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Abstract: Bacteriophages (phages) are a specific type of viruses that infect bacteria. Because of
growing antibiotic resistance among bacterial strains, phage-based therapies are becoming more and
more attractive. The critical problem is the storage of bacteriophages. Recently, it was found that
bacteriophages might adsorb on the surfaces of plastic containers, effectively decreasing the titer of
phage suspensions. Here, we showed that a BOA nanocomposite (gold nanoparticles embedded
in polyoxoborate matrix) deposited onto the inner walls of the containers stabilizes phage suspen-
sions against uncontrolled adsorption and titer decrease. Additionally, BOA provides antibacterial
and antifungal protection. The application of BOA assures safe and sterile means for the storage
of bacteriophages.
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1. Introduction

Bacteriophages, i.e., viruses that infect bacterial cells, were recognized early due
to their potential application for medical purposes [1]. In some countries (e.g., Russia,
Georgia, Poland, USA), medical institutes use bacteriophages to treat infections caused by
bacteria that do not respond to conventional antibiotics [2]. More and more phage-based
products reached clinical trials recently for curing various types of disease, including inner
ear infections [3], urinary tract infections [4], typhoid [5], systemic multi-drug resistant
infections [6], or infected burn wounds (Phagoburn project) [7].

Some phages are capable of retaining activity even after exposure to stress factors,
such as high temperatures [8], pH [9], and organic solvents [10,11]. However, the resistance
to external conditions is not the primary criterion for claiming phages’ value for medical
purposes. More often, their virulence, selectivity, ease of manipulation, and/or modifica-
tion are taken into account, despite phage stability being equally important. Phage stability
determining factors were described in the review by Jończyk-Matysiak et al. [12]. The
authors focused on the effect of chemical substances, pH, temperature change (freezing,
heat), UV-light, and methods of preparation and formulation.

Recently, we found yet another factor affecting the titer of phage suspensions. When
stored in plastic containers, phages might adsorb on the surface, significantly reducing
the number of active virions in bulk [13]. The effect depends on the number of collisions
between virions and the surface. Thus, it is sped up by mixing (introduction of active
transport) or by temperature increase. The efficacy of the collisions depends on the hy-
drophobic/hydrophilic interactions between the surface, water molecules, and virions.
When the water wetting angle (WA) of the container insides is higher than a threshold
(we found this threshold to be around 95◦ for T4 phages), it is more favorable to “cover”
such a hydrophobic surface with virions. This reduces the system’s overall energy [13].
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Such an explanation is in line with findings reported by others related to biomolecules.
Biomolecules might assume the conformation in which their hydrophobic parts contact
the hydrophobic surface, while more hydrophilic regions are exposed to bulk (and wa-
ter) [14–16]. As a result, the tube having WA higher than the threshold is “unsafe” for
phages. The titer of phage suspension might drop by several orders of magnitude in such a
container [13].

The importance of phage suspension stability is crucial, especially in phage therapies’
application. In the Phagoburn project, improper storage resulted in decreased titer of phages
by a thousand-fold within 15 days after the preparation of stocks. Consequently, the
patients received a much lower dosage of phages (102 PFU/mL daily) than they were
supposed to [7]. In the case of bacteriophages’ encapsulation [17], formulations using
emulsions [18], dry-coating formation [19,20], adsorption on the solid surface [21], and
freeze-drying [22] were used to increase the stability of virions.

The stabilization of viruses is also important due to the need to protect vaccines [23].
However, as for now, only empirical solutions are available. Freeze-dried preparation [24],
immobilization of viral particles [25], and additives, e.g., sucrose [26–28], were tested to
increase the stability of vaccines. For instance, the preservation of adenovirus for up to 6
weeks at 40 ◦C was shown employing a sucrose-stabilized liquid formulation [29]. The
Stellacci and Vitelli groups describe additives (gold nanoparticles and polyethylene glycol)
that improve adenovirus storage by several orders of magnitude at lower concentrations
compared to sucrose [30].

Here, we propose a simple countermeasure for uncontrolled adsorption of phages
on the inner walls of the containers and, consequently, phage titer decrease. We covered
the inside of the containers, in which phage suspensions were stored, with inorganic
nanocomposite composed of gold nanoparticles (AuNPs) embedded in the polyoxoborate
matrix (BOA) [31]. In addition to stabilizing phage suspension against adsorption, the BOA
composite offered protection against bacterial and fungal contaminations. The method of
BOA deposition onto standard plastic and glass labware is straightforward and complies
with the “green chemistry” approach.

Biocidal nanomaterials usually act via ions’ release [32–34] or generation of reactive
oxygen species (ROS) [35,36]. Moreover, silver [32–34,37,38], copper oxide [34,38,39],
titanium dioxide [35,36], and iron-nickel [40] nanoparticles were proved to cause phage
deactivation. Gold-based BOA acts via a contact-killing mechanism, i.e., it destabilizes
the cell envelope of bacteria and yeasts, and thus it is safe for mammalian cells, which
do not possess a cell wall [31]. A different mechanism of action allowed BOA to possess
antibacterial and antifungal properties and simultaneously positively affect the stability of
phage suspensions.

2. Materials and Methods
2.1. Chemicals

HAuCl4·3H2O (99.8%, Aldrich, Saint Louis, Missouri, USA), NaBH4 granules (99%,
Fluka, Buchs, Switzerland), HCl (analytical grade, POCH, Gliwice, Poland), NaOH (99.8%,
POCH, Gliwice, Poland), H2SO4 (min 95%, POCH, Gliwice, Poland), H2O2 (30%, Chempur,
Piekary Śląskie, Poland) were used as received. Ethanol 95% (POCH, Gliwice, Poland) and
chloroform (Chempur, Piekary Śląskie, Poland) used for cleaning were of analytical grade.
Ultra-pure water characterized by resistivity 18.2 MΩ·cm was obtained from the Milli-Q
water purification system.

LB-agar contained 15 g/L of agar, 10 g/L of NaCl, 10 g/L of tryptone, and 5 g/L
of yeast extract, and it was used as an instant mix (Carl Roth, Karlsruhe, Germany).
LB-medium had the same composition except for the lack of 15 g/L of agar (Carl Roth,
Karlsruhe, Germany). YPD-agar contained 15 g/L of agar, 20 g/L of bacterial peptone,
20 g/L of glucose, and 10 g/L of yeast extract, and it was used as an instant mix (Carl Roth,
Karlsruhe, Germany). YPD-medium had the same composition except for the lack of 15 g/L
of agar (Carl Roth, Karlsruhe, Germany). TM buffer was prepared using 10 mM Tris base,
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5 µM CaCl2, 10 mM MgSO4, and distilled water (pH = 7.4). TM buffer components were
purchased from Sigma Aldrich (Saint Louis, Missouri, USA). All solutions were sterilized
by autoclaving before use. Phosphate buffer (50 mM, pH 7.4) was prepared from NaH2PO4
and Na2HPO4 (Carl Roth, Karlsruhe, Germany).

2.2. BOA Surface Modification

Gold nanoparticles were prepared according to the procedure described previously [41].
First, an aqueous stock solution of 50 mM gold precursor was prepared by dissolving
HAuCl4·3H2O with the same molar amount of HCl. NaBH4 was dissolved with the same
molar amount of NaOH (50 mM). A total of 50 µL of HAuCl4 solution was added to the
Eppendorf tubes containing 1 mL of deionized water. Afterward, 150 µL of NaBH4/NaOH
were added. Eppendorf tubes containing the reaction mixture were vigorously shaken
for 1 min until the color change was observed. The solution turned from light-yellow to
brown-orange immediately after adding NaBH4/NaOH, then turned to wine-red. Sodium
borohydride fulfills two roles: (i) acts as a reductive agent, and (ii) is the source of inorganic
oxoborate ligands stabilizing the nanoparticles. The above protocol scales up ideally so
one can prepare batches of potentially unlimited volumes. In this study, a 250 mL batch
was the maximal volume of AuNPs dispersion prepared.

In this study, the surface modification of the BOA was performed according to the
protocol described by us previously [14] with minor changes. In short, vials to be coated
were filled with the colloidal AuNPs suspension up to ~2/3 of their maximal volume.
Next, the pH of the solution was decreased by the addition of 100 µL of 0.4 M HCl per
1 mL of gold suspension used to obtain optimal deposition. Other acids were tested (e.g.,
H2SO4 and H3PO4); however, the most uniform deposition was obtained by utilizing HCl.
Tubes containing the reaction mixture were shaken using a mechanical agitator for one
hour to ensure uniform coating of the bottle’s interior (previous procedures proved that the
utilization of argon has an insignificant effect on deposition efficiency). Then, the colorless
post-reaction liquid was removed, and the bottles were washed with deionized water. If
the multiple-layer coating was to be prepared, a fresh portion of AuNPs suspension of
identical volume was introduced to already coated bottles, and the above procedure was
repeated. In this study, we used single- and triple-coated bottles. Finally, after the last
water rinsing, bottles were left to dry overnight on air.

2.3. Bacteriophages

The protocol described by others was used for bacteriophage preparation [42]. In
short, an early logarithmic culture of Escherichia coli BL21 was infected by T4. For MS2
and M13 multiplication, the Escherichia coli C3000 strain was used. After lysis, phages
were precipitated using polyethylene glycol. The precipitates of phages T4 and M13 were
purified by centrifugation and diluted with 1 M NaCl. Then, CsCl gradient centrifugation
was applied (Beckman Optima XL70 ultracentrifuge, Ti50 rotor, Brea, CA, USA). T4 and
M13 suspensions were dialyzed against a series of TM buffer solutions of decreasing ionic
strength. Afterward, 0.2 µg/mL DNase was added to samples with phages T4 and M13 to
digest residual DNA remaining in the TM buffer after the whole procedure. In the case of
MS2, the lysate was only filtered using 0.22 µM syringe filters.

A droplet plaque counting test was conducted to assess phage activity and virulence.
A solution containing 0.4 mL LB medium and 0.5% agar was mixed with 200 µL of refreshed
Escherichia coli bacteria. Depending on the type of phage, they were E. coli BL21 (T4 phage)
or Escherichia coli C3000 (M13 and MS2 phages). The solution prepared in this way was
poured onto a previously prepared petri dish with LB-agar. After the agar with the bacteria
solidified, at least eight droplets (5 µL each) of each of the adequately diluted phage
suspensions were deposited onto the plate. Subsequently, the plates were incubated at
37 ◦C for 24 h. After removing the plates from the incubator, the plaques were counted, and
the concentration of phages was calculated and expressed in PFU/mL (plaque-forming
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units). Student’s t-test was performed to evaluate whether observed differences were
statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.4. Bacteria

In antibacterial tests, Escherichia coli BL21 (DE3) (obtained from the Institute of Bio-
chemistry and Biophysics in Warsaw, Poland) was used as an example of a Gram-negative
strain to estimate the antibacterial properties of BOA. The Staphylococcus aureus wild type
(WT) (ATCC 33591) strain was used as an example of Gram-positive bacteria. The bacteria
were cultured according to standard protocol. First, the single colony from the agar plate
was inoculated into LB medium at 37 ◦C in an orbital shaker. Next, bacterial cultures were
diluted with LB medium to reach proper optical density (OD600 = 0.5 for E. coli, which
corresponds to about 6 × 107 CFU/mL; OD600 = 0.9 for S. aureus, which corresponds to
the concentration of bacteria of about 1 × 108 CFU/mL). Afterward, bacterial cultures
were diluted by four orders of magnitude in phosphate buffer and incubated at room
temperature for 24 h with shaking (400 rpm) in pristine and BOA-modified vials. The
initial amount of bacteria in each flask was around 103 to 104 bacteria/mL. At particular
time points (after incubation of 0, 1, 3, 6, and 24 h), 100 µL of the solution were transferred
on LB-agar plates and spread using glass L-shape spreaders. After overnight incubation at
37 ◦C, the plate count method was used to determine the viability of bacteria.

Presented results are averaged from at least three independent agar plates for bacterial
experiments. Student’s t-test was performed to evaluate whether observed differences
were statistically significant (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.5. Yeasts

The Saccharomyces cerevisiae wild type (WT) strain (obtained from the Institute of
Biochemistry and Biophysics in Warsaw, Poland) was used as an example of fungi (yeast) to
estimate the antifungal properties of BOA. The yeasts were cultured according to standard
protocol. A single yeast colony was inoculated into YPD-medium. Next, the culture was
diluted with YPD medium and incubated to reach optical density OD600 = 1.25, which
corresponds to the concentration of about 2 × 107 cells/mL. Afterward, yeast cultures were
diluted by three orders of magnitude in phosphate buffer for 24 h with shaking (400 rpm).
The starting amount of yeasts in each flask was around 103 cells/mL.

At particular time points (after incubation of 0 h, 1 h, 3 h, 6 h, and 24 h) 100 µL of the
solution were transferred on YPD-agar plates and spread. After overnight incubation at
37 ◦C, the plate count method was used to determine the viability of yeasts. Presented
results are averaged from at least three independent agar plates for yeast experiments.
Student’s t-test was performed to evaluate whether observed differences were statistically
significant (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.6. Instrumentation

Scanning electron microscopy observations were executed using the FEI Nova NanoSEM
450 (Hillsboro, OR, USA) with an accelerating voltage of 5 kV to 10 kV under high vacuum.
The microscope was equipped with an EDS (EDX) (Energy Dispersive X-ray Spectroscopy)
spectrometer, allowing for analysis of the chemical composition in micro areas.

The surface of polypropylene samples was sputtered using Quorum Technologies
LTD. K550X equipped Quorum Technologies LTD. K150X thickness monitor. Sputtering
was done at 10 mA for 600 s to obtain a layer of a thickness of around 10 nm. This thin gold
layer was necessary to visualize the surface using SEM, as polypropylene is not conductive
and charges upon exposition to the beam of electrons.

Dynamic light scattering (DLS) measurements were performed using a Zetasizer Nano
ZS apparatus (Malvern Instruments Ltd., Malvern, UK) equipped with a dynamic light
scattering (DLS) module (He−Ne laser 633 nm, max 4 mW).
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UV-Vis absorbance spectra were recorded on a Thermo Scientific Evolution 201 UV-
vis spectrophotometer in the spectral range from 350 to 750 nm in 1 cm optical path
glass cuvettes.

3. Results and Discussion

Our recent publication showed that virions might “disappear” from the suspension,
thus decreasing the apparent titer of the phage samples. We found that the “missing”
virions are adsorbed onto the surface of plastic labware. The Eppendorf-type and Falcon-
type polypropylene surface can accommodate from around 108 PFU/mL to around 1010

PFU/mLT4 virions from the suspension [13]. The magnitude of this effect varies for tubes
purchased from various vendors and also between batches provided by a single vendor.

As a solution for this problem, we propose the utilization of a BOA (B—boron, O—
oxygen, and A—gold (from Latin: aurum, Au)) nanocomposite [31]. First, “naked” gold
nanoparticles (i.e., without an organic ligand shell) are produced in a procedure described
previously [41]. In this method, the used reducing agent (sodium borohydride) becomes a
source of oxoborates ions stabilizing the colloidal solution. At low concentrations (below
25 mM), both boric acid and borate typically exist as monomers. The amount of the
planar BO3 and the tetrahedral BO4 moieties depends on the pH [43]. In the solutions of
a higher concentration, the equilibrium is established between a unionized form of boric
acid and polynuclear complexes B3O3(OH)4

−, B4O5(OH)4
2−, B3O3(OH)5

2−, B5O6(OH)4
−,

and B(OH)4
−. The change in pH leads to condensation and the formation of more complex

polyanions. In the acidic pH, planar nets stacked together are formed [44]. In the presence of
gold nanoparticles (around 4.5 ± 1 nm in diameter as revealed by DLS and confirmed based
on the maximum of the UV-Vis absorbance; see Figure 1A,B), the metallic cores become
embedded in the polyoxoborate matrix. This leads to the formation of a nanocomposite
coating (BOA). BOA building blocks are amphiphilic. The amphiphilicity is related to
charge delocalization and the reduction in the formal charge of polymerized oxoborate
anions (hydrophobic properties), and the presence of accessible OH groups at the edges
(hydrophilic properties). Because of this property, BOA can be successfully deposited on
hydrophilic (often employing condensation with surface OH groups) and hydrophobic
surfaces [31].

The concentration of gold nanoparticles suspension limited the amount of deposited
BOA. To increase the surface coverage, we performed multiple deposition processes.
Scanning electron microscopy examinations clearly showed the difference between single
(Figure 1F) and triple (Figure 1G) BOA deposition. After single deposition, sparsely
distributed bright objects of the size of around 30 to 50 nm (significantly larger compared
to initial nanoparticles of the diameter of approximately 4.5 nm) were visible at the surface
(Figure 1F). A densely packed and uniform layer of similar bright objects was visible after
multiple deposition processes (Figure 1G). In the case of pristine vials (Figure 1D) only
cracks in the sputtered gold layer were observed. The inset in Figure 1F shows the surface
of the same sample as the main picture but with lower resolution, as this sample was not
sputtered. Similar morphological features were visible in sputtered and non-sputtered
samples, which excluded the possibility that the discussed bright objects are artifacts
coming from sample post-processing. Elemental analysis of BOA coating, executed using
EDX (energy-dispersive X-ray) spectroscopy, confirmed that the mentioned bright objects
were loaded with gold, proving their identity as BOA (Figure 1C).
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To show the efficiency of BOA in the stabilization of phage suspensions, we studied
three phages, namely MS2, M13, and T4. These represent three major types of phages:
symmetrical, filamentous, and tailed phages, respectively. The MS2 bacteriophage, belong-
ing to Fiersviridae, has an icosahedral structure, and its genetic material is (+)ssRNA. It
has a diameter of about 27 nm and has one of the smallest known viral genomes so far
(3569 nucleotides) [45]. MS2 is often regarded as a good model for studies on eukaryotic
(also pathogenic) viruses [46–48]. M13 is a member of the filamentous bacteriophage family
(Inoviridae). It is a virus “nanofiber”: 880 nm in length and 6.6 nm in diameter [49]. Its
genome is in ssDNA form. M13 causes chronic infections, i.e., progeny virions are secreted
continuously, without disrupting the host cells [50]. M13 is often used in the phage display
method [51]. T4 belongs to Caudovirales—tailed phages. It is the most abundant order of
bacteriophages. Ackermann estimated that more than 90% of all phages are tailed [52]. It is
estimated that there are more bacteriophage virions at any given moment (around 1031)
than any other organisms, including bacteria, combined [53]. However, we believe that the
selection of phages used in this study represents the majority of possible applications.

First, we incubated phages in polypropylene containers with mixing. Mechanical
agitation increased the number of collisions between virions and the inner walls of the
container, effectively facilitating the adsorption. For MS2 and M13, we found a significant
decrease (>99%) of phage titer after six hours of mixing in the pristine, non-modified vials
(Figure 2). For T4, a much smaller decrease was observed.

It was proved before that the adsorption of phages is governed by the WA [13]. Above
the threshold value, phages adsorb onto plastic surfaces. SEM observation proved that
M13 virions were, in fact, present at the surface of non-modified vials after 24 h incubation
(Figure 1E). For T4 phages, this threshold was found to be around 95◦ [13]. Here, the
wetting angle of the pristine vials was around 93.2◦ ± 0.2◦. This is why we did not observe
a dramatic decrease in T4 titer in pristine vials.
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Next, we aimed to protect MS2 and M13 suspensions from uncontrolled “disappear-
ing” from the solution due to adsorption on the inner walls of the container. For this, the
BOA nanocomposite was deposited onto the inner walls of containers in which phage sus-
pensions were stored. The process of BOA deposition complies with the “green chemistry”
approach. First, this method is water-based. What is more important, upon deposition of
BOA, the suspension of gold nanoparticles changed color from wine red to transparent.
This proved that the vast majority of gold nanoparticles adhered to the surface, limiting
the amount of waste generated [31].

Upon single deposition of BOA, no phage protection was observed (data not shown).
We observed significant stabilization of MS2 and M13 suspensions upon triple deposition
of BOA onto the inner surface of the containers (Figure 2A,B). We found that the saturation
of the surface with BOA reduced the wetting angle (WA) from around 93.2◦ ± 0.2◦ to
around 83.8◦ ± 1.3◦. The titers of MS2 and M13 suspensions were more than an order of
magnitude higher compared to the pristine vials after 6 h incubation with mixing. BOA
prohibited the adsorption of virions on polypropylene surfaces. It changed the character of
the vials from “unsafe” to “safe” by decreasing WA (as proved in our previous study in the
case of plasma treatment [13]).

There was no statistical difference in the case of T4 phages between BOA-covered and
pristine polypropylene containers (Figure 2C), which both caused only a small decrease in
the T4 phage titer. This was in line with the measured WA of the pristine vials being below
the threshold found for T4. This result also proved that BOA was safe for phages.

We hypothesized that structural differences caused the difference between the titer
decrease between MS2, M13, and T4. Two aspects need to be analyzed: morphology
and electrical properties. At the studied pH (7.4), the zeta potential of MS2 is around
−40 mV [54], and of M13 around −15 mV [55]. These phages lack distinctive morphological
features. On the contrary, T4 phages have a complex structure and a significant dipole
moment, reaching hundreds of thousands of Debays, depending on the conformation of
fibers [56,57]. In addition, the fibers bear a large positive charge, which facilitates the
initial recognition of the bacterial cell. The experiment at higher ionic strength (100 mM
buffer instead of 10 mM buffer) did not show any significant differences in results (data
not shown). In such a case, the electrostatic interactions were screened effectively by the
additional ions. This suggested that observed differences in behavior between MS2, M13,
and T4 were due to the specific structure of tailed T4 that influenced the WA threshold.
The hydrophobic-hydrophilic balance seems more critical than electrostatic interactions in
governing the adsorption process.

We excluded leachables (chemicals released from the plastic into the buffer) as a cause
of phage titer decrease. Leachables are usually additives used for stabilizing and modifying
end-product properties. Such additives are not chemically bound but form a solid mixture,
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from which they might be released [58]. Some additives, e.g., plasticizers, slip agents, or
biocides, are potentially toxic [59]. We performed the experiment in which the TM buffer
was first incubated (without phages) in pristine and BOA-covered (three depositions)
containers for 24 h. From now, we use the term TM_P and TM_P_BOA to describe buffers
potentially containing leachables. Next, TM, TM_P, and TM_P_BOA were used to prepare
phage suspensions (final contents of TM_P and TM_P_BOA were not lower than 99.9%),
which were later incubated in “safe” vials. These “safe” vials were Eppendorf tubes, onto
which phages did not adsorb upon storage, heating, or mixing [13]. We did not find any
difference between phage titers in TM, TM_P, and TM_P_BOA in all studied cases (MS2,
M13, and T4). This proved that any potential leachables did not cause the decrease in
phage titers showed in Figure 2, but the interaction between virions and the surface caused
the phenomena.

In addition, we deposited BOA on the inner surfaces of “safe” polypropylene vials
(Eppendorf type tubes, onto which none of the studied phages adsorb). The titer change
upon 6 h incubation with mixing was minuscule and similar in the case of both pristine
“safe” tubes and BOA-covered tubes. This proved that BOA has no adverse effect on phages
and can only protect the phage suspensions against uncontrolled adsorption. In the long
run, the increased stability of phage suspensions, and additional protection from infections,
would benefit the quality of phage-related research. This would also positively impact the
phage therapies, protecting from uncontrolled changes in phage titer and inefficiency of
treatment related to this issue.

Besides stabilizing phage suspensions, BOA also offers protection against bacterial
and yeast infection. We incubated Gram-negative (Escherichia coli) and Gram-positive
(Staphylococcus aureus) bacteria in pristine and BOA-modified polypropylene containers.
Only a single BOA deposition was enough to observe a significant effect on bacteria. In
Gram-positive S. aureus, a considerable decrease (around 2log) was observed in BOA-
modified vials (Figure 3B). The number of bacterial cells changed only slightly in the
non-modified containers. Experiments on E. coli repeatedly showed an increase in the
number of bacterial cells in non-modified vials (Figure 3A). After 24 h, the number of cells
in the suspension increases around ten times. This phenomenon was explained by Garvie
in the 1950s, who found that “E. coli will grow when cell suspensions are inoculated into
phosphate buffer” [60]. In fact, only three cell division cycles were needed to increase the
number of cells eight-fold, i.e., close to the observed increase. In the BOA-covered vials,
the number of E. coli cells remained approximately still throughout the time span of the
experiment. There may be two reasons for this phenomenon: (i) BOA effectively inhibits
replication, or (ii) it kills bacteria at the same pace as they replicate. After 24 h, the number
of bacteria in the control sample was approximately ten times higher than in BOA-protected
vials. The difference in the magnitude of the effect of BOA between Gram-positive and
Gram-negative is in line with previous findings, showing that Gram-positive bacteria
are much more sensitive to physical and chemical factors compared to Gram-negative
bacteria [61].

Antifungal properties of BOA are equally important, as one of the most common con-
taminants in laboratory practice and in the food industry are yeasts [62,63]. For S. cerevisiae
WT (Figure 3), we observed a decrease in the number of yeast cells of around 2 log
upon utilization of BOA-covered vials (single deposition process) compared to pristine
polypropylene vials.
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4. Conclusions

The quality of labware is an uncontrollable variable that might affect the reproducibil-
ity of phage-related studies or the efficacy of phage therapies. Our previous publication
showed that virions adsorb on the inner walls of plastic containers when the water wetting
angle exceeds the threshold value. Here, we successfully utilized the BOA composite for
bacteriophage storage. The application of the BOA composite not only decreased the un-
controlled adsorption of virions at the plastic surfaces but also provided antibacterial and
antifungal protection. The process of BOA deposition is straightforward and complies with
the requirements of “green chemistry”, as the protocol is water-based and waste limiting.
These findings are a step towards increased reproducibility of phage-related research. BOA
might also be implemented for the storage of phage cocktails for phage-therapies and
biocontrol applications.
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