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Abstract

In globally coupled phase oscillators, the distribution of natural frequency has strong effects

on both synchronization transition and synchronous dynamics. In this work, we study a ring

of nonlocally coupled phase oscillators with the frequency distribution made up of two Lor-

entzians with the same center frequency but with different half widths. Using the Ott-Anton-

sen ansatz, we derive a reduced model in the continuum limit. Based on the reduced model,

we analyze the stability of the incoherent state and find the existence of multiple stability

islands for the incoherent state depending on the parameters. Furthermore, we numerically

simulate the reduced model and find a large number of twisted states resulting from the

instabilities of the incoherent state with respect to different spatial modes. For some winding

numbers, the stability region of the corresponding twisted state consists of two disjoint

parameter regions, one for the intermediate coupling strength and the other for the strong

coupling strength.

Introduction

It is well known that natural frequency distribution g(ω) plays a critical role in displaying rich

synchronous dynamics in globally coupled phase oscillators. For unimodal frequency distribu-

tion, the partial synchronous state steps in through a continuous transition when the coupling

strength is above a critical coupling strength [1]. Further increasing the coupling strength, the

partial synchronous state may transit to a global synchronization where all oscillators oscillate

at a same frequency. For a bimodal frequency distribution, increasing coupling strength always

first leads to a standing wave state and then to a traveling wave state [2]. When the peak dis-

tance in the bimodal frequency distribution is narrow, the discontinuous transitions between

different dynamical states are possible. When the frequency distribution becomes more com-

plicated, for example a trimodal one, the synchronous dynamics in globally coupled phase

oscillators may display collective chaos through a cascade of period-doubling bifurcations [3].
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In the above works, incoherent state is always unstable when the coupling strength is above a

threshold and further increasing coupling strength always enhances synchronization among

oscillators. Recently, some authors studied the synchronous dynamics when the frequency dis-

tribution is a superposition of two unimodal frequency distributions with the same mean fre-

quency in a globally coupled oscillator system [4]. They found a non-universal

synchronization transition in which the incoherent state may be restored for the coupling

strength above the threshold.

The impacts of the frequency distribution on the synchronous dynamics possibly exist in

other types of coupling topologies, for example in nonlocally coupled phase oscillators. A sys-

tem of nonlocally coupled phase oscillators has become an important platform for investigat-

ing collective dynamics among oscillators. One interesting dynamics is the chimera state in

which synchronous clusters and desynchronous clusters coexist [5–12]. Twisted state is

another interesting type of collective dynamics and is a simpler one [13–17]. Twisted state was

first identified in a ring of coupled identical phase oscillators and is characterized by the linear

dependence of the phase of oscillator on oscillator’s spatial position. A twisted state with wind-

ing number q refers to a state in which the phase of oscillator increases linearly along the ring

and varies 2πq through the ring. Wiley et al. found coexistence of a large number of twisted

states in nonlocally coupled identical phase oscillators and the probability finding a twisted

state with winding number q follows a Gaussian distribution with respect to q [13]. Lately, the

investigation on twisted states was generalized to non-identical phase oscillators with unimo-

dal frequency distribution and the concept of partially coherent twisted states was proposed

[15]. Beyond a critical coupling strength, the incoherent state becomes unstable and partially

coherent twisted states step in. In partially coherent twisted states, the existence of asynchro-

nous oscillators breaks the linear dependence of oscillator’s phase on position. Nevertheless,

by introducing a spatially-dependent complex order parameter, it can be found that the argu-

ment of the order parameter varies 2qπ through the ring in a partially coherent twisted state.

Recently, we studied nonlocally coupled phase oscillators with bimodal frequency distribution

and found twisted standing waves besides twisted traveling waves [17]. In these works on

twisted states, incoherent state remains unstable once twisted states appear and the coherence

among oscillators, characterized by the amplitude of spatially-dependent order parameter,

always increases with the coupling strength. Now, it is interesting to ask whether the superpo-

sition of two unimodal frequency distributions may dispute these observations and how it

influences the synchronous dynamics in nonlocally coupled phase oscillators.

In this work, we investigate the effects of the superposition of two unimodal frequency

distributions on the incoherent state and twisted states in a ring of nonlocally coupled phase

oscillators. We find that, under proper parameters, increasing the coupling strength may

encounter multiple stability islands of the incoherent state. We also find that, for some

winding numbers, the stability region of the corresponding twisted state consists of two dis-

joint parameter regions, one for the intermediate coupling strength and the other for the

strong coupling strength, and all of these twisted states are related to the instabilities of the

incoherent state with respect to different spatial modes. Moreover, we discover the existence of

complicated spatiotemporal patterns which have not been observed in previous works men-

tioned above.

The paper is organized as follows. Firstly, we will describe the model and derive a reduced

model in the continuum limit by using the Ott-Antonsen (OA) ansatz. Then, we theoretically

investigate the stability of the incoherent state based on the reduced model and we present

numerical results on different types of twisted states. The connection between different twisted

states and the instabilities of the incoherent state with respect to different spatial modes is pro-

posed. Finally, we will present a brief summary.

Twisted states in nonlocally coupled phase oscillators
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Materials and methods

We consider N phase oscillators which sit evenly on a ring with the length 2π and nonlocally

interact with each other with the coupling strength K. The model is described as

_y j ¼ oj þ
K

2M þ 1

Xk¼M

k¼� M

sin ðyjþk � yj þ aÞ: ð1Þ

The subscript j denotes the unit index, which has to be taken modulo N.M denotes the cou-

pling range and, in the following, we use the coupling radius σ = M/N as a controlling parame-

ter and 0< σ< 0.5. The phase lag α is in the range of (0, π/2). ωj is the natural frequency of

oscillator j located at xj = 2πj/N, which follows the frequency distribution g(ω). In this work,

we let g(ω) be a superposition of two Lorentzian distributions

gðoÞ ¼ p
g1

p

1

o2 þ g2
1

þ ð1 � pÞ
g2

p

1

o2 þ g2
2

ð2Þ

with p in the range of [0, 1]. γ1,2 are the half widths of the two Lorentzians. When p = 0 or

p = 1, the frequency distribution reduces to a normal Lorentzian one. Unless specified, γ1 = 1,

γ2 = 0.01, and p = 0.9.

Partially coherent twisted states can be characterized by the spatially-dependent complex

order parameter Zj ¼ RjeiYj which is defined as

Zj ¼
1

2M þ 1

Xk¼M

k¼� M

eiyjþk : ð3Þ

When Rj becomes nonzero, partially coherent states step in. On the other hand, the depen-

dence of Θj on oscillator’s position distinguishes different twisted states.

It has been shown in Refs. [15, 17] that partially coherent twisted states and their stabilities

can be theoretically investigated in the continuum limit based on the OA ansatz [18, 19]. In

the limit N!1, we introduce the probability density function f such that f(ω, x, θ, t)dθdω is

the fraction of oscillators with phases between θ and θ + dθ and natural frequencies between ω
and ω + dω at time t and position x. The spatially-dependent complex order parameter Z(x, t)
is reformulated as

Zðx; tÞ ¼
Z 2p

0

Gðx � yÞ
Z 1

� 1

Z 2p

0

feiydydody ð4Þ

with

GðxÞ ¼

( 1

4ps
; jxj < 2ps

0; otherwise:
ð5Þ

The evolution of the density f(ω, x, θ, t) obeys the continuity equation

@f
@t
þ
@

@y
ff ½oþ KImðZe� iðy� aÞÞ�g ¼ 0: ð6Þ

Using the OA ansatz [18, 19], we have

f ðo; x; y; tÞ ¼
gðoÞ
2p

1þ
X1

n¼1

½aðo; x; tÞ�neiny þ c:c:

)

;

(

ð7Þ
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where c.c. is the complex conjugate of the previous term. By substituting Eq (7) into Eq (6)

and following the procedures in Refs. [15, 17], we have

@u1ðx; tÞ
@t

¼ � g1u1ðx; tÞ þ
K
2
½Ze� ia � Zeiau2

1
ðx; tÞ�

@u2ðx; tÞ
@t

¼ � g2u2ðx; tÞ þ
K
2
½Ze� ia � Zeiau2

2
ðx; tÞ�

ð8Þ

with u1,2(x, t) = a(−iγ1,2, x, t) = |u1,2(x, t)|eiϕ1,2(x, t), measuring the coherence in the subpopula-

tions of oscillators with natural frequency following
g1;2

p

1

o2þg2
1;2

, and Zðx; tÞ ¼
Z 2p

0

Gðx � yÞ

½pu1ðy; tÞ þ ð1 � pÞu2ðy; tÞ�dy.

Results and discussion

The dynamics in Eq (1) can be reproduced by Eq (8). Therefore, we study the stability of the

incoherent state in the model (1) by linearizing Eq (8) around it and the synchronous dynam-

ics in the model (1) by performing numerical simulations on Eq (8). Traditionally, the coher-

ence in Eqs (1) and (8) is described by the global complex order parameter defined by

ReiF ¼
R 2p

0
½pu1ðy; tÞ þ ð1 � pÞu2ðy; tÞ�dy. However, R cannot provide correct information on

twisted states with nonzero q. Considering that, in Eq (8), u1,2(x, t) is driven by spatially-

dependent complex order parameter Z(x, t), we measure the coherence in Eq (8) by another

global quantity h|Z|i, defined as hjZji ¼
R 2p

0
jZðx; tÞjdx=2p. h|Z|i 6¼ 0 indicates a synchronous

state while h|Z|i = 0 the incoherent state.

Incoherent state

We start with the stability of the incoherent state. The incoherent state is characterized by

u1,2(x, t) = 0, and hence by Z(x, t) = 0. Linearizing Eq (8) around the incoherent state, we have

the evolution of perturbation δu1,2

ddu1;2

dt
¼ � g1;2du1;2 þ

K
2
e� iadZ ð9Þ

with dZ ¼
R 2p

0
Gðx � yÞ½pdu1ðy; tÞ þ ð1 � pÞdu2ðy; tÞ�dy. Supposing that the perturbation

takes the form δu1,2(x, t) = v1,2 eiqx eλq t with the wave number q an arbitrary integer (that is,

the perturbation on the spatial mode eiqx), we find the spectrum equation

0 ¼ l
2

q þ g1g2 þ lq g1 þ g2 �
K
2
e� iaĜðqÞ

� �

�
K
2
e� iaĜ ðqÞ½ð1 � pÞg1 þ pg2�; ð10Þ

where ĜðqÞ ¼ sin ð2psqÞ=2psq is the Fourier transform of the coupling function G. For any

q, there are two solutions to Eq (10). The one with the larger Re(λq), termed as the growth rate

of the perturbation with the wave number q, is relevant for the stability of the incoherent state.

For given parameter sets, the incoherent state is stable if and only if the growth rates Re(λq) for

all possible q are non-positive. For convenience, we first treat q in Eq (10) as a real number.

Fig 1 shows the growth rate Re(λq) against real number q for several coupling strengths and

coupling radius with other parameters fixed. With the increase of |q|, the growth rate Re(λ) dis-

plays a trend of damping oscillation whose period is determined by the joint parameter σq.

Depending on the coupling strength, the maximum of the growth rate may occur at either

qm = 0 or a nonzero K-dependent qm. That is, the perturbation taking the form of the spatial

modes with the wave numbers close to qm are the most dangerous to the stability of the

Twisted states in nonlocally coupled phase oscillators
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incoherent state. The right insets in Fig 1 identifying qm against K show nonzero qm for inter-

mediate coupling strength K and zero qm otherwise. It is interesting to note that the intermedi-

ate coupling strength occupies the range of (1, 2.5) and is insensitive to the coupling radius σ.

In the range of intermediate coupling strength K, qm increases with the coupling strength. As

we have mentioned, the wave number q is treated as a real number in Eq (10) for the conve-

nience of solving the equation. However, a periodic boundary condition with respect to x in

the model (1) requires q to be integers, therefore, the right insets in Fig 1 show that the most

dangerous spatial modes could be qm = 0, 1 for σ = 0.4, qm = 0, 1, 2 for σ = 0.2, while qm� 20

for σ = 0.02. In other words, decreasing the coupling radius leads that more spatial modes

should be considered for the stability of the incoherent state. Besides, we present Re(λ0), Re(λ1)

and Re(λ2) against K by the left insets in Fig 1, from which we can determine the stability of

the corresponding partially coherent twisted states.

Then we present the stability diagram of the incoherent state in the plane of the phase lag α
and the coupling strength K. We take σ = 0.4 as an example where the spatial modes q = 0 and

q = 1 should be considered. The critical curves with the growth rates Re(λ0) = 0 and Re(λ1) = 0

are plotted in Fig 2(a) and the intersection of the parameter regimes on the right side of critical

curves gives the stability regime of the incoherent state. To be addressed, the critical curve of

Fig 1. The growth rate λq against q. The growth rate λq obtained from Eq (10) is plotted against real number q for different coupling strength. The

left inset in each panel shows Re(λ0), Re(λ1) and Re(λ2) against K, while the right inset shows qm at which Re(λq) reaches its maximum against K. (a)

σ = 0.4, (b) σ = 0.2, (c) σ = 0.1, (d) σ = 0.02. γ1 = 1, γ2 = 0.01, α = 0.8, and p = 0.9.

https://doi.org/10.1371/journal.pone.0213471.g001
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Re(λ0), independent of the coupling radius σ, actually gives rise to the boundary of the stability

regime for the incoherent state in globally coupled phase oscillators where σ = 0.5. The S-

shaped critical curve Re(λ0) = 0 suggests that, in a certain range of α, there is another stability

island for the incoherent state in the globally coupled oscillators besides the coupling strength

K close to zero [4]. The resurgence of the incoherent state exists when σ = 0.4 (the nonlocally

coupled oscillators), which is exemplified by the inset where h|Z|i against K at α = 0.9 suggests

one stability island at intermediate coupling strength. To be noted, with the assistance of the

spatial mode qm = 1, there may be two stability islands for the incoherent state with the

increase of α at σ = 0.4. With the decrease of σ, more spatial modes endangering the incoherent

state have to be considered. Consequently, more stability islands for the incoherent state

appear and the range of α supporting the non-universal synchronization transitions narrows

[see Fig 2(b) and 2(c)]. In the limit σ! 0, the stability island of the incoherent state is lost and

the forward critical coupling strength for synchronization transition undergoes a jump at a

certain α, which is hinted in Fig 2(d) where σ = 0.02. It is worth mentioning that the stability

Fig 2. The stability diagrams of the incoherent state in the plane of the phase lag α and the coupling strength K for different coupling radius.

In each plot, we present the critical curves with Re(λq) = 0 for different q and the boundary of the stability regime of the incoherent state, denoted

by the curve in red, is made up of these critical curves with the largest α at a given K. (a) σ = 0.4, and q = 0, 1. q = 0 in black and q = 1 in blue. (b)

σ = 0.2, and q = 0, 1, 2. q = 0 in black, q = 1 in blue and q = 2 in cyan. (c) σ = 0.1, and q = 0, 1, � � �, 4. (d) σ = 0.02, and q� 20. Inset in each plot shows

h|Z|i against K for the intermediate coupling strength at α denoted by the green line. γ1 = 1, γ2 = 0.01, and p = 0.9. The denoted coupling strengths

in (b): KA’ 0.29, KB’ 0.39, KC’ 1.27, KD’ 1.43, KE’ 1.9, KF’ 2.5, and KG = 3.6.

https://doi.org/10.1371/journal.pone.0213471.g002
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islands of the incoherent state appear in the range of intermediate coupling strength where the

most dangerous spatial mode has nonzero wave number.

Partially coherent twisted state

When the incoherent state becomes unstable, the synchronous states pop up. We investigate

the transition scenario from the incoherence to synchronous behaviors with the coupling

strength K at a typical phase lag, for example α = 0.8, with other parameters the same as those

in Fig 2. For each coupling strength, we consider several realizations, each with initial condi-

tions taking the form of u1,2(x, t)*eiqx with a specific integer q and different ones with differ-

ent q. That is, we use different initial conditions for each fixed K. Fig 3 presents h|Z|i against

the coupling strength K for different coupling radius σ at α = 0.8 and, for better illustrations on

the behavior of h|Z|i, we zoom in two regions: K 2 (0, 2.5) and K 2 (2.4, 2.9). As shown in

Fig 3, the threshold K (K = 0.29) beyond which synchronization steps in for the first time is

independent of σ, which is in agreement with Fig 2 where the line α = 0.8 intersects with the

critical curve Re(λ0) = 0 at the same K. h|Z|i behaves nonmonotonically with K and, especially,

h|Z|i shows a valley in the range of the intermediate coupling strength. An important feature

revealed in Fig 3 is the multistability. There exist several synchronous states for the

Fig 3. h|Z|i against K for initial conditions taking the form of u1,2(x, t)*eiqx with different integers q. (a) σ = 0.4. q = 0 in black and q = 1 in

blue. (b) σ = 0.2. q = 0 in black, q = 1 in blue and q = 2 in cyan. (c) σ = 0.1 and red for q. (d) σ = 0.02 and red for q. The magnifications for the range

of K 2 (0, 2.5) are presented in (a1-d1) and for the range of K 2 (2.4, 2.9) in (a2-d2). γ1 = 1, γ2 = 0.01, α = 0.8, and p = 0.9.

https://doi.org/10.1371/journal.pone.0213471.g003
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intermediate and the strong coupling strength and the number of different states increases

with the coupling radius decrease.

To identify these different synchronous states and understand the dependence of h|Z|i on

K, we take σ = 0.2 as an example. Following the line (shown by the dashed line α = 0.8 in

magenta) in Fig 2(b) when K increases from zero, we encounter several critical coupling

strengths, from KA to KG, at which one of Re(λq) becomes zero and signals the alternation

between the stability and the instability of the incoherent state in response to the perturbation

along the spatial modes eiqx. When K 2 (KA, KD), Re(λ0) becomes positive and the incoherent

state is unstable with respect to the homogeneous perturbation. As a result, in Fig 3(b1), h|Z|i

rises from zero at KA and falls to zero at KD. Fig 4(a) where K = 0.5 in the range of KA to KD
shows a partially coherent twisted state with q = 0 characterized by ϕ1,2(x, t) = ϕ1,2(t), a

homogeneous time-periodic argument, and |u1,2(x, t)| = |u1,2|, an amplitude independent of

time and space. In this twisted state, |u2|� |u1| with |u1| close to zero and two global quanti-

ties, R and h|Z|i, are almost the same. When K 2 (KB, KE), Re(λ1) becomes positive, which

gives rise to a twisted state with q = 1. In this range, h|Z|i becomes nonzero in response to the

perturbation taking the form of eix. Fig 4(b) shows a twisted state with q = 1 at K = 1 where

ϕ1,2(x, t) varies 2π along the ring and |u1,2(x, t)| = |u1,2|. In this q = 1 twisted state, R’ 0

due to the fact that the contributions from the locations x and x + L/2 are cancelled out since

Fig 4. Typical twisted states at σ = 0.2. (a) The twisted state with q = 0 and |u1(x, t)| close to 0 at K = 0.5. (b) The twisted state with q = 1 and |u1(x,

t)| close to 0 at K = 1. (c) The twisted state with q = 2 and |u1(x, t)| close to 0 at K = 2. (d) The modulated twisted state with q = 2 at K = 2.55. (e) The

twisted state with q = 0 and |u1(x, t)| far away from 0 at K = 3. (f) The twisted state with q = 1 and |u1(x, t)| far away from 0 at K = 6. The first column

shows the evolutions of the global quantities R (in green) and h|Z|i (in blue). The second column shows the evolutions of ϕ1(x = 0.1, t) (in black) and

ϕ2(x = 0.1, t) (in red) and the third column shows |u1(x = 0.1, t)| (in black) and |u2(x = 0.1, t)| (in red). The fourth column shows the snapshots of

ϕ1(x, t) (in black) and ϕ2(x, t) (in red) and the fifth column the snapshots of |u1(x, t)| (in black) and |u2(x, t)| (in red). γ1 = 1, γ2 = 0.01, α = 0.8, and

p = 0.9.

https://doi.org/10.1371/journal.pone.0213471.g004
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eiϕ1,2(x, t) + eiϕ1,2(x + L/2, t) = 0. Furthermore, Re(λ2) becomes positive from negative at KC, which

may be confirmed in Fig 3(b1), and induces a twisted state with q = 2 presented in Fig 4(c)

where ϕ1,2 change 4π along the ring. Re(λ1) becomes positive again when the coupling strength

is increased to K = KG. However, the new q = 1 twisted state [see Fig 4(f)] pops up till K’ 5.4.

It is because that the new q = 1 twisted state may exist since K = KG but it becomes stable only

till a larger K, which can be proved by the stability analysis of the twisted state following

Ref. [15]. To be stressed, Re(λ2)>0 is kept even when K = 5. However, the twisted state with

q = 2 may undergo a secondary bifurcation and leads to a modulated twisted state. In the mod-

ulated twisted state, as shown in Fig 4(d) where K = 2.55, |u1,2| become space-dependent with

ϕ2 varying 4π along the ring and ϕ1 undergoing a small amplitude oscillation with spatial

period L/2. More interestingly, |u1,2(x, t)| become periodic in time in this modulated twisted

state. Actually, the bifurcation to the modulated twisted state with q = 2 occurs at K’ 2.52 and

Fig 3(b2) suggests a continuous transition between the time-independent and the modulated

twisted states with q = 2. When increasing K to a strong coupling strength KF, Re(λ0) becomes

positive again, which leads to another twisted state with q = 0. As shown in Fig 4(e) with K = 3,

this new twisted state with q = 0 is characterized by ϕ1,2(x, t) = ϕ1,2(t) and |u1,2(x, t)| = |u1,2|.

The new state is quite different from the q = 0 state in Fig 4(a) in the sense that, here, both |u1|

and |u2| are far away from 0. Due to the frequency distribution Eq (2), we may partition

phase oscillators into two groups, one with the Lorentzian distribution with half width γ1 and

the other with the Lorentzian distribution with half width γ2. Consider that u1,2(x, t) = a(−iγ1,2,

x, t) play the order parameters measuring the coherence in groups of oscillators with the half

widths γ1,2 in the frequency distributions, the difference between these two twisted states can

be apprehended as following. In the twisted state with q = 0 in Fig 4(a), |u1(x)’0| suggests that

only oscillators in γ2 group get partially synchronized while those in the γ1 group are desyn-

chronized. In contrast, in the twisted state with q = 0 in Fig 4(e), |u1,2| far away from zero indi-

cate that oscillators in both the γ2 group and the γ1 group get partially synchronized. The

similar cause results in the two different twisted states for q = 1. Noting that |u1,2| are far away

from zero in Fig 4(f), we know that oscillators in both the γ1 and the γ2 groups are in partially

synchronous state, which is different from the twisted state with q = 1 in Fig 4(b) where oscilla-

tors in the γ1 group are asynchronous.

Accordingly, the transition scenarios in Fig 3(a), 3(c) and 3(d) can be analyzed in the same

way. Briefly, the synchronous states presented in Figs 3 and 4 originate from the instabilities of

the incoherent state to the perturbations in different spatial modes. Based on Fig 2, the multi-

stability in Eqs (1) and (8) may be observed when there exist several spatial modes with posi-

tive Re(λq) at the same parameter set, and it could be understood that decreasing σ leads to

more and more synchronous states. In addition, it has to be addressed that there are two types

of twisted states with the same winding number q, one with u1’ 0 in weak and intermediate

coupling strength and the other with u1 far away from 0 in strong coupling strength. In the for-

mer one, only oscillators in the γ2 group get partially synchronized while, in the latter one,

oscillators from both γ1 and γ2 groups get partially synchronized.

Complicated spatiotemporal patterns

We have presented several twisted states in correspondence to the response of the incoherent

states to perturbation on different spatial modes. However, there are some parameter regions

in which there are several different spatial modes unstable to the incoherent state. If we con-

sider arbitrary initial conditions, the competition among different spatial modes may lead to

complicated spatiotemporal patterns. Here, we present some of them. Fig 5(a) shows a periodic

spatiotemporal pattern. The amplitudes |u1,2(x, t)| display characteristics of standing wave
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state with spatial periodicity L while ϕ1,2(x, t) perform periodic oscillation in the presence of

some phase slips. Fig 5(b) shows an interesting spatialtemporal patterns. In the respect of |

u1,2(x, t)|, the pattern looks like a localized structure traveling along the ring. At the same time,

the space is divided into two moving regions in the respect of ϕ1,2(x, t) and, in different

regions, ϕ1,2(x, t) increases at different velocities. The model also displays spatialtemporal

chaos. Fig 5(c) shows a weak spatialtemporal chaos in which |u1,2(x, t)| display a little regularity

while Fig 5(d) shows a more turbulent state for both |u1,2(x, t)| and ϕ1,2(x, t). According to the

classification in a recent work [20], the states in Fig 5(c) and 5(d) belong to the amplitude tur-

bulence since |u1,2(x, t)| = 0 may be encountered at any spatial location.

Conclusion

In summary, we studied a ring of nonlocally coupled phase oscillators in which the frequency

distribution is made up of two Lorentzians with the same center frequency but with different

half widths. Using OA ansatz, we derived a reduced model in the limit of infinite number of

oscillators. Based on the reduced model, we studied analytically the stability of the incoherent

Fig 5. Several complicated spatialtemporal patterns. (a) The standing-wave-like pattern at σ = 0.2 and K = 0.8. (b) The soliton-like pattern at

σ = 0.02 and K = 2, 52. (c) Weak spatialtemporal chaos at σ = 0.08 and K = 2.52. (d) The spatialtemporal chaos at σ = 0.02 and K = 2.52. The first

column shows the evolution of |u1(x, t)|, the second column shows the evolution of |u2(x, t)|, the third column shows the evolution of ϕ1(x, t), and

the fourth column shows the evolution of ϕ2(x, t). γ1 = 1, γ2 = 0.01, α = 0.8, and p = 0.9.

https://doi.org/10.1371/journal.pone.0213471.g005
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state and found that the most unstable spatial mode to the incoherent state depends on the

coupling strength, the homogeneous perturbation with the winding number qm = 0 for the

weak and the strong coupling strength and inhomogeneous perturbation with nonzero wind-

ing number qm 6¼ 0 for intermediate coupling strength. The critical curves of the different spa-

tial modes to the incoherent state may be S-shaped ones, which may give rise to multiple

stability islands of the incoherent state. By numerically simulating the reduced equations, we

found a large number of twisted states which result from the response of the incoherent state

to the perturbations in the form of different spatial modes. Especially, there are two types of

twisted states, one for the intermediate coupling strength and the other for the strong coupling

strength. By partitioning oscillators into two groups each of which obeys a unimodal frequency

distribution, we found that, for the twisted state for the intermediate coupling strength, the

group of oscillators with fat frequency distribution remains in desynchronization and, for the

states for strong coupling strength, both groups are in partial synchronization.
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