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Estimating the precision or uncertainty associated with sensory signals is an important part of perception.
Based on a previous computational model, we tested the hypothesis that increasing visual contrast increased
the precision encoded in early visual areas by the gain or excitability of superficial pyramidal cells. This hy-
pothesis was investigated using electroencephalography and dynamic causal modelling (DCM); a biologically
constrained modelling of the cortical processes underlying EEG activity. Source localisation identified the
electromagnetic sources of visually evoked responses and DCM was used to characterise the coupling
among these sources. Bayesian model selection was used to select the most likely connectivity pattern and
contrast-dependent changes in connectivity. As predicted, the model with the highest evidence entailed in-
creased superficial pyramidal cell gain in higher-contrast trials. As predicted theoretically, contrast-dependent
increases were reduced at higher levels of the hierarchy. These results demonstrate that increased
signal-to-noise ratio in sensory signals produce (or are represented by) increased superficial pyramidal cell
gain, and that synaptic parameters encoding statistical properties like sensory precision can be quantified
using EEG and dynamic causal modelling.

© 2012 Elsevier Inc. Open access under CC BY license.
Introduction

Predictive coding is an influential model of brain function that has
proved helpful in explaining many visual phenomena, including
extraclassical receptive field effects in V1 (Rao and Ballard, 1999),
repetition suppression (Summerfield et al., 2008) and modulation of
early cortical responses by attention (Rauss et al., 2011). Friston and
Kiebel (2009) suggested a neurobiologically plausible scheme by
which predictive coding could be executed in the cortex; key to
these proposals is the idea that superficial pyramidal cells pass pre-
diction error forward to higher cortical areas.

Classical predictive coding schemes are linear; however, these
schemes cannot accommodate state dependent changes in the preci-
sion (inverse variability) of sensory signals. An important generalisa-
tion of predictive coding was introduced by Feldman and Friston
(2010) to accommodate the fact that the precision of sensory signals
is highly context sensitive and depends upon the (hidden) states of
the world, generating sensory inputs. In the generalised predictive
coding, precision scales the prediction error such that precise
prediction errors have more influence at higher levels in representa-
tional cortical hierarchies; effectively, precision represents the
signal-to-noise ratio or salience of prediction error associated with
bottom-up signals. This sort of scaling is vitally important for sensory
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perception; for example, in multimodal integration (Ernst and Banks,
2002) and in reconciling information derived from sensory signals
and prior knowledge (Rahnev et al., 2011a). Precision also influences
the perception of visual contrast — increasing the relevance and the
probability of a visual contrast signal have dissociable effects on ener-
gy sensitivity (Wyart et al., 2012), and attention allows the adoption
of more stringent (conservative) detection criteria during contrast
detection (Rahnev et al., 2011a, 2011b), suggesting that contrast de-
tection is dependent on the estimated precision of sensory informa-
tion. The introduction of precision also explains away the apparent
contradiction between biased competition, which boosts expected
signals (prediction errors) and predictive coding, which attenuates
them (Feldman and Friston, 2010). This has recently been demon-
strated experimentally; Kok et al. (2011) have shown, in an fMRI par-
adigm, that attention reverses the attenuation of BOLD signal seen
in response to predictable stimuli. In generalised predictive
coding, superficial pyramidal cells have been proposed to report
precision-weighted prediction error, rather than pure prediction
error (Friston and Kiebel, 2009). This sort of scheme is formally sim-
ilar to those based upon adaptive resonance theory (Grossberg and
Versace, 2008). See also Spratling (2008). Crucially, it provides a plau-
sible mechanism for attentional modulation.

Recent theoretical work by the authors (Brown and Friston, 2012)
has also investigated the role of precision in the context of visual illu-
sions — in particular the Craik-O'Brien-Cornsweet (CBC) illusion. This
illusion is perhaps the simplest of visual illusions, where a visual
‘edge’ between two isoluminant regions creates the impression
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that the one region is brighter than the other. We will focus on this
illusion because it provides clear psychophysical evidence that
contrast affects the encoding of precision in predictive coding — in
a way that motivates the electrophysiological hypotheses tested in
this paper. The CBC illusion was simulated by assuming observers
make predictions about their visual input using a generative model
in which reflectance and illuminance interact to produce sensory sig-
nals. Crucially, the generative model included prior beliefs that lumi-
nance varied with low spatial frequency whereas reflectance varied
with high spatial frequency. Inversion of this generative model
under a generalised predictive coding framework replicated the illu-
sory perception of the CBC stimulus. In short, it was sufficient to ex-
plain the CBC illusion purely in terms of plausible prior beliefs about
the spatial frequency structure of illuminance profiles and reflecting
surfaces.

This is not the first explanation of the CBC to be based
Helmhotlz's (Helmholtz, 1924) idea that the visual system must re-
move the effect of the illuminant to perceive. Purves et al. (1999,
2004) have suggested a Bayesian explanation for the CBC illusion
and demonstrated that contextual cues indicating two differently
reflectant surfaces subject to an illuminance gradient increase the
magnitude of the CBC illusion. Mechanistically, this may be achieved
by filling-in (Grossberg and Hong, 2006) — see also Reynolds and
Heeger (2009) for a contemporary discussion in the context of the
normalisation model.

In these simulations, the emergence of the CBC illusion depends
critically on the luminance contrast of the stimuli. To simulate the ef-
fects of changing contrast, the precision of the sensory inputs (the
first hierarchical layer of the generative model) was manipulated;
high precision corresponded to higher contrast and vice versa. This
manipulation was based onWeber's law (Weber, 1846) and evidence
that the brain uses divisive normalisation (Brady and Field, 2000;
Carandini and Heeger, 1994), meaning that higher contrast stimuli
have a higher signal-to-noise ratio and therefore higher precision. As-
sociating stimulus contrast with precision enabled the generalised
predictive coding scheme to accurately reproduce the effects of con-
trast on human observers; namely, the magnitude of the CBC illusion
increased to a plateau (Fig. 1), and Mach bands appeared at higher
contrast. These results suggest that increasing stimulus contrast in-
creases the precision of sensory signals encoded by early visual areas.

In the context of the generalised predictive coding scheme out-
lined above, precision is encoded by the gain of superficial pyramidal
cells. Gain in early visual areas is known to be important for contrast
perception. Cells in visual area V1 are sensitive to contrast and, on a
timescale that precludes neuronal adaptation, the firing rate of such
cells generally increases linearly in response to increasing visual con-
trast, except at very high contrast levels (Albrecht et al., 1984;
Ohzawa et al., 1982). Although this pattern is consistent with a
gain-based explanation of visual contrast coding, this is by no
means the only explanation. In this study, we used EEG and dynamic
causal modelling to investigate role of synaptic gain in contrast per-
ception in early and higher cortical areas.

Materials and methods

Participants

18 healthy right-handed subjects participated in the study (9
males; aged 20–56). Ethical approval was obtained from the UCL Re-
search Ethics Committee (no. 2715/002). Written informed consent
was obtained from all subjects.

Experimental paradigm

CBC stimuli (Fig. 7) were created by applying a bandpass filter to
1024×512 arrays of white noise to produce a random blob pattern
with a fundamental frequency of 67 blobs/image (1 cycle/degree).
This pattern was thresholded and convolved with a 2-D Laplacian-
of-Gaussian filter to give a CBC stimulus. Stimuli were scaled to
have 10%, 25% or 90% of the maximum contrast supported by the
monitor. The stimuli occupied both lower quadrants of the screen,
subtending approximately 32° of visual angle. The central 2° of visual
angle were left blank. Stimuli were presented against a grey back-
ground on a gamma-corrected monitor. Average luminance was
48 cd/m2.

Participants sat on a comfortable chair and rested their head on a
chin rest. The stimuli were displayed on an LCD monitor 60 cm from
the subjects. During the task, subjects fixated on a central cross. One
of the three CBC stimuli was presented on the bottom half of the
screen for 400 ms. Inter-trial interval was jittered between 600 ms
and 800 ms. Three sessions of 1200 stimuli were presented, over
about one hour's scanning time. During the task, the fixation cross
changed to a circle and back again between stimuli, randomly with
a probability of 0.01, to provide targets for an incidental task, used
to maintain attentional set. Participants counted these events and
reported the total to the experimenter after each session.

Data collection and processing

EEG data were recorded using a Biosemi system with 128 scalp
electrodes at a sampling rate of 512 Hz. An average reference was
used. Vertical and horizontal eye movements were monitored with
electro-oculogram electrodes. Electrode positions were recorded
with a Polhemus digitiser. Data were analysed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Data were down-sampled to 200 Hz and bandpass-filtered be-
tween 0.5 Hz and 45 Hz to suppress very low frequencies.
Baseline-corrected epochs were extracted from the time series
starting at 100 ms before stimulus onset and ending at 400 ms after
stimulus onset. Blink and eye-movement artefacts were detected by
simple thresholding of electro-oculogram channels; artefactual trials
were removed from the analysis. 9.7% of trials were excluded (range
across subjects 0.3%–32%). Three types of event related averages
were taken — an average for each subject and contrast level, an aver-
age over contrast levels for each subject and an average for each con-
trast level over all subjects.

Source localisation

Using the event related potentials averaged over contrasts for each
subject, source localisation was performed using multiple sparse
priors and group constraints (Litvak and Friston, 2008). This
localisation optimises prior covariance constraints on sources over
subjects and provides maximum a posteriori estimates of activity at
each source from a cortical mesh from 60 ms post stimulus onset to
400 ms post stimulus onset for each subject. These estimates were av-
eraged over peristimulus time and projected to a three-dimensional
source space, where they were smoothed to create an image of source
activity for each subject. Individual subject images were averaged.
This procedure was used to identify the location of four bilateral
sources in each hemisphere (see Fig. 2). The sources were identified
as the four bilateral peaks with the largest posterior estimates of
evoked power (sum of squared source activity over peristimulus
time — Litvak and Friston, 2008).

DCM

We used dynamic causal modelling as implemented by SPM8 to
examine the changes in pyramidal cell gain due to changes in visual
contrast (Kiebel et al., 2008). Dynamic causal modelling employs
biophysically constrained models and a Bayesian inversion scheme to
infer hidden variables relating to connectivity and synaptic efficacy by
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Fig. 1. The Craik-O'Brien-Cornsweet (CBC) illusion. Upper panel: A demonstration of the CBC illusion. The two side panels have identical luminance. Close to the shared edge, there
is a ramp of increasing luminance on the left and decreasing luminance on the right, which gives rise to the illusory percept that the panels have constant luminance and that there
is a luminance step between them. Occluding the luminance ramps destroys this effect. Lower panel: psychophysical and simulated data from Brown and Friston (in submission).
The black points are psychophysical data from a behavioural matching paradigm, in which the contrast of the stimulus luminance was varied and stimuli were matched to a real
luminance step. The red points are simulated responses to the same stimuli, using a generalised predictive coding scheme; where the simulated and real psychophysical results
have been scaled to match as closely as possible. Gamma values correspond to the log-precision of the (simulated) sensory input. Increasing the precision of sensory input repro-
duces the expression of the CBC illusion in human observers as visual contrast increases.

225H.R. Brown, K.J. Friston / NeuroImage 63 (2012) 223–231
modelling EEG data as the response of a dynamic input-state-output
system to experimental perturbations. The model comprises both a
neuronal mass model that allows for directed coupling among hidden
neuronal states and the electromagnetic forward model (used for
source localisation above) thatmaps fromhidden neuronal states to ob-
served channel data.

The neuronal model employed in DCM consists of a number of dis-
crete cortical sources, each comprising four cell populations— superficial
and deep pyramidal cells, spiny stellate cells and inhibitory interneurons.
The activity of thesepopulations is coupled by a series of differential equa-
tions, which are based on the intrinsic connectivity among cortical layers
(Bastos et al., 2011). A series of parameters, (γ1–γ10) specifies the
strength of intrinsic connectivity between populations; four of
the intrinsic connections are optimised to fit the data, the others
are fixed. One or more may be optimised in a condition-specific
way.

Extrinsic connections link different sources. Extrinsic forward con-
nections are excitatory, originate from superficial pyramidal cells and
terminate on spiny stellate neurons. Extrinsic backward connections
are inhibitory, originate from deep pyramidal cells and terminate on
superficial pyramidal cells. Under generalised predictive coding, su-
perficial pyramidal cells are thought to signal precision-weighted



Fig. 2. Source localisation. Sources located by source reconstruction using multiple
sparse priors and group constraints. The figures show absolute source activity averaged
across subjects; the maxima were used as source locations for DCM. Four locations
emerged bilaterally: the inferior occipital gyrus, the inferior parietal cortex, the superi-
or occipital gyrus and the superior orbital gyrus.
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prediction error (Friston and Kiebel, 2009). The precision is repre-
sented in the model by pyramidal cell self-connectivity, γ7.

To generate predicted signals in sensor space, superficial pyrami-
dal cell activity (which is thought to represent most of the EEG signal)
is multiplied by a lead field matrix which maps sources to sensors to
produce simulated data. This lead field matrix constitutes the conven-
tional electromagnetic forward model.

The dynamic causal model is inverted using variational Bayesian
procedures to obtain the posterior density of the free parameters
given the data. As well as the four intrinsic connection strength pa-
rameters, our free parameters included the strength of all extrinsic
connections. The posterior distributions were obtained using a stan-
dard Variational Laplace scheme as described in Friston et al. (2007).
Fig. 3. Results of fixed-effects Bayesian Model Selection. Upper panel: out of the differ-
ent extrinsic connectivity models, Model 5, a serial hierarchy with interhemispheric
connections, had the most evidence. This model was used for subsequent analyses.
To determine the connectivity of the areas identified by the source
localisation, Bayesian model selection was first performed using the
free energy, which is an approximation to log model evidence. Six
plausible models were specified (Fig. 8), representing both parallel
and serial hierarchies, with and without inter-hemisphere connec-
tions. Each of the six models was fitted separately to the average re-
sponse over all subjects for each contrast level. A fixed-effects
model comparison was then performed.

The winning model was used for all subsequent analyses. Within
this model, three sub-models of contrast-dependent effects were
evaluated using subject-specific averages: a model with no contrast-
dependent effects, a model with contrast-dependent changes in the
self-connectivity of superficial pyramidal cells (γ7) and a model all-
owing contrast-dependent changes in the self-connectivity of deep py-
ramidal cells (γ10). A fixed effects Bayesianmodel comparisonwas then
used to compare the final three models (contrast dependent effects
upon the superficial, deep or no cells) by pooling their log evidences
over subjects.

Statistical analysis

Statistical analysis of the parameter estimates from the winning
model was performed in SPSS 20.0. The winning model had
contrast-dependent changes in the γ7 parameter (self‐inhibition of
superficial pyramidal cells or negative gain). The maximum a
posteriori estimates of the changes in these parameters were quanti-
fied using a classical summary statistic approach. Eight parameters
changed in a contrast-specific way in each subject-specific model —
one for each of four areas in both hemispheres. These parameters
were entered into a two-way ANOVA with factors cortical source
(with four levels) and hemisphere (with two levels). In addition, a
one-way ANOVA with planned contrast testing for a (linear) change
in gain with hierarchical level was performed, weighting the groups
(from the bottom of the hierarchy to the top) as 4,3,2,1. Equal vari-
ance was assumed.

Results

Source localisation revealed four bilateral sources of activity
(Fig. 2): inferior occipital (IOG), the inferior parietal cortex (IPC), su-
perior occipital gyrus (SOG) and the superior orbital gyrus (SOrbG).
These cortical areas have been implicated previously in the process-
ing of visual form and the global (spatial) attributes of visual stimuli
(Peterson et al., 1999; Podzebenko et al., 2005; Shikata et al., 2003).
The locations of these sources were used in subsequent dynamic
causal modelling of observed responses in sensor space. Note that
our anatomical designations are just mnemonic. Although our source
reconstruction used a canonical template — and the sources can be
associated with a Talairach and Tournoux location— the spatial preci-
sion of EEG source reconstruction means that anatomical localisation
is very approximate.

Six dynamic causal models (Kiebel et al., 2008) employing a ca-
nonical microcircuit model of neural activity (Bastos et al., 2011)
were fitted to the event related potentials averaged over all subjects
for each level of contrast (Fig. 8). Fixed effects Bayesian model com-
parison was used to compare the evidence for each model, pooled
over subjects. The model with the greatest evidence was a simple hi-
erarchy with diagonal interhemispheric connections (Fig. 3, Fig. 4).
This model was then used to assess contrast-dependent changes in
coupling for each subject.

This model was fitted to individual subject data with three possible
models of contrast-dependent effects; one which allowed no changes
in connectivity, a model with contrast-dependent changes in the
self-connectivity of superficial pyramidal cells and a model allowing
contrast-dependent changes in the self-connectivity of deep pyramidal
cells. Fixed-effects Bayesian model comparison showed the model with
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Fig. 4. Prediction error in the cortical hierarchy. This figure shows the activity reconstructed at each of the sources used for DCM analysis (based on a DCM of the grand average
event related potentials over subjects). These responses can be taken to be a rough proxy for prediction error, since superficial pyramidal cells contribute most of the EEG signal.
The difference in signal between high-contrast and low-contrast clearly reduces as the hierarchy is ascended, reflecting the decreasing differences in the precision of prediction
error.
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contrast-dependent changes in the self-connectivity (gain) of the su-
perficial pyramidal cells had the most evidence, with a log Bayes factor
of 900— compared to equivalent model with changes in the deep pyra-
midal cells. Both of these models had an overwhelming amount of evi-
dence in relation to the null model, with no contrast dependent
changes in gain (with Bayes factors of over 30,000). The model with
contrast dependent changes in superficial pyramidal cell gain provided
an excellent fit to the data (Fig. 5).

Contrast-dependent changes in coupling under the winning
model were assessed in a post hoc fashion, using classical inference.
Two-way ANOVA (with factors cortical source and hemisphere)
showed no effect of side (F1,136=1.850; p=0.073), so parameters
pertaining to left and right sources were analysed together subse-
quently. One-way ANOVA with planned testing for a (linear) change
in gain with hierarchical level showed a significant trend for
contrast-dependent increases in lower sources and smaller, or no,
contrast-dependent increases in higher sources of the hierarchy
(t140=−2.472; p=0.015) (Fig. 6). The contrast-dependent changes
in gain shown in Fig. 6 produce a progressive attenuation of
contrast-dependent effects at higher levels in the hierarchy. This
can be seen easily in Fig. 4, where solid lines represent the
highest-contrast condition and dotted lines the lowest-contrast con-
dition. The difference in responses to the different levels of contrast
clearly decreases as the hierarchy is ascended.
Discussion

The results of this study suggest that the visual contrast of a stim-
ulus increases the gain of superficial pyramidal cells in lower visual
areas, relative to higher levels. This is entirely consistent with gener-
alised predictive coding, where visual contrast determines the preci-
sion of sensory signals and the representation of that precision in
terms of the gain or sensitivity of superficial pyramidal cells.

Generalised predictive coding suggests that forward connections
in the brain (known to originate from superficial pyramidal cells
(Felleman and van Essen, 1991; Maunsell and van Essen, 1983) con-
vey precision-weighted prediction error. Theoretical work described
above (Brown & Friston, in submission) has shown that increasing vi-
sual contrast corresponds to increasing the precision of sensory chan-
nels in accordance with Weber's law. In this study, we have shown
that the changes in the EEG signal across levels of visual contrast
can be modelled by changes in gain in superficial pyramidal cells.
This gain is thought to represent the precision of the prediction
error, which determines the signal-to-noise ratio associated with sen-
sory input.

A technical issue — that deserves a brief comment — is that the cell
populations, whose intrinsic gain best models visual contrast effects,
are the same populations generating the observed EEG signal (in the
model). One might ask whether this biases our model comparison,

image of Fig.�4


Fig. 5. Model fits. The fits of the three models of contrast-dependent effects to event related potentials in sensor-space for an illustrative subject; these responses are summarised
with the first two principal components or modes. The modes are used for data reduction— the data are projected onto the principal eigenvectors of the prior covariance of the data.
In this paper, eight modes are used in total. The dashed lines show the data modes and the solid lines the model predictions. In the best-fitting model (centre) these are almost
superimposed, whereas in the less well-fitting models, substantial differences are evident.

Fig. 6. Contrast-dependent changes in the game of superficial pyramidal cells. These
are the average parameters, over subjects, controlling the contrast dependent changes
in negative self-inhibition (gain) under the winning model of the previous figures.
Note the progressive decrease in contrast-dependent effects at higher levels of the hi-
erarchy. This is predicted theoretically, because we have manipulated the precision of
prediction errors at the lowest (sensory level) through experimental manipulations of
visual contrast.
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given that visually evoked responses generally increase with contrast
(Polat and Norcia, 1996). Although this is a possibility — in the sense
that any inference in DCM pertains only to the models considered —

the intrinsic connections between superficial and deep cells means
that changes in the gain of deep cells could also easily explain the con-
trast dependent responses— through their influence on superficial cells.
Furthermore,modelswith contrast dependent changes in extrinsic con-
nections (targeting both superficial and deep populations) had substan-
tially lower evidence than the models reported above (results not
shown). In short, an increase in the gain superficial pyramidal cells ap-
pears to be the best explanation for contrast dependent effects, within
the alternative models that we could conceive of.

It should be noted, that a contrast dependent increases in evoked
responses could be modelled in many ways. In this sense, our use of
DCM can be regarded as testing specific hypotheses about a limited
number of competing explanations. We focused on the gain or intrin-
sic sensitivity of superficial and deep pyramidal cells because
explanations in terms of post-synaptic gain follow directly from pre-
dictive coding formulations of perceptual synthesis. This does not
mean that other hypotheses could be explored based upon alterna-
tive theoretical formulations. In brief, as with all dynamic causal

image of Fig.�5
image of Fig.�6


Fig. 7. CBC stimuli used for this study. These stimuli were created by applying a ban-
dpass filter to white noise to create a random blob pattern with a fundamental fre-
quency of 67 blobs/image (1 cycle/degree). This pattern was thresholded and
convolved with a 2-D Laplacian-of-Gaussian filter to produce a CBC stimulus. Stimuli
were scaled to have 90% (top), 25% (middle) or 10% (bottom) of the maximum contrast
supported by the monitor. The stimuli subtended approximately 32° of visual angle.
The central 2° of visual angle were left blank. Stimuli were presented against a grey
background on a gamma-corrected monitor.
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modelling studies, our conclusions have to be qualified in relation to
the hypotheses all models addressed.

On a general note, the conclusions of this paper highlight the util-
ity of dynamic causal modelling — in using experimental data to ask
specific questions. Fig. 5 shows that the effects of changing the gain
of superficial and deep pyramidal cells are, qualitatively, very similar.
This means that we are faced with a very difficult problem in adjudi-
cating between implicit explanations for contrast dependent effects.
Note that this problem cannot be finessed experimentally — for ex-
ample, there is no (non-invasive) experimental manipulation of con-
trast that selectively engages deep or superficial pyramidal cells. The
solution offered by DCM is to place constraints on the way that data
are explained and use Bayesian modelling to quantify the evidence
for different hypotheses. Note that although the expression of the dif-
ferent hypotheses in Fig. 5 looks very similar, the evidence for con-
trast dependent changes in the gain of superficial cells is enormous
(with a Bayes factor of over 900). This evidence could not be intuited
by simply looking at the data: it is disclosed by careful and informed
Bayesian modelling of those data. In short, dynamic causal modelling
of this sort exploits prior knowledge to solve otherwise very difficult in-
ference problems. However, this solution rests upon the specification of
specific and well posed questions. In other words, the efficiency with
which this sort of modelling adjudicates between different hypotheses
depends on an efficient and careful experimental design.

The cells of early visual areas corresponding to human V1 have
been studied extensively with electrophysiologically in cat and ma-
caque. Although our study did not model V1 as a distinct source, the
lack of spatial resolution with EEG means that the results from IOG
can be regarded as representative of early visual responses. The
supragranular superficial pyramidal cells in our dynamic causal
model are located in the same cortical layers as complex cells in cat
area 17, which predominate in layers 2 and 3 (Gilbert and Wiesel,
1979). Moreover, in Rao and Ballard's predictive coding model of vi-
sual cortex, prediction error units display complex cell-like behaviour
in the presence and absence of feedback (Rao and Ballard, 1999). Sub-
sequent examination of the contrast-dependent responses of such
cells shows that, in the absence of adaptation, their firing rate gener-
ally increases linearly in response to increasing visual contrast, except
at very high contrast levels (Albrecht et al., 1984; Ohzawa et al.,
1982). The short stimulus duration and dim screen used in our
study suggests we can discount adaptation of retinal or early cortical
responses and therefore contrast-dependent responses at the cellular
level should increase monotonically with contrast, which seems to be
the case in Fig. 4. Dynamic causal modelling of the underlying synap-
tic mechanisms suggests that this increase is the result of increasing
gain in superficial pyramidal cells.

What might be the mechanism behind these gain increases? In
perceptual processing, acetylcholine signalling seems to be an impor-
tant mechanism for contrast gain-control. Increasing endogenous
acetylcholine reduces contrast-dependent gain (DeBruyn et al.,
1986), while nicotine has a suppressive effect on gain in cortical
layers 2,3 and 5 but an facilitatory effect in layer 4c, where stellate
cell bodies are located (Disney et al., 2007). Short-term depression,
particularly at the thalamocortical synapse to spiny stellate cells,
has also been proposed to play a role (Carandini et al., 2002; Chung
et al., 2002); this would fit with the neuronal encoding of precision
by neuromodulatory mechanisms.

The mechanisms discussed in relation to encoding precision also
seem to have an important role in contrast sensitivity. For example,
nicotine increases contrast sensitivity (Disney et al., 2007), especially
at low spatial frequencies (Smith and Baker-Short, 1993), while sco-
polamine, a muscarinic antagonist, universally increases contrast sen-
sitivity (Smith & Baker-Short, 1993), an effect that can be attenuated
by increasing the luminance (precision) of the stimulus (Evans,
1975).

Aberrant encoding of precision and uncertainty has been proposed
to play a role in a number of neuropsychiatric disorders. In patients
with schizophrenia, the mismatch negativity, an evoked potential
that is greater in response to deviant or unexpected auditory tones,
is decreased in magnitude (Jahshan et al., 2011; Jordanov et al.,
2011; Leitman et al., 2010). This may represent a failure to detect sta-
tistical regularities and assign higher precision to sensory informa-
tion, leading to a reduced difference between responses to standard
and deviant stimuli (Garrido et al., 2008; Garrido et al., 2009;
Strelnikov, 2007). In other words, schizophrenic subjects may never
be surprised because they fail to make precise predictions. This expla-
nation for the mismatch negativity speaks to an optimisation of pre-
cision or gain associated with sensory prediction errors due to rapid
sensory learning and calls upon exactly the same synaptic mecha-
nisms that have been proposed to at mediate attentional gain
(Feldman and Friston 2010). In short, sensory surprise depends
upon appropriately precise prediction errors and adaptive precision
or gain control.

Corlett et al. (2009) have proposed a hierarchical Bayesian explana-
tion for schizophrenia that rests on the aberrant weighting of top-down
and bottom-up information that could lead to both hallucinations and
delusions. In predictive coding, this weighting is determined by the

image of Fig.�7


Fig. 8. Model selection. Initial model selection was carried out to identify the extrinsic connectivity pattern on the sources identified. Only plausible models were tested; these
models had the inferior orbital gyrus at the bottom of the hierarchy and the superior orbital gyrus at the top (Felleman and Van Essen, 1991). These models are distinguished
by the deployment of forward and backward extrinsic connections, as determined by their level in the hierarchy. Here, this level corresponds to vertical position.
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precision of prediction errors at different levels in hierarchical genera-
tive models. Patients with schizophrenia show a pan-frequency in-
crease in contrast sensitivity threshold (Skottun and Skoyles, 2007;
Slaghuis, 1998), which could reflect inadequate increase of synaptic
gain at superficial pyramidal cells in response to high-contrast stimuli.
These ideas are important, because our study suggests it is possible to
measure the neuronal encoding of precision noninvasively using EEG,
in a very simple paradigm which would be easy to perform with
patients.

In conclusion, we have provided evidence that the contrast-
dependency of early visual cortical responses is mediated by the
gain of superficial pyramidal cells. In computational terms, this gain
may encode the precision of prediction errors signalled by these
cells. These results suggest that DCM may be useful as an assay of
the synaptic (neuromodulatory) mechanisms that underlie perceptu-
al inference.
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