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Abstract

Background: Transcripts can exhibit significant variation in tissue samples from inbred laboratory mice. We have
designed and carried out a microarray experiment to examine transcript variation across samples from adipose,
heart, kidney, and liver tissues of C57BL/6J mice and to partition variation into within-mouse and between-mouse
components. Within-mouse variance captures variation due to heterogeneity of gene expression within tissues,
RNA-extraction, and array processing. Between-mouse variance reflects differences in transcript abundance
between genetically identical mice.

Results: The nature and extent of transcript variation differs across tissues. Adipose has the largest total variance
and the largest within-mouse variance. Liver has the smallest total variance, but it has the most between-mouse
variance. Genes with high variability can be classified into groups with correlated patterns of expression that are
enriched for specific biological functions. Variation between mice is associated with circadian rhythm, growth
hormone signaling, immune response, androgen regulation, lipid metabolism, and the extracellular matrix. Genes
showing correlated patterns of within-mouse variation are also associated with biological functions that largely
reflect heterogeneity of cell types within tissues.

Conclusions: Genetically identical mice can experience different individual outcomes for medically important traits.
Variation in gene expression observed between genetically identical mice can identify functional classes of genes

that are likely to vary in the absence of experimental perturbations, can inform experimental design decisions, and
provides a baseline for the interpretation of gene expression data in interventional studies. The extent of transcript

factors and their phenotypic consequences.

variation among genetically identical mice underscores the importance of stochastic and micro-environmental

Background

Variation in transcript abundance between individuals
has important implications for microarray experimental
design and significance testing [1]. Ideally, microarray
experiments are designed with samples from multiple
individuals in each treatment group. This biological
replication provides the variance estimator that is
required to establish the statistical significance of
between-group differences. In this study, we collected
multiple samples of tissues within each of several geneti-
cally identical mice. Multiple sampling within indivi-
duals is not necessary in an experiment aimed at
making between-group comparisons, but it is essential if
the aim is to identify significant variation between indi-
viduals within the same experimental treatment group.
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An important procedural detail in this type of study is
to determine how to collect and at what stage to divide
the tissues to create multiple samples. In this study, we
elected to split tissues immediately after dissection and
before RNA extraction in order to restrict the possible
sources of between-mouse variation to events that occur
prior to dissection. With this experimental design, tran-
script variation can be decomposed into within-mouse
and between-mouse variance components. Between-
mouse variance reflects differences in whole-tissue tran-
script abundance between genetically identical mice.
Within-mouse variance captures variation due to RNA
extraction, array processing, and heterogeneity of gene
expression within tissues, which may be amplified by
dissection and tissue collection procedures.

Individual variation in gene expression can have
important phenotypic consequences. However, only a
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few studies have previously attempted to characterize
gene expression variation in genetically identical mice.
Koza et al. (2006) [2] described gene expression signa-
tures in adipose tissue that are predictive of future adip-
osity among genetically identical C57BL/6] mice. The
use of multiple biopsy samples in this time-course study
was essential to establish the link between gene expres-
sion variation and late-life adiposity. However, biopsy
sampling may be subject to unexpected variation intro-
duced by tissue heterogeneity, as we illustrate below.

Two previous studies have used multiple sampling
within individuals to provide a statistical basis for
detecting transcript variation between genetically identi-
cal mice. Pritchard et al. (2001) [3] examined 3 tissues
in each of 6 C57BL/6] mice and reported that immune
function, stress response, and hormone regulation were
important sources of biological variation. Pritchard et al.
(2006) [4] examined liver tissue in 3 animals from each
of 5 inbred mouse strains and found that genes differen-
tially expressed within strains were enriched for cell
growth, cytokine activity, amine metabolism, and ubiqui-
tination. In these experiments, technical replicates were
obtained by splitting samples after RNA extraction. This
approach confounds variation due to dissection and
RNA preparation with variation between mice.

We designed and carried out an experiment to study
transcript abundance variation in four tissues among
young adult male C57BL/6] mice (Figure 1). Our
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Figure 1 Experimental design. Twelve C57BL/6J male mice were
co-housed as pairs in six cages from weaning until 10 weeks of age
(A). Liver, heart, kidney, and adipose tissues were collected from
each mouse and split into two samples per tissue per individual
and processed separately to generate RNA (B). In the case of kidney,
the samples consist of the entire left or right kidney, respectively.
Other tissues were chopped into small pieces, which were
separated before placing them into collection tubes.
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sampling design enabled us to partition the variance for
each gene into within-mouse and between-mouse com-
ponents, with a division line that corresponds to the
step of splitting tissues. We examined within-mouse and
between-mouse variation in more than 22,000 protein
coding genes and identified groups of genes with shared
patterns of variation that are enriched for known biolo-
gical functions. To facilitate exploration of our data, we
have created an on-line resource that includes graphical
displays, test statistics, and gene groupings for all tran-
scripts characterized in this study http://cgd.jax.org/indi-
vidualvariation.shtml.

Results

We performed a microarray experiment using the Illu-
mina Sentrix® Mouse-6 v1.1 BeadChip microarray plat-
form to study transcript variation in 10-week old male
C57BL/6] mice (Figure 1). Six pairs of siblings were co-
housed from weaning under uniform environmental
conditions. From each mouse we obtained duplicate
samples of adipose (inguinal fat pad), heart, kidney, and
liver tissues by splitting whole organs or tissues prior to
homogenization and RNA extraction. Adipose, heart,
and liver tissues were coarsely cut into pieces and
divided into two samples that were homogenized sepa-
rately in order to extract RNA. The left and right kid-
neys were also homogenized separately. We computed a
decomposition of variance for each probe on the array
(Methods). The within-mouse variance component cap-
tures biological variance between two dissected tissue
samples as well as technical variance due to sample and
microarray processing. The between-mouse variance
component reflects differences between individual mice.
We repeated gene expression assays on the liver sam-
ples, using the Affymetrix Whole-Transcript Mouse
Gene 1.0 ST array, to provide validation on a different
measurement platform.

Expressed genes and variable genes

We declared a gene to be expressed if the probe inten-
sity was greater than the 95™ percentile of the negative
control probes for both samples in at least 1 of the 12
mice. A total of 12657 genes, representing 55% of the
annotated probes on the array, were expressed in at
least one of the four tissues. Across tissues, the number
of expressed genes ranged from 8919 (39%) in liver to
11204 (49%) in adipose tissue (Table 1A).

We computed the total variance, s°, across all samples
for each gene in each tissue (Figure 2A). Liver and kid-
ney have relatively few genes of high variability but
heart and adipose have many. We tested the hypothesis
that the distribution of total variance occurred by
chance using a y° test (Methods) and found significantly
greater variance than expected in each tissue (Table 1B).
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Table 1 Variability of transcript abundance
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Adipose Heart Kidney Liver Total
(A) Expressed Genes 11204 (49%) 10069 (44%) 10116 (44%) 8919 (39%) 12657 (55%)
(B) Variable Genes
o = 0.05 3923 (17%) 2654 (12%) 2273 (10%) 2125(9%) 6932(30%)
a = 0.01 3299 (14%) 2117 (9%) 1547 (7%) 1539 (7%) 5800 (25%)
o=le-4 2352(10%) 1250 (5%) 847 (4%) 813 (4%) 3939(17%)
Q) Between-Mouse Variation
FWER (p < 0.05) 0(0%) 0(0%) 12 (0%) 40(0%) 46 (0%)
FDR (p < 0.10) 0(0%) 0(0%) 369(2%) 2520(11%) 2674 (12%)
1-m 0% 0% 1% 18%
(D) Maximal Fold Change
> 1.5 2103 (9%) 509 (2% 320(1%) 538(2%) 2690 (12%)
> 20 600 (3%) 142 (1% 91(0%) 809 (4%) 809 (4%)
> 3.0 218 (1%) 50(0%) 28(0%) 36(0%) 292 (1%)

Shown in this table are: The number of expressed genes out of the 22869 annotated genes on the array (A). The number of variable genes based on the 0.05,
0.01 and 0.0001 tails of the scaled y,(23) distribution (B). The number of genes with significant between-mouse variance, based on the F; test with family-wise
adjusted error (p < 0.05, Sidak step-down method [5]); false discovery rate (p < 0.10, Benjamini-Hochberg method [6]); and the estimated proportion of
differentially expressed genes (1 - 1o, using the g-value method [7]) (C). The number of genes with large maximal fold-change between mice (D). All numbers are

given as percentages of the annotated genes in parentheses.

We applied coexpression network analysis to the top
2500 genes in each tissue, which we refer to as the vari-
able genes.

We decomposed total variance for each gene into
within-mouse (s,,”) and between-mouse (s,”) compo-
nents. The distribution of between-mouse variance com-
ponents was similar across all four tissues (Figure 2B).
Adipose tissue showed the greatest number of genes
with a large within-mouse component followed by heart,
kidney, and liver (Figure 2C). The variable genes include
the 313 (adipose), 189 (heart), 405 (kidney), and 990
(liver) genes with the largest between-mouse variance.
They also include the 1526 (adipose), 1347 (heart), 593
(kidney), and 221 (liver) genes with the largest within-
mouse variance.

Significance of between-mouse variance
Within each tissue, for each gene, we computed a test
statistic to assess the significance of the between-mouse
variance component relative to the within-mouse var-
iance component. We applied a family-wise error rate
correction [5] (as in Pritchard et al. (2001) [3]) and
found few genes with significant between-mouse varia-
tion (Table 1C). We applied a false discovery rate (FDR)
adjustment [6] (as in Pritchard et al. (2006) [4]) and
found no differentially expressed genes in adipose or
heart and only modest numbers in kidney (2%) and liver
(11%) (Table 1C). We estimated the proportions of dif-
ferentially expressed genes (1 - 1) using the q-value
software [7] and found similar results (Table 1C; [Addi-
tional files 1, 2: Supplemental Figure S1]).

A different picture of the variability in gene expression
across tissues emerges when we look at the maximal

fold change between mice (Table 1D). In adipose, 2.6%
of all genes exhibit maximal fold changes greater than 2,
whereas 0.4-0.6% of all genes show fold changes this
large in the other three tissues. Although the fold-
change is not a statistical criterion, the differences
across tissues are dramatic. There are many genes with
large maximal fold changes between mice but, particu-
larly in adipose tissue, these same genes also have large
within-mouse variance, which reduces their statistical
significance.

Variable genes form clusters that are enriched for specific
biological functions

We used co-expression network analysis [8,9] to cluster
the variable genes into modules with correlated patterns
of expression (Methods) (Figure 3). Module sizes ranged
from 34 to 1340 genes with an average module size of
215 genes (Table 2). We identified 8 to 9 modules in
each tissue comprising 97% (adipose), 80% (heart), 61%
(kidney), and 54% (liver) of the variable genes. For each
module, we applied principal components analysis to
compute a module eigengene [10] that represents the
dominant pattern of variation (Figure 4). The percentage
of variation explained by the module eigengene ranges
from 47% to 88%, indicating that the eigengenes are
representative of expression profiles of the individual
genes in each module. In the following, we refer to
modules using a colour code within each tissue (Table
2).

For each gene, we computed the intraclass correlation
coefficient, ¢ = s,°/(s,,” + s,°), which is the proportion of
total variance attributable to the between-mouse compo-
nent. Median values by module ranged from ¢ = 0.00 (8
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Figure 2 Distribution of within- and between-mouse variance
components. The total variance (A) and estimated between-mouse
(B) and within-mouse (C) variance components are shown as
smoothed density histograms after square root transformation. The
vertical bars (left panel of B) represent the percentage of probes with
estimated variance components less than 1x10™. These probes are not
included in the density plot (right panel of B). Tissues are indicated by

colour (Adipose: blue; Heart: red; Kidney: green; Liver: black).

modules) to ¢ = 0.79 (liver-pink) (Table 2). Kidney and
liver, respectively, have 5 and 8 modules with high intra-
class correlation (¢ > 0.35) indicating substantial
between-mouse variance while adipose has two and
heart has no modules with high intraclass correlation (c
> 0.35). Each tissue also has at least one module with
low intraclass correlation (¢ < 0.02) indicating that dif-
ferences between samples within mice are greater than
differences between mice.

For each module, we computed enrichment scores [11]
for the GO biological process, cellular component, and
molecular function terms and for KEGG pathways. The
highest scoring enrichment category for each module is
listed in Table 2. Each module can be divided into two
subsets such that all correlations within a subset are

(C) Kidney
Figure 3 Co-expression module clustering of variable genes.
The topographical overlap similarity [9] of gene pairs is shown as a
heatmap for adipose (A), heart (B), kidney (C), and liver (D). Gene
pairs with low similarity are shown in yellow, and those with high
similarity are shown in red. Coexpression modules define highly
connected sets of correlated expression profiles as indicated by
colour codes in the margins of the maps. The colour names are
given in Table 2. Genes are ordered within module from left to
right by increasing topographical overlap with the module
eigengene. Genes that are not assigned to modules are not
included in this plot.

(D) Liver

positive (Methods). We also tested for enrichment within
each of these subsets [Additional file 3: Supplemental
Table S1]. Many of the module enrichment scores are
highly significant indicating that correlated groups of vari-
able genes are enriched for specific biological functions.

Most modules in a given tissue share similar features
with at least one module in another tissue [Additional
files 2, 4: Supplemental Figure S2; Additional file 5: Sup-
plemental Table S2]. Several sets of modules shared
similar patterns of between-mouse variation and had
significant gene overlap and functional enrichment.
Other sets of modules shared similar patterns of within-
mouse variation, but with distinct between-mouse varia-
tion. Several pairs of modules had significant gene over-
lap but did not have correlated patterns of variation.
Examples of each are described below.

Between-mouse patterns of variation are shared across
tissues

Modules from different tissues that are enriched for
similar functional categories typically have high
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Table 2 Module highlights
Module Data-base  Functional Category In Module In Category Overlap %  p-value 4
Adipose  turquoise  GO_MF endopeptidase inhibitor activity 52 55 8 15 7825 044
blue GO_BP epidermis development 184 40 12 30 3E-23 0.00
brown GO_CC contractile fiber 450 56 39 70 2E-74 0.07
gold GO_MF acyl group transferase activity 102 64 10 16 6E-19 0.12
green GO_MF cytokine activity 147 53 15 28  6E-32 0.28
red GO_BP Apoptosis 34 245 6 2 7E-06 042
black GO_BP energy pathways 110 104 10 10 2E-09 0.00
magenta  GO_BP immune system process 1340 324 158 49  1E-34 0.00
Heart  turquoise  GO_BP inflammatory response 102 103 14 14 6E-21 0.17
blue GO_BP anti-apoptosis 115 29 5 17 3E10 0.20
brown GO_CC antigen presentation, exogenous antigen 52 15 9 60  1E-75 0.03
gold KEGG leukocyte activation 145 116 18 55 1E-25 0.00
green GO_CC extracellular matrix 898 111 57 51  2E-26 0.00
red GO_BP monosaccharide biosynthetic process 313 18 8 44 1E-13 0.00
black GO_CC ubiquitin ligase complex 237 14 5 36 1E-10 0.00
pink GO_CC mitochondrial membrane part 147 27 12 44 1E55 0.00
Kidney  turquoise  GO_BP acute inflammatory response 146 46 17 37 1E47 0.01
blue GO_CC extracellular matrix 94 11 22 20 8E-51 042
brown GO_MF carboxylic acid transmembrane transport 159 19 4 21 3E-07 0.58
gold GO_BP antigen presentation, exogenous antigen 72 15 7 47 2E-56 0.57
green GO_CC mitochondrial outer membrane 141 34 5 15  1E-06 0.59
red GO_MF nucleoside-triphosphatase activity 46 159 4 3 4E-03 0.13
black GO_BP fatty acid biosynthetic process 59 42 5 12 3E-12 0.10
pink GO_BP down regulation of signal transduction 92 50 6 12 6E-12 0.69
magenta  KEGG oxidative phosphorylation 711 50 19 38  7E-08 0.00
Liver turquoise  GO_CC Myofibril 70 54 9 17 2E-26 0.02
blue GO_MF enzyme regulator activity 146 227 13 6 1E-03 0.77
brown GO_CC extracellular matrix 112 m 13 12 2B13 0.74
gold GO_BP cholesterol biosynthetic process 101 18 6 33 5E-26 044
green GO_MF selenium binding 395 14 5 36 7E-06 039
red GO_BP cytokine-mediated signalling pathway 152 21 5 24 5E-10 0.72
black GO_BP blood vessel development 138 109 9 8 2E-05 0.78
pink GO_BP antigen presentation, exogenous antigen 69 15 6 40  4E-45 0.79
magenta  GO_BP ribosome biogenesis 176 22 5 23 1E-08 0.74

Best enrichment scores of co-expression modules are shown. Within each tissue, modules are listed by the colour code orders of Figure 3. The number of genes
in the module, the number of variable genes in the highest scoring functional category, the overlap between these two sets of genes, the enrichment p-value for
the highest scoring category [11], and the median intraclass correlation, ¢, for genes in the module are shown. Only categories with between 10 and 500 genes

and a minimum overlap of 4 genes were considered.

intraclass correlation and similar patterns of between-
mouse variation. To quantify this similarity, we com-
puted a between-mouse correlation, r;, for all pairs of
module eigengenes by averaging the two within-mouse
samples before computing the Pearson correlation.

Each of the four tissues has at least one module that is
enriched for immune response. The heart-brown (¢ =
0.03), kidney-gold (¢ = 0.57), and liver-pink (¢ = 0.79)
modules are enriched for the GO category exogenous
antigen presentation (Table 2). The between-mouse cor-
relations, r,, range from 0.53 to 0.80, and the genes in
these modules overlap significantly based on a hypergeo-
metric test (Methods). Pairwise overlaps range from 16

to 19 genes and seven genes (Cd274, Cd74, Cxcl9, H2-
DMa, H2-Ebl, Igtp and Iigp2) are found in all 3
modules.

The kidney-blue (¢ = 0.42) and liver-brown (c = 0.74)
modules are enriched for GO category extracellular
matrix, each containing more than 12 genes of that
category. Their between-mouse profiles are correlated
(r, = 0.75) and they share 20 genes in common (out of
36) including Adamts2, Col5al, Col6al, Coli4al, Ecmli,
Igfbp3, Tgfbi and Timp?2.

The adipose-red (¢ = 0.42), heart-blue (¢ = 0.20), kid-
ney-brown (¢ = 0.59) and liver-black (¢ = 0.78) modules
are enriched for the GO category apoptosis and have
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Figure 4 Transcript abundance profiles of co-expression modules. Module eigengenes representing average transcript abundance across
genes are shown for the modules listed in Table 2. Mice are indexed from 1 to 12 and vertical partitions indicate cage pairings. Eigengene
profiles are zero-centered and represent an average log, fold-change (fc) across all genes in the module. All panels are shown with the same y-
axis scaling for ease of comparison. Horizontal lines connect mean values for each mouse. Vertical line segments connect the two within-mouse
samples. Sample 1 is indicated by the upright triangle and sample 2 by the inverted triangle. For adipose, heart, and liver, samples should not
be compared across mice or across tissues, as there is no correspondence between sample labels at this level of the experiment. In the kidney,
sample 1 is the left kidney and sample 2 is the right kidney. Modules with 25 or fewer genes are not shown.
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between-mouse correlations, r,, ranging from 0.52 to
0.93. These modules overlap with 16 genes present in at
least 3 of the 4 modules including Ccrn4l, Gadd45g, and
Map3ké. The liver-blue module (¢ = 0.77) also has a
high between-mouse correlation (r, > 0.64) and signifi-
cant gene overlap with these adipose, heart and kidney
modules including Fkbp5 and Perl.

The kidney-pink (¢ = 0.69) and liver-magenta (c =
0.74) modules have correlated between-mouse profiles
(rp = 0.88), and each contains 18 or more genes of the
GO category DNA-dependent regulation of transcription.
Their gene overlap (12 out of 47) includes Bcl6, Cish,
Rgs3, and Socs2.

The between-mouse profiles of the kidney-green (¢ =
0.59) and liver-red (¢ = 0.72) modules are correlated (r,
= - 0.73) and each module contains 12 or more genes of
the GO category cellular lipid metabolic process. They
have 12 genes in common (out of 60) including Acaa2,
Acadm, Agxt2ll, Cyp26bl, Cyp4al0, Cyp4al4 and
Slc2a2.

Within-mouse patterns are similar across modules of the
same tissue

Some modules had similar patterns of within-mouse
variation but different patterns of between-mouse varia-
tion. To measure similarity of within-mouse variation,
we centred the sample values on individual mouse
means and then computed a Pearson correlation, r,,.
This measure is only meaningful for comparisons within
the same tissue as there is no correspondence between
the duplicate samples from different tissues. Adipose
and heart each have multiple highly correlated modules
(|ry| = 0.64). The adipose-green, adipose-red, adipose-
black, and adipose-magenta modules have distinct pat-
terns of between-mouse variation and different func-
tional enrichment, but they all share high within-mouse
correlation (Figure 4A, Table 2). A similar relationship
was observed for the heart-green, heart-red, heart-tur-
quoise, heart-blue, heart-brown, and heart-gold modules
(Figure 4B, Table 2).

Uncorrelated modules have gene overlap and similar
functional enrichment

Some modules share genes and functional enrichment
categories but do not have correlated patterns of varia-
tion. The adipose-gold (¢ = 0.12), heart-red (¢ = 0.00),
and kidney-black (¢ = 0.10) modules have a high gene
overlap (adipose-gold & heart-red, 48 out of 72; adi-
pose-gold & kidney-black, 10 out of 29; heart-red & kid-
ney-black, 25 out of 40 and 9 genes in all three
including Acaca, Cidea, Cox8b and Ucpl). They are
enriched for the GO category fatty acid metabolic pro-
cess. The adipose-magenta (¢ = 0.00) and heart-gold
modules (¢ = 0.00) share 118 out of 120 genes including
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Cd8b1 and Lck and are enriched for the GO category
immune system process. The adipose-brown module (¢ =
0.07) shares 87 out of 182 genes with the heart-green
module (¢ = 0.00) and 31 out of 35 genes with the liver-
turquoise module (¢ = 0.02). These modules are
enriched for the GO actin cytoskeleton category and
share 8 genes in common including Ckm and Myll. The
adipose-turquoise (¢ = 0.44) and kidney-turquoise (¢ =
0.01) modules share 30 out of 40 genes including Apoal,
Cyp8b1, and Ugt2b3 and are enriched for the KEGG
pathway complementation and coagulation cascades.
The adipose-green (¢ = 0.28) and heart-turquoise (¢ =
0.17) modules are overlapping in 12 out of 50 genes
including Ccl9, Cxcl1, Egrl, Fos, and Hmox1 and are
enriched for chemokine activity. The adipose-black (c =
0.00), heart-black (¢ = 0.00), kidney-magenta (¢ = 0.00),
and liver-green (¢ = 0.39) modules have pairwise over-
laps ranging from 33 to 146 genes. Twenty-two genes
are shared among all 4 of these modules and they are
enriched for KEGG pathway oxidative phosphorylation
and the GO category mitochondrial inner membrane.

Comparison across platform

We repeated the gene expression assays for only the
liver samples on a different platform, the Affymetrix
Whole-Transcript Mouse Gene 1.0 ST array. To facili-
tate comparison, we generated a cross-platform probe
map based on gene annotation (Methods). Using this
map, we computed eigengenes of the previously defined
clusters from the Affymetrix data. Correlation of the
eigengenes across platforms was very high for 7 of the 9
modules (r > 0.89 for 6 of 9 modules, r = 0.76 for liver-
brown; [Additional files 2, 6: Supplemental Figure S3]).
Two modules with lower correlation (liver-gold: r =
0.42, liver-green: r = 0.21) had less than 20% of variance
explained by the eigengene with Affymetrix data. How-
ever, for the liver-gold module, low expression for
mouse 6 was a consistent pattern across platforms. The
profiles of all 19 genes that are highlighted in the Dis-
cussion (below) are highly correlated across platform (r
> 0.55 for all 19, r > 0.70 for 16 of the 19, [Additional
files 2, 7, 8, 9: Supplemental Figures S4-56]).

Discussion

There are several mechanisms that may contribute to
between-mouse variation in gene expression in C57BL/
6] mice. New mutations that create single nucleotide or
copy number variants may result in variable gene
expression. We expect such events to be rare. However,
we have observed a striking pattern of differential
expression (r, > 0.88; p < 0.01) in the insulin degrading
enzyme (Ide) with approximately two-fold higher
expression in all 4 tissues for the two mice of cage 4.
We speculate that these siblings may have inherited a
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copy number variant at this locus on chromosome 19
for which copy number changes have been observed
previously in C57BL/6] mice [12]. Genes that display
circadian or other periodic expression patterns can be
out of phase in different animals. We attempted to con-
trol for cyclical variation by collecting samples in a con-
sistent and narrow time frame for all mice. Variation in
feeding behaviour is another possible factor and
although we implemented a 4-hour fast prior to tissue
collection, some variation in time since last feeding is
inevitable. Epigenetic differences may affect the expres-
sion of genes as a result of variable access to nutrients
in utero, birth order, maternal stress or other pre- or
post-partum events. Slight differences in phenotype at
birth may be magnified over time. Response to subtle
differences in local environment may have an effect on
gene expression and finally, the expression of some
genes may be sensitive to events just prior to euthanasia
[3].

Within-mouse transcript variation could reflect sto-
chastic variation in gene expression, which has been
observed within individual cells and across cell popula-
tions [13-20]. However, if it is present, this effect seems
to be dominated by other factors in our study. Tissue
heterogeneity due, for example, to localization of stem
and progenitor cell populations can result in sampling
variation [21-24]. This variation may be amplified by
dissection, especially in tissues with imprecise bound-
aries. Even a relatively homogenous and easily isolated
tissue such as liver will have internal structure that can
influence local gene expression [25,26].

Phenotypic implications of between- and within-mouse
variation in adipose tissue

Adipose tissue is compartmentalized into adipocytes,
preadipocytes, and vascular epithelium [2]. The degree
of vascularisation can vary significantly across different
regions of the same fat pad and is expected to be greater
in the portion of the inguinal fat pad that is near the
inguinal lymph node [27]. Vascularised adipose tissue
tends to be more metabolically active [28]. We found a
large number of genes that have within-mouse variation
related to vascularisation in the adipose-magenta mod-
ule (1340 genes, ¢ = 0.00). The positively correlated sub-
set of this module is enriched for GO biological
processes immune response, T cell activation, and lym-
phocyte activation [Additional file 3: Supplemental
Table S1] and include genes expressed in lymphocytes
such as Lck, Cd8b1, and EIfI (Figure 5, [Additional file
10: Supplemental Table S3]). Some genes within the adi-
pose-magenta module, which is dominated by within-
mouse variation, also have large between-mouse fold
changes. These genes, including Bmp3, Sfrp5, Mest, Lep
and Trp53inp2, are positively correlated with body
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Figure 5 Within-tissue correlation of eigengene transcript
abundance profiles. The eigengenes of the adipose-green and
adipose-magenta modules exhibit negative within-mouse
correlation and positive between-mouse correlation (r,, = -0.65, r, =
0.69) Profiles are shown for (A) Ccl6 (I) and Ccl9 (r) of the positively
correlated adipose-green module and KEGG cytokine-cytokine
receptor interaction pathway, (B) Cd8b1 () and Elf1 (r) of the
positively correlated adipose-magenta module and GO immune
response biological process, and (C) Lep (1) and Trp53inp2 (1), of the
negatively correlated adipose-magenta module. The graphical
features of the eigengene plots of Figure 4 apply to these gene
plots. Profiles are coloured by module membership. Summary
statistics for these genes are available [Additional file 10:
Supplemental Table S3].

weight and were previously found to be predictive for
adiposity [2] [Additional files 2, 11: Supplemental Figure
S7]. They are also negatively correlated with the module
eigengene, which is consistent with higher expression in
the less vascularised region of the inguinal fat pad, sug-
gesting an inverse relationship between vascularisation
and adiposity.

We chose to study the inguinal fat pad because it can
be efficiently dissected. Gene expression can vary among
fat depots [29,30] and proximity to the inguinal lymph
node clearly contributed to heterogeneity in the inguinal
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fat pad. This limits our ability to generalize our findings.
However, our previous experience [31] indicates that
other fat depots are at least as variable as the inguinal
depot. The Koza et al. study [18] identified their adipos-
ity signature, which we have replicated, in epididymal
and retroperitoneal fat.

Variable brown fat signature in white fat tissue

Several genes in the adipose-gold module are expressed
exclusively in brown fat, including Ucpl, Cidea, and
Cox8b [Additional files 2, 12: Supplemental Figure S8A-
B]. This module is enriched for fatty acid metabolism
and the module eigengene is correlated with Prdmi6 (r,
= 0.86; r, = 0.74; [Additional files 2, 12: Supplemental
Figure S8C]), which is part of a transcriptional complex
that promotes brown fat differentiation and suppresses
skeletal muscle cell differentiation [32,33]. The adipose-
brown module is enriched with 21 genes of the GO bio-
logical process muscle contraction. Genes in this module
are expressed in both skeletal muscle and brown fat and
many are related to brown fat cell differentiation
[32,33]. We ruled out cross contamination with muscle
tissue by inspection of the dissection procedure. The
enrichment for muscle contraction appears to be spur-
ious and reflects a potential pitfall of enrichment analy-
sis using GO annotation.

Most of the variation in the adipose-gold (¢ = 0.12)
and adipose-brown (¢ = 0.07) modules is attributable to
the within-mouse component, which suggests a hetero-
geneous spatial distribution of brown fat within the
inguinal fat pad. However, large between-mouse fold
changes, including Ckm, with 56-fold change, the largest
observed in this study [Additional files 2, 12: Supple-
mental Figure S8D], suggest that the proportion of
brown fat may also vary across mice. Brown fat tissue
proportion have previously been shown to vary with
age, strain, and environmental conditions [34].

Region-specific variation of gene expression in heart

The heart is composed primarily of cardiac smooth
muscle, but it is differentiated into atrial, ventricular
and trabecular regions with a left-right asymmetry. Sev-
eral genes expressed in atria and trabeculae of the heart
are repressed in the ventricles, in part, through activity
of the transcription factor, Gata4 [35]. The heart-green
module (898 genes) is enriched for these genes and
shows a pattern of within-mouse variation with little
between-mouse variation (¢ = 0.00). Gata4 is in the
heart-red module (¢ = 0.00), which has a strong within-
mouse correlation to the heart-green module (r,, = 0.89)
[Additional files 2, 13: Supplemental Figure S9]. Gata4
is negatively correlated with the heart-red eigengene
such that the within-mouse variation in Gata4 is inver-
sely related to the expression of ventricle-repressed
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transcripts [Additional files 2, 13: Supplemental Figure
S9]. We compared our results with a study of chamber-
specific gene expression (Tabibiazar et al. (2003) [36])
and found that, of the 27 genes previously reported to
be more highly expressed in the atria than in the ventri-
cles, 26 are included in the heart-green module. The
relatively small magnitude of between-mouse variation
in these modules reflects the effect of averaging of the
two samples, which together comprise the whole heart.
We conclude that much of the within-mouse variation
observed for heart tissue is a consequence of variable
proportions of anatomical substructures, specifically
ventricular tissue, within the samples.

Androgen-regulated genes are variable between mice in
the kidney

Many genes are regulated in response to androgens. In
mice, Srd5a2 plays a key role in androgen signal amplifi-
cation [37] suggesting that androgenic effects in indivi-
duals with higher Srd5a2 expression could be more
pronounced. Hsd11b1 facilitates the conversion of tes-
tosterone to adrenosterone [38] and has been shown to
be androgen-responsive in mice [39]. These genes were
found to be variable between mice and cluster together
in the kidney-green module (¢ = 0.59), which is enriched
for the KEGG androgen and estrogen metabolism path-
way. Other androgen-responsive genes in the kidney-
green module include Cyp4ali4, Slcolal, Nudtl9, Prir,
Angptl7, Hsd17b11, and Tmco3 [Additional files 2, 14:
Supplemental Figure S10].

It is not immediately clear if this variation reflects
transient or steady state variation in androgen levels
between mice. The expression of a mouse urinary pro-
tein, Gusb, is responsive to androgens in the long-term
but not in the short-term [40]. Gusb has significant
between-mouse variation that is correlated with the kid-
ney-green module eigengene (r, = 0.73) (Figure 4,
[Additional files 2, 14: Supplemental Figure S10]). This
suggests that other genes in this module also reflect
steady state androgen levels, which may have important
physiological and behavioural implications.

Between-mouse variation in fatty acid metabolism in the
liver

Genes in the liver-red module have either low or high
expression in the two mice of cage 3 [Additional files 2,
7: Supplemental Figure S4]. Genes in the low expression
subset are involved in oxidation of fatty acids (Acaa2,
Acadm, Ces3, Crat, Cyp4al0, Cyp4al4, and Elovi3).
Genes in the high expression subset, specifically Tnfrsfla
and Ptgis, are involved in the conversion of the essential
fatty acid arachidonic acid to prostaglandins. Thus, we
see decreased fatty acid degradation in mice that are
actively utilizing fatty acids. The liver-red module also
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shares genes with the androgen-associated kidney-green
module which may reflect the requirement for lipids as
precursors in androgen synthesis.

Between-mouse variation in circadian rhythm
The adipose-red, heart-blue, kidney-brown, liver-blue,
and liver-black modules are correlated and share multi-
ple genes related to apoptotic activity, which varies fol-
lowing circadian rhythm in mice [41]. Several other
genes that are known to vary in a circadian fashion are
also found in these modules [Additional files 2, 8: Sup-
plemental Figure S5], including Ccrn4l, FkbpS, Gadd45g,
Map3k6, Perl, Pim3, Mtl, Sgkl, Errfil, Cdknla, Duspl,
and Angptl4. The core circadian gene Per2 [42,43] is
found in the adipose-red module. Genes that follow a
circadian expression pattern are expected to vary with
the time of day and with fasting/feeding cycles. Despite
our efforts to control both of these factors, between-
mouse variation can be expected to arise if the mice are
in slightly different phases of their diurnal cycles.
Angptld, Cdknla, Duspl, and Fkbp5 vary in circadian
fashion [43,44] and are all located in a 7 Mb region on
proximal chromosome 17. This region is the strongest
example of coexpression clustering that we found in this
study. However, statistical assessment suggests that a
cluster of this size could be explained by chance.

Between-mouse variation associated with growth
hormone

The genes Socs2, Bcl6, Cish, and Gadd45¢ have corre-
lated patterns of variation in kidney and liver and are
among the genes with the most significant between-
mouse variation [Additional files 2, 9: Supplemental Fig-
ure S6]. Growth hormone has been shown to elicit a
strong transcriptional response in Socs2 (positive), Cish
(positive), Bcl6 (negative), and Gadd45g (positive), as well
as in the growth hormone responders Igf1 and I/6 [45].
Three of these genes (Socs2, Bcl6, and Cish) belong to the
kidney-pink and liver-magenta modules, which have 12
overlapping genes and are enriched for genes involved in
transcription regulation. Growth hormone signalling
affects transcription of genes such as XbplI (kidney-pink,
liver-magenta), which is critical for the regulation of
hepatic lipogenesis [46]. The effect of growth hormone
signalling appears to extend beyond these modules, how-
ever. Among 71 genes previously identified as growth
hormone responders [47], 49 were classified as variable
in our study, indicative of widespread individual variation
in growth hormone signalling.

Similarities and differences in transcript abundance for
sibling cage mates

Sibling cage mates may be expected to exhibit greater
similarity than randomly selected mice of the same
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strain due to shared developmental or micro-environ-
mental factors. When we further partitioned the
between mouse variance into between-cage and within-
cage components (Methods), we found more genes with
significant between-cage variation (adipose, 318; heart,
294; kidney, 1003; liver, 2066) than within-cage variation
(adipose, 91; heart, 77; kidney, 639; liver, 1652). The
liver-red module provides a striking example of within-
cage similarity [Additional files 2, 7: Supplemental Fig-
ure S4]. Enrichment for genes associated with fatty acid
oxidation in this module could reflect an extended per-
iod of fasting just prior to euthanasia. For example,
expression of murine hepatic Cyp4al4 (liver-red mod-
ule) is known to increase in expression under fasting
conditions [48]. This gene has been reported to be vari-
able between strains in liver [4], but it is not clear
whether this is a genuine strain-specific effect or an
artefact due to co-housing of mice of the same strain.

Other factors could contribute to greater differences
between mice within a cage. Cohabitating outbred male
mice form a social structure that includes dominance
status even when mice are housed as siblings from
birth. Dominance behaviour has been observed within
male mice of some inbred strains (e.g. CBA, DBA2) but
not C57BL/6]. However, cohabitation has known pheno-
typic effects on C57BL/6] males including change in
body weight, adrenal weight, and aggressiveness [49-53].
The factors that determine the social status of siblings
raised together are unclear, but once established, social
behaviour can reinforce these minor differences leading
to distinct individual phenotypes in adult mice.

In our experiment, we observed within-cage body
weight difference of as much as 3g (10% of total body
weight). Some of the transcriptional changes that we
have observed are likely to be related to these body
weight differences. For example, in cage 5 we observed
a large body weight difference coincident with a large
difference in transcription of signature genes for adipos-
ity [Additional files 2, 11: Supplemental Figure S7], but
small differences in signature genes for androgen levels
[Additional files 2, 14: Supplemental Figure S10]. In
contrast, in cages 3 and 4, body weight differences coin-
cide with a transcriptional signature for androgen
response but not for adiposity. This suggests that body-
weight differences may reflect two distinct processes,
one that affects adiposity and another that affects andro-
gen levels and lean mass [54,55]. Moreover, these find-
ings provide evidence for an effect of social context on
biological processes that have important consequences
for human health.

Comparison to a previous study of transcript variation
We directly compared our results to a previous study of
transcriptional variation in C57BL/6] mice [3,56] by
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computing variance components and applying the same
significance tests to both data sets [Additional file 15:
Supplemental Table S4]. We found little correlation in
total variation (r < 0.09) which we attribute to the pre-
dominance of technical variation, especially in the older
study. However, we did find good agreement across
these studies when we examined specific genes high-
lighted in the previous study. Cfd was reported to vary
significantly between mice in the kidney for the previous
experiment in which effects due to dissection and RNA
extraction are included in the between-mouse variance
component. We also found it to be a variable gene, but,
in contrast, we identified Cfd as a gene with primarily
within-mouse variation (¢ = 0.11) in the kidney-black
module [Additional files 2, 16: Supplemental Figure
S11]. Both studies identified significant between-mouse
variation in several highly variable genes, including
Gadd45g, Duspl, Cish, and Bcl6 [Additional files 2, 8, 9:
Supplemental Figures S5-S6]. Our study, with a larger
sample size, a more recent array technology, and a dif-
ferent experimental design should provide a more pre-
cise and detailed picture of variation in gene expression.

Conclusions

Transcript abundance varies significantly among geneti-
cally identical male C57BL/6] mice housed under uni-
form conditions. Patterns of variation can be tissue
specific or shared across multiple tissues and transcripts
can vary between tissue samples collected from the
same animal. Groups of genes with correlated patterns
of between-animal or within-animal variation are often
enriched for specific functional annotations. We utilized
correlation-based clustering to organize a large number
of distinct patterns of variation. Literature search tools
and functional annotation aided in the interpretation of
our findings. However, annotation of gene function is
incomplete and this presented some challenges as exem-
plified by the finding of a skeletal muscle signature in
white adipose tissue, which was due to the presence of a
related cell type, brown fat.

This study highlights a number of potential biological
and technical sources of variation that practitioners
should be aware of for both experimental design and
interpretation. Much of the between-animal variation
reported here reflects functions that are sensitive to
environmental cues, such as androgen response, circa-
dian rhythm, and immune response. External environ-
mental cues tend to elicit similar responses in multiple
tissues. Variation of gene expression within tissues
reflects their heterogeneous cellular composition, and is
also a major factor contributing to variation in gene
expression. This underscores the potential for dissection
or biopsy procedures to introduce unwanted variation
into studies of gene expression. Adipose tissue is
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especially problematic in this regard as it is a highly
dynamic and heterogeneous tissue with few anatomical
features to guide consistent dissection.

Our tissue collection procedure involved a coarse
separation of tissue fragments which, in retrospect, was
useful to reveal within-tissue heterogeneity. An excep-
tion to this was our use of the intact left and right kid-
neys as replicates. This may explain the relatively low
within-mouse variation observed for this heterogeneous
and highly structured tissue. In future studies, we
recommend the use of procedures that more effectively
homogenize tissue, such as pulverization and mixing of
snap frozen samples. Our finding also raises questions
about the potential for introducing systematic variation
in the dissection of anatomical substructures. This may
be a particular concern for studies of gene expression in
the brain, for which we have no data at this time.

The presence of biologically meaningful covariation in
a setting with no experimental perturbation underscores
the need for replication and careful adherence to statis-
tical design principles in gene expression studies. See-
mingly innocuous experimental factors such as co-
housing of mice can result in systemic differences that
may lead to strong statistical support for incorrect con-
clusions. Prior knowledge of the categories of genes that
are intrinsically variable can help to identify such effects.
Our study further demonstrates that the variation used
to construct statistical tests (error variance) in microar-
ray experiments can have substantial correlation across
large sets of genes. This can have a profound impact on
testing procedures, especially those that rely on multiple
test adjustment of p-values across many genes [57].

Methods

Animals and RNA isolation

We obtained 12 C57BL/6] male mice from The Jackson
Laboratory. Six pairs of littermates were housed together
from weaning and put on LabDiet’s 5k52 diet (standard
chow containing 6% fat) in a facility with a 12 h:12 h
light:dark cycle beginning with lights on at 6:00 a.m.
Animals had ad libitum access to food and acidified
water. At 10 weeks of age, body weight was recorded
and the mice were euthanized by cervical dislocation
and perfused with RNase-free DEPC-treated PBS. Dis-
section procedures were started at 11:00 a.m. after a 4-
hour period of food deprivation and were completed
within a one-hour time window. The Jackson Laboratory
Animal Care and Use Committee approved the animal
housing and experimental procedures described in this
work. Inguinal fat pad, heart, liver, and both kidneys
were dissected, cut into pieces not exceeding 0.5 cm in
any dimension, divided into two samples and placed in
15 ml conical tubes containing RNAlater solution
(Ambion, Austin TX). Each kidney sample consisted of
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one complete kidney, left or right. Tissues were homo-
genized in TRIzol™ reagent (Invitrogen, Carlsbad, CA).
Total RNA was isolated by standard TRIzol™ methods
according to the manufacturer’s protocols, and quality
was assessed using an Agilent 2100 Bioanalyzer instru-
ment and a RNA 6000 Nano LabChip assay (Agilent
Technologies, Santa Clara, CA). The RNA was treated
with DNasel (Qiagen, Valencia, Ca.) according to the
manufacturer’s methods.

Microarray processing

Illumina Sentrix® Mouse-6 v1.1 BeadChip processing

Total RNA was reverse transcribed followed by second
strand ¢cDNA synthesis. For each sample, an in-vitro
transcription (IVT) reaction was carried out incorporat-
ing biotinylated nucleotides according to the manufac-
turer’s protocol for Illumina® Totalprep RNA
amplification kit (Ambion). 1.5 pg biotin-labelled cRNA
was then hybridized onto Mouse-6 Expression Bead-
Chips (Illumina, San Diego CA) for 16 hours at 55°C.
Post-hybridization staining and washing were performed
according to manufacturer’s protocols (Illumina). Illu-
mina Sentrix® Mouse-6 v1.1 BeadChips were scanned
using Illumina’s BeadStation 500 scanner. Images were
checked for grid alignment and then quantified using
the BeadStudio software. Control summary graphs gen-
erated by BeadStudio were used as quality assurance
tools for hybridization, washing stringency, and back-
ground. Integrity of the arrays was investigated using
the BeadStudio array images and also using bead level
image plots generated using the R/beadarray package.
Mean pixel intensities by bead type, were created using
BeadStudio v3.1 and processed with the R/beadarray
package [58]. We performed the experiment in two
blocks of three cages, separated by one month. Within
each block, we assayed gene expression in each tissue
(12 samples) using two Illumina Sentrix® Mouse-6 v1.1
BeadChips. Samples were randomly assigned to array
positions within each chip with the constraint that sam-
ples from the same mouse were placed on separate
chips. Quantile normalization [59] was applied within
each tissue, and a correction for batch effects was
applied separately for each gene using an MM-regres-
sion estimator from the R/robustbase software package
[60]. We selected 45905 probes which are mapped to
22869 genes based on the R/illuminaMousevlplBeadID.
db package [61]. A transcript was called expressed if the
mean intensity across the 2 samples of (at least) 1
mouse was above the 95th percentile of the distribution
of the mean intensities for the negative control probes.
The data are available in accession series GSE20121
from the Gene Expression Omnibus http://www.ncbi.
nlm.nih.gov/geo/.
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Affymetrix Mouse Gene 1.0 ST Array processing

Following reverse transcription with random T7 primers
(Affymetrix, Santa Clara, CA), double stranded cDNA
was synthesized with the GeneChip® WT c¢DNA Synth-
esis and Amplification Kit (Affymetrix, Santa Clara, CA).
In an in vitro transcription (IVT) reaction with T7 RNA
polymerase, the cDNA was linearly amplified to generate
cRNA. In the second cycle of cDNA synthesis, random
primers are used to generate single stranded DNA in
the sense orientation. Incorporation of dUTP in the
c¢DNA synthesis step allows for the fragmentation of the
c¢DNA strand utilizing uracil DNA glycosylase (UDG)
and apurinic/apyrimidinic endonuclease 1 (APE 1) that
specifically recognizes the dUTP and allows for breakage
at these residues. Labeling occurs by terminal deoxynu-
cleotidyl transferase (TdT), where biotin is added by an
Affymetrix Labeling Reagent. 2.3 pg of biotin-labeled
and fragmented cDNA was then hybridized onto Gene-
Chip® Mouse Gene 1.0 ST Arrays (Affymetrix) for 16
hours at 45°C. Post-hybridization staining and washing
were performed according to manufacturer’s protocols
using the Fluidics Station 450 instrument (Affymetrix).
Then, the arrays were scanned with a GeneChip™Scan-
ner 3000 laser confocal slide scanner, quantified, and
exported to .CEL file format using the GeneChip®
Operating Software. Probes were mapped to 34760
probe sets using the R/mogenelOstvl.r3cdf package. The
.CEL files were processed using the R/affy package using
the Robust Multichip Average normalization method
[59]. The probe sets were mapped to genes using the R/
mogenelOsttranscriptcluster.db package [62]. For this
experiment, we used a partially balanced incomplete
block design method that accommodated hybridization
and washing/staining batch factors. Data are available as
part of accession series GSE20121 from the Gene
Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/.

Identifying variable genes and estimating variance
components

For gene g = 1,...,G; mouse i = 1,2,3,...,12; and sample
within mouse k = 1,2, we assumed that the log-trans-
formed transcript abundance, yj,, satisfies y;, ~ N(O,
O'gg) and considered the null hypothesis Hy: O'g2 =
where o is a fixed variance common to all genes. The
alternative is that some genes, g, have excess variability:
H,: O'g2 >0°. To test this hypothesis, we compared the
observed distributions of variance to a x? distribution
for each tissue. The distributions were scaled by dividing
each variance by the robust bias-corrected James-Stein
estimate [63]. For each tissue, the frequency of genes in
the tail of the scaled distribution was then compared to
the frequency of a random sample from a y 2,3 distribu-
tion. We identified 2000-4000 genes in each tissue with
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greater than expected variance (o = 0.05) (Table 1). The
2500 most variable genes in each tissue were designated
as variable genes and were used in the coexpression net-
work analysis. We chose this number of genes due, in
part, to computational constraints of the coexpression
network analysis.

We used random effects ANOVA to decompose total
variance into between-mouse and within-mouse variance
components. Briefly, each y;, is written as the sum of
the average transcript abundance for that gene, p,, a
mouse-specific effect, b;, and a within-mouse term, w;,.

Vikg = Ug + big + Wikg (1)

The within-mouse term absorbs variation from the
mean not accounted for by other terms on the right
side of (1). The terms b, and wy, are assumed to satisfy
b ~ N(0, Gng) and wj, ~ N(O, O'Wgz), respectively. The
terms O'bg2 and ngz are the between-mouse and within-
mouse variance components in this model. Estimates,
sbg2 and swgz, for these components were obtained by
residual maximum likelihood (REML) estimation from
R/Ime4 [64]. A modified F statistic [65] was used to
identify transcripts with significant between-mouse var-
iation. False positive rates were estimated using p-values
that were calculated by permuting model residuals. Two
types of multiple test corrections were performed. The
p-values were adjusted using the Sidak step-down
approach [5], and the Benjamini and Hochberg method
[6]. The qvalue software package [7] was used to esti-
mate the number of genes that do not have significant
between-mouse transcript variation, my. To separately
assess significance of between-cage and within-cage var-
iation, the following model was used: Each yjq, is written
as the sum of the average transcript abundance for that
gene, /i, a cage-specific effect, c;;, a mouse-within-cage
term, dj;),, and a within-mouse term, wy,.

Vikg = Mg + Cig + dj(i)g + Wijkg (2)

The Pritchard et al. (2001) [3] data were revised to
correct a processing error as previously reported [56].
For comparative purposes, we applied the same tests for
significance of between-mouse variation described above
to the corrected data.

Coexpression network analysis

Variable genes were analysed separately for each tissue
using coexpression networks [8,9]. Every pair of genes
was given a weighted connection, rsz, equal to the
square of their correlation coefficient across all samples.
Transcript abundance profiles were hierarchically clus-
tered and modules were obtained by a dynamic dendro-
gram cutting method and subsequent module merge
procedure [66]. We only retained modules with more
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than 25 members. Modules are referenced by their tis-
sue of origin and by a colour index.

For each module, the first principal component was
computed to give a representative profile, referred to
as the module eigengene [10]. We determined the sign
of the module eigengene to be positively correlated
with the majority of genes in the module and refer to
this majority as the positively-correlated module genes.
The complementary genes are referred to as the nega-
tively-correlated module genes. Module eigengenes
were scaled to match the median variance over all
genes in the module (Figure 4). For each gene, we
computed the intraclass correlation coefficient, ¢ = 5,%/
(s> + s,°) as a measure of the relative contribution of
the between-mouse variance component. We decom-
posed each gene profile into a between-mouse profile
and a within-mouse profile. The between-mouse pro-
file averages the two samples within each mouse and
the within-mouse profile is the difference between
sample 1 and the average value for that mouse. To
measure similarity of between- and within-mouse pro-
files, we computed Pearson correlation coefficients, r,
and r,,, for between-mouse (r,) and within-mouse (r,,)
profiles. When assessing significance of similarity of
correlation among eigengenes [Additional file 5: Sup-
plemental Table S2], we applied a Fisher transforma-
tion with sample size n = 11 (r;) and n = 12 (r,,).
For significance o < 0.05, this required |r,| > 0.66 and
|| > 0.64.

Gene set enrichment

Each module of the coexpression networks was tested
for enrichment within the Gene Ontology (GO) gene
sets [67] and the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway gene sets [38,68,69]. The
universe was defined as the set of variable genes pre-
sent in the relevant database (either GO or KEGG).
Only one probe per gene was included in the set of
variable genes. The positively- and negatively-corre-
lated subsets of each module were also tested for
enrichment. We considered two modules to have sig-
nificant overlap of functional enrichment if there were
4 genes in each module from a given category and
enrichment p-values were less than p < 0.01 for the
category in all modules.

Module overlap

We tested for overlap of modules across tissues on a
pairwise basis using the hypergeometric test with a Bon-
ferroni multiple-testing correction (¢ < 0.05). We also
used the hypergeometric test to assess the significance
of the overlap between published gene lists and modules
in our study. In this case, the universe of genes was
defined as those assayed in our experiment.
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Across-experiment comparison

To compare the results of the replicated liver experi-
ments, a map from Illumina probe to Affymetrix probe-
set was created based on gene symbol annotation.
Where multiple Affymetrix probe sets had the same
gene symbol assignment, we selected the one with high-
est correlation to the Illumina probe. For Affymetrix
module eigengene calculation, we excluded Affymetrix
probe sets with average intensity less than 7.

To compare our variance component distributions
with those of Pritchard et al. (2001), we generated a
map from Illumina probe to gene symbol annotation for
the Pritchard et al. experiment [70]. Where multiple
probe sets had the same gene symbol assignment, we
selected the one with highest intraclass correlation coef-
ficient. For this selection and for our comparison of
total variation, we excluded the array component of var-
iation for the Pritchard et al. experiment.

Additional resource: Database

An on-line resource has been created to allow access to

the experimental data, graphics, and test statistics for all

probes in this study:
http://cgd.jax.org/individualvariation.shtml.

Additional material

Additional file 1: Supplemental Figure S1. P-value histograms for
between-mouse significance tests.

Additional file 2: Supplemental Figure Captions. Captions for
supplemental figures.

Additional file 3: Supplemental Table S1. Enrichments scores of the
gene coexpression modules.

Additional file 4: Supplemental Figure S2. Graphical model showing
relationships between modules.

Additional file 5: Supplemental Table S2. Pairwise Pearson correlations
for module eigengenes.

Additional file 6: Supplemental Figure S3. Cross-platform comparison
of liver eigengene profiles.

Additional file 7: Supplemental Figure S4. Transcript abundance
profiles for fatty acid metabolism genes in the liver.

Additional file 8: Supplemental Figure S5. Transcript abundance
profiles for circadian rhythm genes.

Additional file 9: Supplemental Figure S6. Transcript abundance
profiles for growth-hormone regulated genes in kidney and liver.
Additional file 10: Supplemental Table S3. Within-mouse correlation
statistics for selected genes in adipose.

Additional file 11: Supplemental Figure S7. Transcript abundance
profiles for variable genes reported in adipose tissue.

Additional file 12: Supplemental Figure S8. Transcript abundance
profiles for variable brown fat signature genes in white fat tissue.

Additional file 13: Supplemental Figure S9. Transcript abundance
profiles showing region-specific variation of gene expression in heart.

Additional file 14: Supplemental Figure S10. Transcript abundance
profiles for androgen-regulated variable genes in the kidney.

Additional file 15: Supplemental Table S4. Transcript abundance
variation statistics for Pritchard et al (2001) dataset.
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Additional file 16: Supplemental Figure S11. Transcript abundance
profile for Cfd gene in kidney.
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