terms for the
time (Φ(n, k)) and space
(Ψ (n, k), Υ (n, k)) complexities
incurred by the evaluation of the
counting recurrences for
histories consisting of n genes in
a species tree of size k

DL DLT

Counting time Φ(n, k)

Unranked k n2 k2 n2

Ranked k2 n2 k3 n2

Counting space Ψ (n, k)

Unranked k n2 k2 n2

Ranked k2 n2 k3 n2

Generation time Υ (n, k)

Unranked n log n k n log n

Ranked n log n k n log n

Theorem 3.4 For any given species tree S, the number of histories in the unranked
DL-model given by Eqs. (1)–(5) is, for large n, equal to

γS
ρ−n
S

n3/2

(
1 + O

(
1

n

))
, (12)

for explicitly computable constants γS > 0 and ρS ∈ (0, 1/4].
In the remainder of this section we prove this theorem. The grammars are amenable

to enumerative and analytic combinatorics techniques.We follow the general approach
presented in Flajolet and Sedgewick (2009) and Drmota (1997). It consists mainly in
translating the combinatorial specification of a combinatorial family into equations
defining its counting generating function. Then, its analytic properties lead to precise
asymptotic formulas for its coefficients. We provide an overview of this approach in
Example 3.5.

Example 3.5 Consider the class of rooted binary trees B. Such a tree is either a leaf,
or it consists of a root with two children which are also each roots of binary trees. Let
us mark each leaf with the variable Z . Then, the grammar is given by

B = Z ∪ B2.

Let bn be the number of binary trees with n leaves and let B(z) = ∑
n≥1 bnz

n be
the counting generating function of binary trees. The symbolic method (Flajolet and
Sedgewick 2009, Part A) translates this grammar directly into an equation for the
generating function:

B(z) = z + B(z)2. (13)

Its generating function is thus given by B(z) = 1−√
1−4z
2 .

The general method of singularity analysis from analytic combinatorics (Flajo-
let and Sedgewick 2009, Chapter VI) allows us to directly get the asymptotics of
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the coefficients. First, by the Cauchy–Hadamard theorem, the asymptotic growth is
directly connected with the dominant singularities (and the radius of convergence) of
the counting generating function. Here, the generating function B(z) becomes sin-
gular at z = 1/4, which is also the unique singular point. Hence, the coefficients
bn grow like 4n . Second, using transfer theorems of analytic combinatorics (Flajolet
and Sedgewick 2009, Theorem VI.1 and Theorem VI.3) we also get the subexponen-
tial terms and recover the well-known result for Catalan numbers bn+1 = 1

n+1

(2n
n

)

(see OEIS Foundation Inc. 2020):

bn = 4n−1

√
πn3

(
1 + O

(
1

n

))
,

for n → ∞.

We will now describe this approach applied to the grammar specifying the DL-
histories with an unranked species tree S. Let hu,n be the number of DL-histories of
Su consisting of n genes represented in the generating function by the formal variable z.
We define the counting generating functions

Hu(z) =
∑

n≥0

hu,nz
n .

The coefficients hu,n represent the number of histories of size n associated with the
species tree Su independent on the number of losses or duplications. These generating
functions (one per species u of S) are strongly related to the generating function of
binary trees B(z) introduced in Eq. (13).

Lemma 3.6 For a given species tree S the counting generating function Hr(S)(z) for
histories in the unranked DL-model is defined by the system of functional equations

Hu(z) = B
(
Hu�

(z)Hur (z) + Hu�
(z) + Hur (z)

)
if u is internal,

Hu(z) = B (z) if u is a leaf, (14)

over all nodes u of S, where

B(z) = 1 − √
1 − 4z

2
.

Proof The symbolic method (Flajolet and Sedgewick 2009, Part A) translates the
unranked DL-grammar of Eqs. (1)–(5) into a system of equations for the generating
functions; compare Example 3.5. First, as we are only interested in the total number
of extant species (independent of the specific distribution), we replace Zu by the
counting variable z. Second, we ignore the number of speciation, duplication, and
transfer events and replace Xu , Yu , and Wu by 1. Third, we replace Hu , Du , Tu , and
Wu by generating functions Hu(z), Du(z), Tu(z), andWu(z), respectively. Finally, we
transform unions into sums and Cartesian products into normal products. This gives
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a system of equations, that is simplified to the following recursive set of equations for
Hu(z):

Hu(z) = Hu(z)
2 + Hu�

(z)Hur (z) + Hu�
(z) + Hur (z) if u is internal,

Hu(z) = Hu(z)
2 + z if u is a leaf. (15)

Comparing these equations with the one for binary trees from Eq. (13) the claim
follows. ��

The advantage of the generating function approach is that it allows us to identify
the universal subexponential growth n−3/2, and to explicitly compute the exponential
growth ρ−n

S and the constant γS for a fixed species tree S.Wewill compute the involved
constants explicitly for the caterpillar tree in Sect. 4.1.1 and for the complete binary
tree in Sect. 4.1.2. Our experiments in Sect. 4.2 suggest that among all species trees of
size k the number of DL-histories for given n is maximal for the caterpillar tree and
minimal for balanced trees, where complete binary trees are special cases for powers
of two; see also Conjecture 4.5. This would imply, that the exponential growth factor
ρS is bounded by the respective exponential growth factors for the caterpillar and the
balanced trees. Note that no such conclusion is possible for the constant γS.

By basic principles of analytic combinatorics, the asymptotic growth of a counting
sequence is directly related to the radius of convergence of the corresponding gener-
ating function. In particular, its dominant singularity (i.e. the one closest to the origin)
defines its asymptotic growth. By the construction in terms of nested radicals, the
generating function Hu(z) is singular if and only if at least one of its radicals vanishes.
Writing the explicit form of the outermost B(z) in (14) gives

Hu(z) = 1 − √
Ru(z)

2
. (16)

Then, the radicands satisfy the following recurrence

Ru(z) =
{

− 4 + 3
√
Ru�

(z) + 3
√
Rur (z) − √

Ru�
(z)Rur (z) if u is internal,

1 − 4z if u is a leaf.
(17)

The recurrence can be used to determine the nature of the radii of convergence. For
a node u we define ρu as the radius of convergence of Hu(z).

Lemma 3.7 Let u be the parent of v in S. Then, ρu < ρv and ρu ∈ (0, 1/4] with
ρu = 1/4 if u is a leaf. Furthermore, Ru(z) is the only radicand of Hu(z) that vanishes
at z = ρu and ρu is a simple root.

Proof By combinatorial construction Hu(z) is built of nested radicals and does not
include any poles. Therefore, its dominant singularity ρu must be at the point minimal
in modulus where (at least) one of its radicands vanishes. By Pringsheim’s Theorem
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(Flajolet et al. 1990, Theorem IV.6) we know ρu ∈ (0,+∞). When u is a leaf we
directly see from (17) that ρu = 1/4.

We continue by induction on the depth of the subtree with root u given by Su .
The depth is the longest path from the root to any leaf. As a first step, we prove that
Ru(0) = 1. For a leaf u it is clear from Relation (17) that Ru(0) = 1.

Next, let v and w be the children of u.
By the induction hypothesis we directly get

Ru(0) = −4 + 3
√
Rv(0) + 3

√
Rw(0) − √

Rv(0)Rw(0) = 1.

In order to continue, note that Ru(z) is monotonically decreasing on [0,+∞),
because from the decomposition in (16) and (15) we see that

Ru(z) = 1 −
∑

n≥1

anz
n, (18)

for certain non-negative numbers an .
Next, assume that for the given v and w we have ρv ≤ ρw. Note that Rv(z) and

Rw(z) are continuous on (0, ρv). Therefore, by Relation (17), Ru(z) is continuous on
(0, ρv). Hence, we get

Ru(ρv) = −4 + 3
√
Rw(ρv) < 0.

Thus, on the one hand, by the intermediate value theorem Ru(z)must have at least one
zero in the interval (0, ρv). On the other hand, as Ru(z) is monotonically decreasing
it has at most one zero in (0, ρv). Hence, this zero is equal to ρu and ρu < ρv .

Finally, the above reasoning implies that among the nested radicals of Hu(z) the
outermost one is the first one that vanishes, and no other radical vanishes at the same
time. Thus, ρu is the radius of convergence of Hu(z). Moreover, by (18) we see that
the derivative R′

u(z) has non-positive coefficients. Hence, ρu is a simple root. ��
Let us shortly digress and discuss in a more general context how to numerically

compute the exponential growth for the coefficients of the generating function with the
fastest exponential growth that is defined by a system of functional equations involving
generating functions B1, . . . , Bk of the form

Bi = Φi (z, B1, . . . , Bk) ,

where theΦi are polynomials with non-negative integer coefficients in k+1 variables.
Note that the grammar given in Theorem 3.1 is of this form. In order to decide which of
the Bi ’s has this specific exponential growth, further information on the problem, like
in our case given by Lemma 3.7, is needed. By Banach’s fixed point theorem, these
equations admit a unique solution vector (B1, . . . , Bk) ∈ (C[[z]])k with respect to the
formal topology (Flajolet and Sedgewick 2009, Section A.5). Furthermore, each Bi (z)
has non-negative coefficients in its expansion around 0 (which is already clear from
the combinatorial nature of the problem). Then, the multivariate version of the implicit
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function theorem implies that each of themhas a non-zero radius of convergencewhich
we call ρi . By Pringsheim’s Theorem (Flajolet and Sedgewick 2009, Theorem IV.6),
ρi ∈ [0,+∞] is a singularity of Bi (z). Moreover, as Bi (z) is an ordinary generating
function of an infinite combinatorial class, we must have ρi ∈ [0, 1]. Finally, in order
to compute the radius of convergence, we find the minimal point z ∈ [0, 1] where the
implicit function theorem fails. To be more precise, we numerically compute solutions
ρ ∈ [0, 1] and b1, . . . , bk ∈ [0,+∞) of the following system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1 = Φ1(ρ, b1, . . . , bk)
...

bk = Φk(ρ, b1, . . . , bk)

0 = det
(
δi, j − ∂

∂b j
Φi (ρ, b1, . . . , bk)

)
,

where δi, j is the Kronecker symbol: δi,i = 1, and δi, j = 0 for i �= j .

Remark 3.8 The unranked DL-grammars lead to the following specific shape

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1 = Φ1(z, B1)

B2 = Φ2(z, B1, B2)
...

Bk = Φk(z, B1, . . . , Bk)

Hence, we get det
(
δi, j − ∂

∂b j
Φi (ρ, b1, . . . , bk)

)
= ∏k

i=1(1−2bi ).Weactually know

by Lemma 3.7 that the outermost square-root vanishes, which gives bk = Bk(ρ) =
1/2. Additionally, we can also directly deduce from this system that ρk ≤ ρk−1.

In the unranked DLT-model the system is as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1 = Φ1(z, B1, B2, . . . , Bk−1)
...

Bk−1 = Φk−1(z, B1, . . . , Bk−1)

Bk = Φk(z, B1, . . . , Bk)

where the last equation is the only one involving Bk , as the root can not be a receiver
of an HGT. Note that the subsystem of the first k − 1 equations is strongly connected
but still does not satisfy the a-properness condition (i.e. there is no contraction in
the formal topology) of the Drmota–Lalley–Woods Theorem (Flajolet and Sedgewick
2009, Theorem VII.6) which would directly imply a square root singularity. Thus, we
conjecture that the dominant singularity still comes solely from the outermost square
root of Bk implying bk = 1/2.

In the ranked DLT-model we are dealing with blocks of strongly connected com-
ponents that correspond to the time slices. Note that the root is contained in a singleton
time slice. An experimental analysis of the corresponding systems of functional equa-
tions using computer algebra suggests the same behavior as in the previous cases.
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However, one fact holds in all models: we always have ρr(S) ≤ ρu for all other
subtrees with root u of the species tree. Hence, there will be always a dominant
minimal singularity in [0, 1] that can be (numerically) computed. Note however, that
the determinant computation quickly becomes extremely heavy.

After determining the radius of convergence, we must determine the number of
singularities on it. As shown in the case of λ-terms in (Bodini et al. 2018, Lemma 8)
there can only be one dominant singularity ρu . Let us quickly repeat this argument
here. Assume that there exists a root z0 = ρueiθ of the same modulus. Substituting
this value into Ru(z) from (18) gives

1 =
∑

n≥1

anρ
n
u = ∣∣

∑

n≥1

anz
n
0

∣∣,

which can only hold if einθ = 1 whenever an �= 0. Now, due to a1 �= 0 we have
z0 = ρu . Hence, ρu is the unique dominant real singularity of Hu(z).

Combining the previous results, we have shown for a family of constants γu,i the
following local singular expansion

Hu(z) = 1

2
−

∑

i≥0

γu,i (1 − z/ρu)
i+1/2 .

The fact that Ru(z) has a simple root at z = ρu implies that γu,0 �= 0. Furthermore,
as Ru(z) is monotonically decreasing in a neighborhood of ρu (see Lemma 3.7) we
have γu,0 > 0. (This follows also a-posteriori from the fact that the generating func-
tion has non-negative coefficients and therefore the subsequent asymptotics has to be
non-negative.) This information suffices to deduce the asymptotic expansion of the
coefficients using singularity analysis (Flajolet and Sedgewick 2009, Chapter VI);
compare also Example 3.5.

First, the asymptotic growth is given by the reciprocal of the dominant singularity,
i.e., the one closest to the origin. In our case this singularity is ρu and therefore
the asymptotic growth is equal to ρ−n

u . Second, by transfer theorems of analytic
combinatorics (Flajolet and Sedgewick 2009, Theorem VI.1 and Theorem VI.3), the
subexponential terms are related to the asymptotic expansion at z = ρu which we see
above; see also (Flajolet and Sedgewick 2009, Figure VI.5). In particular, we have a
square-root singularity andwe get, after applying the scaling rule of Taylor expansions,

[zn]Hu(z) ∼ −γu,0

2
ρ−n
u [zn]√1 − z ∼ γu,0

2
√

πn3
ρ−n
u .

This is the claimed asymptotic expansion of Eq. (12), where γS = γu,0

2
√

π
> 0. This

ends the proof of Theorem 3.4.

Remark 3.9 There are several possible extensions of the previous approach in order to
rigorously analyze a conjectured behavior for other models. First of all, it is straight-
forward to extend it to the rankedDL-model. In that case one only needs to incorporate
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unary nodes arising from the time slices. Second, an extension to the DLT-model is
also possible, yet the computations are more involved as the binary tree structure lead-
ing to Lemma 3.6 does not hold anymore. However, it can still bemodeledwith colored
binary trees, where the number of colors depends on the size of the set of incomparable
nodes (in the current time slice). Third, it is also possible to consider the distribution
of certain parameters, such as the number of gene losses, or the number of gene dupli-
cations, see e.g. for related results in lattice paths and trees (Bóna and Flajolet 2009;
Gittenberger et al. 2018; Banderier and Wallner 2016). Using multivariate generating
functions and marking each such event by an additional variable like in the general
grammar of Theorem 3.1, the above results for the DL-model directly generalize to
the respective ones on multivariate generating functions. All these generalizations are
interesting future research directions.

The counting and sampling algorithms described above have been implemented in
Python, and are available at https://github.com/cchauve/DLTcount.

4 Results

Over the next two sections, we will apply Theorem 3.4 to the special cases of the
caterpillar and complete binary species tree in the unranked DL-model, and explic-
itly determine the constants involved in the asymptotic expansion. Then, we apply
our dynamic programming counting and sampling algorithms to study properties of
random evolutionary histories.

4.1 Asymptotic expansion for extremal species trees in theDLDLDL-model

Our experimental results (Sect. 4.2) suggest that for a given k, the species trees hav-
ing the largest (resp. smallest) number of DL-histories are respectively the caterpillar
tree and the balanced binary tree with k leaves (Conjecture 4.5), defined below. In
the present section, our main results are the explicit computation of the asymptotic
growth and the leading constant of Theorem 3.4 for the caterpillar species tree (Propo-
sitions 4.1 and4.2) and for the complete binary species tree, the special case of balanced
trees when k is a power of 2 (Propositions 4.3 and 4.4, see also Table 2).

The rooted caterpillar tree CTk can be defined as follows: CT1 is the tree reduced
to a single leaf, while CTk (k > 1) is the tree formed by a left subtree equal to CTk−1
and a right subtree equal to CT1. Observe that every subtree of a caterpillar tree is
itself a caterpillar tree, see Fig. 4.

The complete binary tree CBh with k = 2h leaves can be defined as follows: CB0
is the tree reduced to a single leaf, while CBh (h ≥ 1) is the tree formed by a left
and a right subtree both equal to CBh−1. Observe again that every subtree is itself
a complete binary tree, see Fig. 4. The complete binary tree is a special case of the
class of balanced trees, defined as trees where, for each node, the number of leaves in
the left subtree differs from the number of leaves in the right subtree by at most one.
Complete binary trees are the only balanced trees in which the number of leaves is a
power of two.
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Table 2 Leading constants and exponential growth factors for the number of DL-histories consistent with
the unranked caterpillar and complete binary species tree

#Species Caterpillar tree CTk Complete binary tree CBk
k αk Exp. growth λ−1

k βh Exp. growth μ−1
h

1 0.1410 4.00 0.1410 4.00

2 0.1557 9.61 0.1557 9.61

3 0.1647 15.72 – –

4 0.1742 22.69 0.1620 20.75

5 0.1835 30.53 – –

6 0.1927 39.25 – –

7 0.2015 48.84 – –

8 0.2101 59.31 0.1650 43.02

9 0.2184 70.65 – –

10 0.2265 82.86 – –

11 0.2342 95.93 – –

12 0.2418 109.85 – –

13 0.2491 124.64 – –

14 0.2563 140.28 – –

15 0.2632 156.77 – –

16 0.2700 174.11 0.1664 87.56

Their closed forms are given in Propositions 4.1–4.4

Fig. 4 Left: the caterpillar species tree CT5. Right: the complete binary species tree CB2

Wecanobserve that the number ofDL-histories growsmuch faster for the caterpillar
tree than for the complete binary tree. This is actually unsurprising given that the
number ofDL-histories can be linked to the size of the grammar, which itself depends
on the structure of the species tree. More precisely, the size of the grammar depends on
the number of unique subtrees of the considered species tree S. Each such subtree may
be identified by its root u and corresponds to one set of rules (1)–(6), while subtrees
having the same topology lead to isomorphic subgrammars with the same counting
generating functions. The caterpillar (resp. complete binary) tree has the largest (resp.
smallest) number of unique subtrees within the set of species trees of the same size
(when k is a power of 2 for the complete binary tree), compare also Table 2. The special
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Table 3 DL-history counting sequences of the caterpillar species trees CTk

k Sequence OEIS

1 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, . . . A000108

2 2, 7, 34, 200, 1318, 9354, 69864, 541323, 4310950, 35066384, . . . A307696

3 3, 19, 159, 1565, 17022, 197928, 2413494, 30490089, 395828145, . . . A307697

4 4, 39, 495, 7235, 115303, 1948791, 34379505, 626684162, . . . A307698

5 5, 69, 1230, 24843, 541315, 12426996, 296546600, 7292489761, . . . A307700

role of the caterpillar and complete binary trees echoes recent observations regarding
these two trees (Gavryushkin and Drummond 2016; Gavryushkin et al. 2018).

4.1.1 CountingDLDLDL-histories associated with the caterpillar species tree

Denote by HCT
k the set of DL-histories over the caterpillar CTk , then the general

grammar of DL-histories, where extant genes are marked by a single terminal Z , is
the following:

HCT
k = DCT

k + SCTk if k > 1 (19)

HCT
1 = Z + DCT

1 (20)

SCTk = HCT
k−1 × HCT

0 + HCT
k−1 + HCT

0 if k > 1 (21)

DCT
k = HCT

k × HCT
k (22)

Let fk,n be the number ofDL-histories of the caterpillarCTk consisting of n genes.
The corresponding counting generating function is given by

Fk(z) =
∑

n≥0

fk,nz
n .

Now we use Lemma 3.6 to derive a functional equation, which we immediately sim-
plify by the defining recursive structure of caterpillars: The right child is always a leaf
with generating function B(z) and the left child is a smaller caterpillar. Therefore, we
get

Fk(z) = B
(
F2
k−1(z) + Fk−1(z) + B(z)

)
.

In Table 3 we computed the first few initial terms for k = 1, . . . , 5. Note that none but
the first one was found in the OEIS before we added them.

Applying Theorem 3.4, the asymptotic expansion of the coefficients for n → ∞ is

fk,n = αk
λ−n
k

n3/2

(
1 + O

(
1

n

))
. (23)
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for some constants αk > 0 and λk > 0 that are made explicit below.

Proposition 4.1 We define the following sequence of rational functions in X

{
s1(X) = 0,

sk(X) = 3X−4−sk−1(X)2

X−3 for k > 1.

Let Xk be the minimal positive real solution of the fixed point equation

sk(X) = X .

Then, the dominant singularity of Fk(z) can be found at λk = 1−X2
k

4 .

Proof We need to analyze the nested radicals of Fk(z) in more detail. Therefore, as
done in Eq. (16) for the general case, we define the decomposition

Fk(z) = 1 − √
Pk(z)

2
.

Thus, we directly get the specialized version of the recurrence for the radicands from
Eq. (17) by

{
P1(z) = 1 − 4z,

Pk(z) = −4 + 3
√
1 − 4z + (3 − √

1 − 4z)
√
Pk−1(z), for k > 1.

(24)

The dominant singularity λk is given by the minimal positive root of Pk(z). This
already proves the case k = 1. We introduce the shorthand X = √

1 − 4z and define
new polynomials P̃k(X) such that Pk(z) = P̃k(

√
1 − 4z). This directly gives

{
P̃1(X) = X2,

P̃k(X) = (3X − 4) − (X − 3)
√
P̃k−1(X), for k > 1.

(25)

Hence, this equation is zero if and only if

√
P̃k−1(X) = 3X − 4

X − 3
=: s2(X).

For k = 2 this proves the claim as
√
P̃1(X) = X . Now we proceed by induction.

Squaring this equation and substituting the known expression for P̃k−1(X) gives

√
P̃k−2(X) = 3X − 4 − s2(X)2

X − 3
=: s3(X).

Repeating this process proves the claim. ��
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Proposition 4.2 Using the notation of Proposition 4.1, the constant αk is equal to

αk =
√√√√ λk

8πXk

k+1∑

i=2

σi,k(Xk)

(
3 − Xk

2

)i−2 i−1∏

j=2

1

s j (Xk)
,

σi,k(X) =
{
3 − si (X) if i ≤ k,

2X if i = k + 1.

In particular, αk > 0.

Proof We will prove that P̃k(X) admits the following expansion in a neighborhood of
Xk :

P̃k(X) = P̃ ′
k(Xk)(X − Xk) + O((X − Xk)

2),

where the derivative is with respect to X . Note that this derivative exists, as P̃k(X) is
analytic on (0, (1 − X2

k−1)/4) and we know from Lemma 3.7 that Xk−1 < Xk .

Next, recall the shorthand X = √
1 − 4z and that by the chain rule ∂z P̃k(X) =

∂X P̃k(X)∂z X . Then, the transfer theorems of analytic combinatorics (Flajolet and
Sedgewick 2009) directly show that the n-th coefficient of Fk(z) satisfies the form (12)

with αk =
√

λk P̃ ′
k(Xk)/(8πXk).

Therefore, it remains to find an expression for P̃ ′
k(Xk).

Let us take the derivative of Eq. (25). We get

P̃ ′
k(X) = 3 −

√
P̃k−1(X) + 3 − X

2
√
P̃k−1(X)

P ′
k−1(X).

In the proof of Proposition 4.1 we have seen that
√
P̃i (Xk) = sk−i+1(Xk). Iterating

this equation until P̃ ′
1(X) = 2X shows the claim. Finally, the positivity of the constant

holds as all terms are positive. ��
With these formulas it is easy to compute explicit values for the constant αk and

the asymptotic growth factor λ−1
k . We show the first few values in Table 2.

4.1.2 CountingDLDLDL-histories associated with the complete binary species tree

Let HCB
h be the set of DL-histories associated with the complete binary tree CBh .

Then, the respective grammar, considering again only terminals Z marking extant
genes, is the following:

HCB
h = DCB

h + SCBh if h ≥ 1 (26)

HCB
0 = Z + DCB

0 (27)
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Table 4 DL-history counting sequences of the complete binary species trees CBh with k = 2h leaves

h k Sequence OEIS

0 1 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, . . . A000108

1 2 2, 7, 34, 200, 1318, 9354, 69864, 541323, 4310950, 35066384, . . . A307696

2 4 4, 34, 368, 4685, 66416, 1013268, 16279788, 271594611, 4660794200, . . . A307941

3 8 8, 148, 3376, 89390, 2624872, 82866636, 2755019736, 95135709027, . . . A307942

4 16 16, 616, 28832, 1556780, 93017264, 5971377672, 403667945712, . . . A307943

SCBh = HCB
h−1 × HCB

h−1 + HCB
h−1 + HCB

h−1 if h ≥ 1 (28)

DCB
h = HCB

h × HCB
h (29)

Let gh,n be the number of histories over the complete binary tree CBh consisting
of n genes represented by z. As before, we analyze the counting generating function
which is given by

Gh(z) =
∑

n≥0

gh,nz
n .

As in the case of a caterpillar species tree, we get from Lemma 3.6 combined with the
recursive definition of binary species trees the following functional equation

Gh(z) = B
(
G2

h−1(z) + 2Gh−1(z)
)

.

As before, we computed the first few initial terms in Table 4. Again, none but the first
one was found in the OEIS [50] before we added them.

Applying Theorem 3.4 gives the asymptotic expansion of the coefficients for n →
∞ as

gh,n = βh
μ−n
h

n3/2

(
1 + O

(
1

n

))
,

where βh > 0 and μh > 0 are nonnegative constants computed as follows.

Proposition 4.3 The dominant singularity of Gh(z) is μh = 1−qh
4 , where

{
q0 = 0,

qh+1 = (3 − √
5 − qh)2 for h ≥ 0.

Furthermore, qh and μh are algebraic numbers of degree 2h.

Proof As for the caterpillar tree, we need to analyze the nested radicals. To make this
structure visible, we again define
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Gh(z) = 1 − √
Qh(z)

2
. (30)

Then, the radicands satisfy the following recurrence

{
Q0(z) = 1 − 4z,

Qh+1(z) = −4 + 6
√
Qh(z) − Qh(z), for h ≥ 0.

(31)

When comparing it with the recurrence of radicands for the caterpillar grammar in (24)
we notice a major difference: the coefficients are independent of z.

Then, the reasoning follows the same lines as the proof of Proposition 4.1. Yet, due
to the independence of the coefficients of z, the induction yields an explicit expression.
Note that Qh−i (μh) = qi . ��

In a similar way we are also able to compute the constant βh explicitly.

Proposition 4.4 Using the notation of Proposition 4.3, the constant βh is equal to

βh =
√√√√ μh

16π

h−1∏

i=1

(
3

q2i
− 1

)
.

Proof By Eq. (30) the singularity of Gh(z) is determined by the smallest root μh of
Qh(z). The constant is determined by the expansion for z → μh :

Qh(z) = bh(z − μh) + O
(
(z − μh)

2
)

.

By the recursive definition, Qh(z) is differentiable in (0, μh−1) due to μh < μh−1.
Thus, bh = Q′

h(μh) is well-defined. Differentiating the recurrence of Qh(z) we get

Q′
h(z) =

(
3√

Qh−1(z)
− 1

)
Q′

h−1(z).

Iterating this relation and applying Qh−i (μh) = qi proves the claim. ��
As before, we computed the first few explicit values for the constant βh and the

asymptotic growth factor μ−1
h , where h is a power of 2, and show them in Table 2.

4.2 Empirical investigations and open questions

In this sectionwe present empirical results and observations derived using the counting
and sampling algorithms described in Sect. 3.2. These results provide the first detailed
view, especially in the DL-model, of the general question: in how many ways can n
genes have evolved from a single ancestral gene, for a given species tree?
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4.2.1 Counting histories for random species trees

We are first interested in computing the number of histories in a given evolutionary
model. We considered the following models:DL-histories with an unranked or ranked
species tree (called respectively models uDL and rDL from now),DLT-histories with
an unranked species tree or a ranked species tree (called respectively models uDLT
and rDLT from now).

For a given evolutionary model and species tree S of size k, let hS(n) be the number
of histories of size n. As shown in Eq. (12) for the uDL-model, this number grows
asymptotically with n as follows

hS(n) � γS
ρ−n
S

n3/2

(
1 + O

(
1

n

))

where γS and ρS, both depend only on S. From now, we denote ES = ρ−1
S the

exponential growth factor for the number hS(n). In the uDL-model, as discussed in
Sect. 3.3, we can compute precisely the growth factor from the grammar specifying
the DL-histories for the given species tree S. For other models, we can estimate ES
from the number hS(n) of histories of size n as follows:

ES � hS(n)

hS(n − 1)
, (32)

this estimate precision increasing naturally with n.
DL-models. We considered species trees of size ranging from k = 3 to k = 25 and
for each species tree size k, we generated 98 random species tree of size k under the
uniform distribution, using the RANRUT algorithm described in Nijenhuis and Wilf
(1978), and we completed this set of species tree by adding the caterpillar species
tree with k leaves and the balanced tree with k leaves;3 so for small values of k, the
same species tree can occur several times in the sample of 100 trees. When working
in the rDLT-model, we generated, for each species tree 10 random rankings under the
uniform distribution, using the algorithm described in Bodini et al. (2018). Then, for
each instance, we computed the number of histories of size n = 50 in themodels uDL,
uDLT and rDLT4 and used these numbers to estimate the growth factor using (32).

Figure 5 shows the exponential growth factor in the uDL-model obtained using the
exact approach described in Sect. 3.3 and the ratio between this exact growth factor
and the growth factor estimated using the experimental approach described above. A
first observation from Fig. 5 is that estimating the growth factor from the number of
histories of size n = 50 approximates well the exact growth factor in the uDL-model;
we believe it is also the case in the other models (data not shown).

3 Note that for a given k, any two balanced ordered binary trees with k leaves differ only by swapping
the left and right children of some internal nodes, so for our purpose there is essentially a unique balanced
species tree for every value of k.
4 We omit here the results for the rDL-model as they are very similar to the results for the uDL-model,
with a lower dispersion.
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Fig. 5 Box-plot of the distribution of the growth factor for each 100 random species tree per size k in the
uDL-model. (Top) exact growth factor; (Bottom) box-plot of the distribution, for each species tree, of the
ratio between the exact growth factor and the estimated growth factor

Moreover, following up on the results shown in Table 2, our experiments lead to
the following conjecture, characterizing the species trees leading to extreme growth
factors for a given value of k.
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Conjecture 4.5 For a given k, and n large enough, the unranked species tree of size k
having the largest number of DL-histories of size n is the caterpillar tree; moreover
the exponential growth factor of the number of histories for a caterpillar of size k
grows superlinearly as a function of k. Species trees having the smallest number of
DL-histories are balanced species trees of size k and the exponential growth factor of
the number of histories for a balanced tree of size k grows linearly as a function of k.

We verified that the conjecture is true for all values of k in our experiments. We
investigated several proof ideas, in particular linking the exponential growth factor
to the number of unique subtrees in a species tree. Indeed this is a feature for which
caterpillar and balanced trees reach extreme values for a given value of k; actually the
caterpillar is the unique tree with the maximum number of subtrees, while balanced
trees have the minimum number of subtrees, although if k is not a power of 2, some
unbalanced trees can have the same number of subtrees as the balanced ones. We did
find examples of pairs of species trees for which the one with the larger (resp. smaller)
number of unique subtrees has a smaller (resp. larger) exponential growth factor. There
are also species trees with the same number of unique subtrees as balanced trees of
the same size and showing a larger exponential growth rate. So the number of unique
subtrees is not the determinant leading to an extreme growth factor. We observed
similar examples when considering the height of the species tree, another feature for
which caterpillar and balanced trees attain extreme values. Generally the question of
understanding which features of species trees of the same size that makes one having
more DL-histories than the other one is open.
DLT-models. Next, we consider models including HGT; in Fig. 6 we show the esti-
mated growth constants in the uDLT- and rDLT-models.

An observation that addresses one of the main questions motivating our work, is
that the number of histories in models involving HGT grows much faster than in mod-
els excluding HGT; this is apparent by comparing the growth factors in the uDL and
uDLT models, but even more through Fig. 7 that shows the ratio of the number of
DLT-histories over the number of DL-histories for selected pairs (k, n), considered
over all randomly chosen ranked or unranked species trees. We can observe that the
ratios grow as large as 1040 in the unranked model and 1029 in the ranked model for
histories of size 50 over a species tree of size 25, that correspond to parameters of real-
istic phylogenomics datasets. It is nevertheless interesting to observe that considering
ranked species trees tames significantly the magnitude of the search space explosion
when introducing HGT in a model.

Finally, we can observe that in the rDLT-model, the growth factor seems to be
almost independent of the topology of the chosen species tree and ranking (Fig. 6
(Bottom)). Intuitively, this can be explained by the fact that a ranked species tree can
almost be seen as a sequence of time slices, each composed of a set of branches (from
1 branch for the time slice containing the root of S to k branches for the time slice
containing all leaves), with exactly one ending with a speciation node while all other
end by a unary node.Within each time slice, the genes can evolve freely by duplication
and HGT, where a duplication can be seen as equivalent to a HGT within the same
branch. Thus, the number of histories is dominated by the number of evolutionary
events taking place in each time slice, with some variability being introduced by the
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Fig. 6 Box-plot of the distribution of the growth factor for each 100 random species tree per size k in the
uDLT (top) and rDLT (bottom) models. The growth factor is estimated from the number of DLT-histories
of size n = 50 using formula (32)

number of genes leaving a time slice right after the only speciation node it contains,
that can create extra gene copies entering the next time slice.
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Fig. 7 Box-plots of the distribution of the ratio of the number of DLT -histories over the number of DL-
histories over all species trees size k and histories size n for selected pairs (k, n). The distributions are
obtained, for each (k, n), over 100 randomly chosen (resp. 1000) unranked (resp. ranked) species trees
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In order to understand this phenomenon, we investigated a reduced evolutionary
model, in which every speciation is followed by a random loss, i.e. does not create
an extra gene copy entering the next time slice; we name this model the rDT-SL-
model, where SL stands for Speciation-Loss. In this model, we are able to prove the
independence of the chosen species trees.

Theorem 4.6 In the rDT-SL-model, the number of histories of size n is the same for
every ranked species tree of size k.

Proof Let a ranked species tree of size k be given, and consider the unary-binary tree
induced by its time slices. We then transform this tree into a directed graph called the
events graph describing the possible events of duplication, HGT, and speciation in the
following way:

1. Label the leaves from 1 to k.
2. Label each internal node with a set containing the labels of the leaves of its induced

subtree. These labels are the possible leaves reachable by speciation;
3. Encode speciation events by super edges called speciation edges which consist of

the one (unary) or two (binary) edges leading to the children of a node. By doing
so, the two edges are treated as a single edge;

4. Encode duplication events by adding loops called duplication edges to each node;
5. Encode HGT events by adding edges called transfer edges from each node to each

other node within the same time slice;

Note that by 5 we have a complete directed graph in every time slice, i.e., all nodes in
a time slice are adjacent to each other. An example of this transformation is shown in
Fig. 8.

Let us briefly state some properties of the events graph. The labels of the nodes of
each time slice form a set partition of {1, . . . , k} by construction. Due to the rankings,
each time slice contains one node more than the previous one and every path from the
root to the previous leaves contains k − 1 speciation edges.

The main idea of the proof is that we can encode a history H for a species tree
S of size k by an ordered unary-binary tree He whose nodes are labeled by nodes of
the events graph, that encodes unambiguously H , and then show that in the rDT-SL-
model, given the events graph E ′ of another ranked species tree S′ of the same size,
we can transform He into an ordered unary-binary tree H ′

e whose nodes are labeled
by nodes of E ′ that encodes a unique history for S′. This establishes a one-to-one
correspondence between the sets of histories for two arbitrary ranked species trees of
size k, S and S′, and thus proves the stated result.

The principle of the encoding is to associate each internal node of a history with a
(deterministic) label which is a node of the events graph. Let E be the events graph
of S. The encoding works as follows: for a node x of a history H for species tree
S, if t is the time slice it belongs to and i its left-most leaf (defined in a depth-first
traversal of the ordered tree representing the history), then we label x by the unique
node of E in the time slice t that contains i . Extant leaves stay labeled by their
extant species. After deleting leaves corresponding to gene losses from the history,
speciation-loss nodes become unary, while duplication and HGT nodes stay binary.
Call He the ordered unary-binary tree for history H . The original history H can be
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Fig. 8 Transformation of a ranked species tree (left part of the figure) (π(A) = 1, π(B) = 2, π(C) =
3, π(D) = π(E) = π(F) = π(G) = 4) into an events graph (right part of the figure) in the rDT-SL-model
used in the proof of Theorem 4.6

unambiguously recovered from He and E , by reinserting these losses and removing
the labels, as any edge of He corresponds to an edge of E , so defines an evolutionary
event.

Next, let S′ be another ranked species tree of the same size k as S and E ′ its events
graph. We transform He into H ′

e as follows: for every node x , whose left-most leaf is
u and that belongs to time slice t , replace its label by the unique node of time slice t of
E ′ that contains the u. This is always possible, as, by construction of the events graph
in models with HGT, any leaf is reachable from any node. We claim that H ′

e defines
unambiguously a history for S′. The key argument to prove this claim is that, by the
way we constructed E ′ and H ′

e, for any edge in H ′
e the labels of its two nodes, that are

either in the same time slice or in consecutive time slices, are incident in E ′: if both
nodes are in the same time slice, then by construction of E ′ they are either the same
node (so linked by a duplication edge) or are incident by a transfer edge, while if they
are in consecutive time slices, they contain a common species and so are incident by a
speciation edge. It follows that H ′

e encodes a history H ′ for S′. The construction from
H to H ′ is deterministic and reversible, which provides a one-to-one correspondence
between the histories of S and the histories of S′ in the rDT-SL-model.

Note that this construction does not work in models with no duplication, HGT or
unrestricted speciation as the key argument that any edge in H ′

e can be found in E ′
does not hold anymore, thus preventing to be able to transform H ′

e into a history for
S′. ��

Remark 4.7 From the previous proof we can also deduce an iterative tree growing
algorithm for the histories offering an alternative explanation for Theorem 4.6. Every
internal node gets a label that is a pair consisting of its time slice and the number of
its left-most leaf. Note that this uniquely identifies a node in the species tree.

We start with a root node labeled by the first time slice and an arbitrary number
from {1, . . . , k}. At every step, choose a leaf of the current history and consider the
corresponding node in the events graph. Then traverse one of its edges and perform
the action of this edge: If it is a speciation edge then add a new node with a label
consisting of the successive time slice and the same number as only child . If it is a
duplication or transfer edge then add a left child with the same label as the root and
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Fig. 9 Distribution of the score (number of duplications plus losses plus HGT) over 50 random species
trees of size 16 and 10, 000 random histories of size 30 per tree in the uDL- and uDLT-models

a right child labeled with the current time slice and an arbitrary number from the set
the edge is pointing to. Once all leaves correspond to extant nodes the tree is a valid
history.

Remark 4.8 The construction of the events graph in Theorem 4.6 can be adapted to
all models. If there are no duplication events, the duplication edges are removed; if
there are no HGT events, the transfer edges are removed. The characteristics of the
SL dynamics are not encoded in the events graph but in the bijection or the history
growing algorithm.

4.2.2 On the parsimony and profile of random histories.

We also considered the distribution of the evolutionary score for randomly sampled
histories, where the score of a history is the sum of the number of duplications, losses
and HGT, for k = 16 and n = 30, over 50 random unranked species trees, sampling
10,000 random histories for each species tree.

Figure 9 below suggests that the space of histories for a given species tree is domi-
nated by histories with a relatively high score and that, as expected, for a given species
tree including HGT in the evolutionary model leads to a significant decrease of the
evolutionary score of histories.

In fact, when looking at the distribution of the number of duplications in the uDLT-
model (results not shown), we observed that the duplication number drops significantly
in the uDLT-model compared to the uDL-model. We can also note that, when com-
paring the score of histories in the uDL-model and the number of duplications, most
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Fig. 10 Distribution of the ratio Duplications/losses in the uDL (top) and of the ratios HGT/score, Dupli-
cations/score and losses/score in the uDLT-model (bottom). For both figures the distribution is over 50
random species trees of size 16 and 10,000 random histories of size 30 per tree

of the score is due to gene losses (Fig. 10), a characteristic we also see in the uDLT-
model where the number of duplications (resp. HGT) rarely exceeds 5 (resp. 25) in
the sampled histories.
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5 Conclusion and perspectives

Our work introduces the first results on counting and sampling evolutionary scenarios
in models accounting for gene duplication, gene loss and HGT. The originality of
our work, compared to previous work in the reconciliation framework, is that we
only consider the species tree to be given, and thus consider all possible evolutionary
histories of a given size, i.e. leading to a given number of genes. Our results include
formal grammars describing this combinatorial space, together with counting and
sampling algorithms, obtained using either dynamic programming or enumerative
and analytic combinatorics methods. These results complement a growing body of
work developed over the last few years in the case of matching gene and species
trees.

Using our method, we were able to obtain precise asymptotics on the number
of histories for the two specific species trees, the rooted caterpillar and the com-
plete binary tree in the unranked DL-model, although our method also applies to
any given species tree in this model. Our counting and sampling algorithms allowed
us to complement these results for other models, especially models accounting for
HGT. Our experimental results provide a first global view of the space of potential
evolutionary histories for a given species tree. They confirm the expected fact that
introducing HGT in a model results in a dramatic increase of the space of possible
histories; they also lead to the interesting observation that in the ranked DLT-model,
the total number of histories is asymptotically almost independent of the given species
tree.

Our work suggests several avenues for further research. First, our notion of evo-
lutionary history assumes that gene trees are ordered, i.e. that gene copies created
by a gene duplication are distinguishable; this differs from the notion of reconciled
gene trees, where duplicated copies are not distinguishable. While our assumption
follows naturally from an evolutionary biology point of view, it would be interesting
to see if our approach could be applied to count and sample reconciliations instead
of histories. Reconciliations can indeed be specified using formal grammars, but their
combinatorial analysis is more involved and we were not able to obtain results such as
precise asymptotics estimates of the number of reconciliations. This question deserves
further research. Next, the last few years have seen the development of more compre-
hensive models of gene family evolution, accounting for example for genes appearing
at a given species by an HGT from an unsampled or extinct species (Szöllősi et al.
2013b), incomplete lineage sorting (ILS) (Rasmussen and Kellis 2012; Wu et al.
2014; Zhang and Wu 2017; Du and Nakhleh 2018; Stolzer et al. 2012; ban Chan et al.
2017), or gene conversion (Hasić and Tannier 2019). In these models, reconciled gene
trees can be computed using dynamic programming algorithms and it is natural to
ask if such algorithms could be turned into grammars for the corresponding space
of evolutionary scenarios. Last, from an applied point of view, a limitation of our
work lies in the fact that histories are parameterized by their size, i.e. the number of
extant genes, while in applications, the genes of a gene family are assigned to spe-
cific extant species. Ideally, in order to explore (through counting or sampling) the
space of all possible evolutionary scenarios for gene families whose distribution of
genes in extant species is given, we would need to parameterize our algorithms by
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this distribution, which leads to dynamic programming algorithms with a much higher
time and space complexity, dependent on the number of extant species. However, we
believe that advanced combinatorial sampling, especially multiparametric combina-
torial samplers (Bodini and Ponty 2010; Bendkowski et al. 2018), can be used within
the framework we developed in the present work to provide efficient counting and
sampling algorithms.
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Scornavacca C, Jacox E, Szöllősi GJ (2015) Joint amalgamation of most parsimonious reconciled gene

trees. Bioinformatics 31(6):841–848
Sjöstrand J, Tofigh A, Daubin V, Arvestad L, Sennblad B, Lagergren J (2014) A bayesian method for

analyzing lateral gene transfer. Syst Biol 63(3):409–420
Stolzer M, Lai H, Xu M, Sathaye D, Vernot B, Durand D (2012) Inferring duplications, losses, transfers

and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18):i409–i415
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