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Perceptual judgements and chronic imaging of
altered odour maps indicate comprehensive
stimulus template matching in olfaction
Edward F. Bracey1,2, Bruno Pichler2, Andreas T. Schaefer1, Damian J. Wallace3 & Troy W. Margrie1,2

Lesion experiments suggest that odour input to the olfactory bulb contains significant

redundant signal such that rodents can discern odours using minimal stimulus-related

information. Here we investigate the dependence of odour-quality perception on the integrity

of glomerular activity by comparing odour-evoked activity maps before and after epithelial

lesions. Lesions prevent mice from recognizing previously experienced odours and differen-

tially delay discrimination learning of unrecognized and novel odour pairs. Poor recognition

results not from mice experiencing an altered concentration of an odour but from perception

of apparent novel qualities. Consistent with this, relative intensity of glomerular activity

following lesions is altered compared with maps recorded in shams and by varying odour

concentration. Together, these data show that odour recognition relies on comprehensively

matching input patterns to a previously generated stimulus template. When encountering

novel odours, access to all glomerular activity ensures rapid generation of new templates to

perform accurate perceptual judgements.
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E
stablishing the relation between stimulus-evoked activity
and sensory perception is central to determining how
neuronal networks construct internal representations of the

external world. To examine this question, in vivo chronic imaging
has proven useful for assessing the large-scale spatial dynamics of
network response properties1,2 and for quantifying changes in
those responses to sensory deprivation1,3–5 or enrichment6,7. In
parallel, behavioural and lesion experiments have been
implemented to elucidate the psychophysical properties of
sensory processing and the biological loci and function of
neuronal elements involved8–11.

In the olfactory system, glomeruli in the olfactory bulb receive
stimulus-related information from olfactory receptor neurons
(ORNs) expressing the same receptor that is then processed and
integrated by bulbar circuitry12–15. The principal mitral and
tufted cells that participate in glomerular circuits relay the
resultant signals to olfactory cortex, where it is suggested that
olfactory object templates16,17 and odour-related memories18–23

may be generated and stored. In the bulb, monomolecular
odorants are known to evoke specific spatiotemporal activation
sequences of glomeruli24–27; however, the relevance of specific
patterns of glomerular activity to odour quality perception has
been a long-standing question. Both optical imaging28–33 and
high-resolution 2-deoxy-glucose studies of the bulb24,34,35

indicate that although patterns of glomerular activation vary
across both species and individuals33, the neuronal representation
of odour quality is reflected by activity in distinct bulbar regions,
indicative of a broad odotopic organization36. However, these
glomerular patterns are widely distributed24,29,31,33, reflecting the
activation of many different ORN types by even simple
monomolecular odorants.

Behavioural experiments on the other hand indicate that much
of the widespread bulbar activation may not be required for
olfactory perceptual judgements. Partial bulb lesions have been
shown to have little or no impact on the discrimination of even
highly similar odorants10,11. Moreover, in extreme cases, where
rodents have undergone double bulbectomies, and thus abolition
of all glomerular-based information, newly generated ORNs that
extend their axons through the cribriform plate and form
contacts in the forebrain are sufficient to support odour
detection and discrimination of odorants37. Thus, extensive
disruption of glomerular activity maps is believed to have very
little or no effect on odour quality perception, indicating that
such maps contain substantial redundant information that is not
used for odour-related decision making10,38.

Understanding the impact of altering odour-evoked activity on
odour perception can yield information about the neuronal
mechanisms the olfactory system relies on to determine the
identity of an odour. Recent functional magnetic resonance
imaging studies in humans16,39 have provided evidence for
models where the olfactory system uses preformed odour
templates to match a stimulus to a previously experienced
odour40. To directly test the idea of sensory redundancy and
stimulus template matching in olfaction we combined chronic
functional imaging of the olfactory bulb in mice with a non-
surgical epithelial lesion that alters the ORN inputs that generate
glomerular activity maps41. This allowed us to quantify
differences in functional activity maps in mice where sensory
inputs to the olfactory bulb are disrupted. Psychophysical
assessment of odour quality perception in these mice shows
that subtle changes in odour-evoked glomerular activity impairs
recognition of familiar odours and impacts the time-course of
discrimination learning of novel odours compared with
previously experienced odours. These effects cannot be
explained by perceived reductions in odour concentration or an
increased detection threshold following lesioning. Rather, we

conclude that all available glomerular information is used to
generate a detailed reference template and that matching
glomerular activity to that template ensures accurate, rapid
olfactory-related decision making.

Results
Effects of ZnSO4-induced lesions on odour recognition. Mice
were first trained to accurately discriminate monomolecular
odorants10,18,42 (for example, amyl-acetate versus cineol; pair A
discrimination task: Supplementary Figs S1 and S2) followed by a
second odour pair (pair B discrimination task; ethyl-butyrate
versus pentanal, Fig. 1a). After performing above criterion for
pair B odours, mice were tested for recognition of odour pair A by
interleaving unrewarded pair A odour trials with pair B
discrimination trials (pair A recognition test, Fig. 1b,
Supplementary Fig. S2c). Mice could recognize pair A odours
with high accuracy, as pair A recognition test scores were not
significantly different from the average of the last five blocks of
pair A discrimination (pair A discrimination, 93.97±0.67%
versus recognition 92.23%±1.89, P40.19, n¼ 14 mice).

Mice were then briefly anaesthetized with isoflurane and
treated in one of three ways; with 0.9% w/v NaCl (sham), with a
‘low dose’ of ZnSO4 (three nasal flushes of 8.4% w/v ZnSO4 per
naris) or a ‘high dose’ (2� three nasal flushes per naris of
8.4% w/v ZnSO4). Following a 24-h recovery period, mice were
given 30 blocks of training in which to learn to discriminate a new
odour pair (pair C). Once they reached criterion, performance of
mice treated with a low dose of ZnSO4 was not significantly
different from shams (last block of pair C discrimination task,
sham, 88.93±4.40%, n¼ 7 versus low-dose ZnSO4, 89.66±2.86%,
n¼ 6, P40.44, Fig. 1c). High-dose ZnSO4-treated mice, however,
discriminated at chance levels on pair C odours for all 30 blocks
(all 30 blocks, 49.93±0.69%, w2-test significance from 50%, n¼ 5
mice, P40.82. Last five blocks, 49.66±1.31%, P40.26, Fig. 1c).

Mice were next tested for recognition of the pretreatment pair
B odours. Despite their accurate discrimination of pair C odours,
low-dose ZnSO4-treated animals returned subcriterion recogni-
tion scores that were on average significantly lower than shams
(shams, 85.7±2.97%, n¼ 7; low-dose ZnSO4, 70±5.47%, n¼ 6,
Po0.02; Fig. 1d) that is not explained by rapid extinction in the
low-dose group (Supplementary Fig. S3). For recognition, high-
dose-ZnSO4-treated mice performed at chance levels, with
recognition scores that were significantly lower than both shams
and low-dose-ZnSO4-treated mice (53.00±1.22%, n¼ 5 mice
versus shams, Po0.0001, versus low-dose-ZnSO4-treated,
Po0.013).

To ensure that low-dose-ZnSO4-treated mice could detect the
previously experienced pair B odours, their ability to relearn to
discriminate this odour pair (with the Sþ odour rewarded again)
was assessed. Although low-dose-ZnSO4-treated mice initially
performed significantly worse than shams (first block, sham
87±2.45%, n¼ 7 mice versus low-dose-ZnSO4-treated,
71.25±6.06%, n¼ 6 mice, Po0.01), they quickly reached
criterion on pair B odours (second block, sham, 92.86±3.25%,
n¼ 7 mice versus low-dose-ZnSO4-treated, 92.5±2.92%, n¼ 6
mice, P40.46; Fig. 1e), indicating that they could detect and
discriminate the previously experienced pretreatment odours.

Effects of lesions on glomerular activity maps. We next recor-
ded intrinsic signals evoked by the recognition test odours (ethyl-
butyrate and pentanal) from the dorsal surface of the bulb before
(imaging session one) and following (imaging session two) nasal
flush treatment (see Methods and Supplementary Fig. S4).
Qualitatively, although the integrity of the odour-evoked
glomerular map was maintained for sham-treated mice,
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low-dose-ZnSO4-treated mice revealed a phenotype ranging from
very minor map changes to an almost complete abolition of
odour-evoked signals. In no mice receiving the high-dose ZnSO4

treatment did we detect odour-evoked signals (0/9 mice tested for
two odours).

To quantify the effect of low-dose ZnSO4 treatment on map
activity, pixel intensity values of regions of interest (ROI) were
correlated with the concomitant ROI recorded in activity maps
evoked by the same odour in the same olfactory bulb

(Supplementary Fig. S5). Correlation coefficients for each ROI
were compared between maps recorded in the same session to
generate a within-session correlation value and between maps
recorded in different sessions to produce an across-session
correlation value (Fig. 2a,b). Across-session correlations were
subtracted from within-session correlations, yielding a dissim-
ilarity score whereby high scores indicate large differences
between session one and session two activity maps. Although
signals from sham-treated animals had low dissimilarity scores
(0.104±0.03, n¼ 27 activity maps), mice treated with a low dose
of ZnSO4 showed significantly higher dissimilarity scores
(0.340±0.05, n¼ 32 odour-evoked activity maps, Po0.0002,
Fig. 2c). Mice treated with the high dose of ZnSO4 showed
significantly higher dissimilarity scores than both sham- and low-
dose-ZnSO4-treated animals, consistent with signal abrogation in
these animals (0.573±0.07, n¼ 16 odour-evoked activity maps,
versus sham, Po10� 5, versus low-dose ZnSO4, Po0.005, data
not shown).

In a subset of mice, we were able to perform behavioural
assessment, epithelial lesions and chronic imaging to determine
the dependence of recognition on dissimilarity score (Fig. 2d-f).
Sham-treated mice had, on average, both significantly higher
recognition scores and lower dissimilarity scores than low-dose-
ZnSO4-treated mice (pair B recognition scores, shams, 86.6±
4.41%, n¼ 3 versus low-dose-ZnSO4-treated, 70.6±4.67%, n¼ 8
mice, Po0.05; pair B dissimilarity scores, shams, � 0.0378±0.04,
n¼ 10 activity maps versus low-dose-ZnSO4-treated, 0.29±0.07,
n¼ 21 activity maps, Po0.02). High-dose-ZnSO4-treated mice
also had significantly lower recognition and higher dissimilarity
scores than both sham- and low-dose-ZnSO4-treated mice (pair B
recognition scores, 53±1.37%, n¼ 5 versus shams, Po0.001,
versus low-dose-ZnSO4-treated, Po0.003. Pair B dissimilarity
scores 0.56±0.07, n¼ 15 activity maps versus shams, Po0.02,
versus low-dose-ZnSO4-treated, Po0.02, Fig. 2d–f). The overall
correlation between the dissimilarity and recognitions scores for
ethyl butyrate and pentanal in this subset of animals was also
significant (r2¼ 0.53, Po0.05, n¼ 16 mice, 47 maps) (Fig. 2g).

We interpret these initial observations in the following way;
first, as mice receiving high-dose ZnSO4 treatment could neither
discriminate pair C odours nor recognize pair B odours, and
showed no detectable odour-evoked intrinsic signal activity, they
were likely anosmic (at least for the odour pairs tested). Second,
low-dose ZnSO4 treatment caused a significant alteration in ORN
activity that is accompanied by a significant reduction in ability to
recognize previously experienced odours, and likely reflects an
altered percept of those odorants.

Recognition of familiar odours at novel concentrations. One
possible alternative explanation for the recognition scores in the
low-dose-ZnSO4-treated group could be that treatment induces a
homogeneous reduction in ORN input, resulting in an odorant
being perceived at an apparent lower concentration during
recognition testing. Although rodents have been shown to
extrapolate odour identity over B10-fold changes in concentra-
tion43, larger changes in concentration can cause them to respond
as though odours appear in some way novel, that is, with reduced
foraging times in associative tasks44. To therefore test the
possibility that low-dose-ZnSO4-treated mice recognize
previously experienced odours but do not generalize across
concentrations on this task, a group of naive mice were first
trained on pair A and then on pair B odours all presented at
1% v/v (Fig. 3a). Lower concentrations (0.05 or 0.01% v/v) of pair
A odours were presented for the recognition test (Fig. 3b). Indeed,
when test odours were reduced in concentration 20- to 100-fold
from the trained pair A odour, average recognition scores were
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Figure 1 | Odour discrimination and recognition following nasal epithelial

lesioning. (a) Left: discrimination scores (n¼ 18 mice) obtained for the final

ten blocks of training on pair A odours (green open circles), before

presentation of a novel odour pair (pair B). Right: discrimination scores

obtained for the final ten blocks of training on pair B odours (blue open

circles). (b) Recognition scores of familiar pair A odours (green filled

circles, n¼ 14 mice). Also plotted are the discrimination scores for pair B

odours for the block of trials immediately before (left blue circle) and those

trials presented during recognition testing (indicated by thin blue lines,

n¼ 14 mice). (c) Discrimination scores obtained for the last ten blocks of

training on novel pair C odours for sham (open circles), low-dose ZnSO4-

treated (grey-filled circles) and high-dose ZnSO4-treated mice (black-filled

circles). (d) Recognition scores for previously presented pair B odours

(blue circles). Also plotted are the discrimination scores for pair C odours

(red circles) for the block of trials immediately preceding and those

trials presented during recognition testing (indicated by thin red lines).

(e) Discrimination scores for previously presented pair B odours in sham

and low-dose ZnSO4-treated mice presented immediately after recognition

testing. Pair A odours were amyl acetate, cineol or eugenol. Pair B odours

were ethyl butyrate and pentanal. Pair C odours were eugenol, limonene,

valeric acid, heptanone or cineol. Data represent mean±s.e.m. *Po0.02

(one-tailed two sample Student’s t-tests).
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significantly lower than for control animals probed with odours
presented at the previously experienced concentration of 1% v/v
(1% v/v, 92.14±3.02%, n¼ 7 versus 0.05% v/v, 78.13±7.07%,
n¼ 8, Po0.047; 0.01% v/v, 71.67±11.67, n¼ 3, Po0.03, Fig. 3b).

Again, to ensure mice could detect the low concentration
recognition test odours, they were retrained to discriminate pair
A odours at the reduced concentration (Fig. 3c). The first and
second blocks of pair A discrimination scores were significantly
lower in mice presented with 0.01% v/v (second block, 1% v/v,
98.33±1.67%, n¼ 7 versus 0.01% v/v, 73.33±10.93%, n¼ 3,
Po0.007) but were then indistinguishable from controls (third
block, 1% v/v, 96.67±2.47% versus 0.01% v/v, 88.33±9.28%,
P40.13). Discrimination scores for odours presented at
0.05% v/v were not significantly different from 1% v/v odours
on the first block of discrimination training trials (1% v/v,
85.00±8.16% versus 0.05% v/v, 75.63±6.43%, P40.17).
Together, these data suggest that on this Go/No-Go task, mice
trained to discriminate monomolecular odorants at a single
concentration later respond to the same odour when presented at
20- to 100-fold lower concentration as though it is being
perceived in some way different.

The effect of concentration training on recognition. We
therefore next sought to train mice on a range of odour con-
centrations so that presentation of an unfamiliar, low con-
centration of the same odour may be responded to as being
familiar. Following the successful discrimination of ethyl butyrate
and pentanal at concentrations of 0.01, 0.1, 0.25 and 1% v/v (now
pair A odours; Fig. 4a–d), mice were trained to discriminate pair
B odours at 1% v/v (Fig. 4e). Once they reached criterion on pair
B odours, unfamiliar concentrations of ethyl butyrate and pen-
tanal (0.05% v/v) were presented as the recognition test odours.
After concentration training, mice achieved above criterion
recognition scores for unfamiliar low concentrations of ethyl
butyrate and pentanal, indistinguishable from those scores
obtained from mice presented with the familiar 1% v/v con-
centration (1% v/v, 91.67±2.79%, n¼ 6 versus 0.05% v/v,
97.14±2.14%, n¼ 7, P40.07, Fig. 4f). Furthermore, recognition
of 0.05% v/v odours following concentration pretraining was
significantly higher than for recognition of 0.05% v/v odours in
mice without concentration training (0.05%, v/v, without
training, 78.13±7.07%, n¼ 8; 0.05% v/v, trained, 97.14±2.14%,
n¼ 7, Po0.01).
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Figure 2 | Effects of epithelial lesioning on odour-evoked intrinsic optical images and odour recognition. (a) Example scatter plots of ROI

correlations for odour-evoked intrinsic signal activity maps recorded within sessions (session one, orange boxes; session two, yellow boxes) and across

sessions (purple boxes) after sham treatment. Values for each ROI (open green circles) are expressed as normalized pixel value (NPV), r-values displayed

are averages of all ROI correlations for each block comparison. The total number of data points plotted correspond to nROIs� pixels/ROI for one odour.

Concomitant activity maps are displayed to the left of NPV correlations. NPV range, 0.9965–1.0027. Scale bar, 500mm for all images. (b) Example scatter

plots of ROI correlations (grey) for odour-evoked intrinsic signal activity maps within sessions (session one, orange boxes; session two, yellow boxes) and

across sessions (purple boxes) after low-dose ZnSO4 treatment. (c) Bar graph showing dissimilarity score of intrinsic signal activity maps (evoked by

ethyl-butyrate and pentanal) from sham (n¼ 27 activity maps, green open box) and low-dose-ZnSO4-treated animals (n¼ 32 activity maps, grey-filled

box). NPV range, 0.996302� 1.000254. Dissimilarity scores evaluated by Mann–Whitney U-test (*Po0.001). (d) Left, example odour-evoked activity

maps from before (top, session one) and after (bottom, session two) nasal flush for sham-treated mice. Right, average dissimilarity score for pair B

odour-evoked activity maps (left axis) and recognition scores for pair B odours (right axis) for shams. (e,f) As above for low- (e) and high-dose

(f) ZnSO4-treated mice. Data represent mean±s.e.m. (g) Recognition accuracy plotted against dissimilarity score for ethyl butyrate and pentanal from

all mice in D1–D3. Pearson’s correlation value, Po0.05.
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If low-dose ZnSO4 treatment results in recognition test odours
being perceived as though presented at a reduced concentration,
then pre-training low-dose-ZnSO4-treated mice on a range of
concentrations would be expected to improve recognition scores,
as demonstrated above. However, despite being trained to
discriminate a range of concentrations (0.01, 0.1, 0.25 and 1%
v/v) of ethyl butyrate and pentanal (Fig. 5a–f), and being able to
learn to discriminate pair C odours (shams, 96.75±1.35%, n¼ 5,
low-dose-ZnSO4-treated, 96.67±2.47%, P40.48), low-dose-
ZnSO4-treated animals continued to perform below criterion
for recognition of ethyl butyrate and pentanal (presented
at 1% v/v) and were significantly worse than shams (sham, 1%
v/v, 96.00±1.87%, n¼ 5 versus low-dose ZnSO4, 1% v/v,
65.00±8.56%, n¼ 6, Po0.008, Fig. 5g). Again, to determine
whether low-dose-ZnSO4-treated mice retained the ability to
detect the unrecognized odours, mice were retrained to
discriminate this odour pair (at 1% v/v). As above, although
low-dose-ZnSO4-treated mice initially performed significantly
worse than shams, they quickly learned to discriminate
unrecognized odours within two blocks (first block, sham,
93.00±3.74% versus low-dose-ZnSO4-treated, 64.17±8.89%,
Po0.02; second block, sham, 97.00±2.00% versus low-dose-
ZnSO4-treated, 89.17±8.00%, P40.2, Fig. 5h). Relearning of
discrimination of unrecognized odours was also not significantly

different between concentration trained and non-concentration-
trained low-dose-ZnSO4-treated mice (first five blocks, block by
block Student’s t-tests, all comparisons, all P-values: P40.12;
F(1,58)¼ 1.7, P40.19, Fig. 5i). This data thus suggests that low-
dose ZnSO4 treatment alters apparent odour identity rather than
its perceived concentration.

Effects of odour concentration and lesioning on activity maps.
If low-dose ZnSO4 treatment results in a previously presented
odorant being perceived as novel and not merely reduced in
concentration, one would expect the glomerular activity map
altered by low-dose ZnSO4 treatment to be changed in a manner
that does not reflect map changes observed by varying odour
concentrations. First, we tested this assumption by using corre-
lations to compare intrinsic signal maps evoked by Sþ and
S� odours presented at varying concentrations. Intrinsic-signal
activity maps recorded at 1% v/v odour concentrations in session
one were compared with various concentrations recorded in
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session two. Over the range of concentrations recorded, dissim-
ilarity scores for maps evoked by 1% v/v odours in session one
and those evoked by varying odour concentrations in session two
were not significantly different from dissimilarity scores for maps
evoked by 1% v/v odour presentation in both sessions
(Supplementary Fig. S6).

Activity maps were next analysed to determine whether low-
dose ZnSO4 treatment altered the intensity of ROIs relative to one
another (see Supplementary Methods). For all odour-evoked
activity maps that contained ROI activity, we observed no reliable
changes in the relative intensities of ROIs across concentrations
(1% v/v session one� 1% v/v session two, interquartile
range¼ 0.20, n¼ 7; session two, 0.1% v/v, 0.17, n¼ 5, P40.60;
session two, 0.05%v/v, 0.19, n¼ 7, P40.97; session two,
0.01% v/v, 0.25, n¼ 7, P40.83, Fig. 6d). This is entirely consistent
with experiments that show relative glomerular intensity remains

constant over a moderate range of concentrations34,44–47. In
contrast, low-dose ZnSO4 treatment produced a marked change in
relative ROI intensity across sessions compared with that of shams
(sham, interquartile range Q1–Q3¼ 0.24, n¼ 15 versus low-dose
ZnSO4 treatment, 0.48, n¼ 9, Po0.0004, Fig. 7a–g).

The effect of lesions on odour discrimination. To establish the
degree of congruence between the sham and low-dose treatment
groups in their ability to learn to discern odours, we pooled data
from concentration- and non-concentration-trained mice to first
assess whether there was an overall impact on the number of
trials (that is, exposures) required to achieve criterion for (i) novel
(pair B) odours before treatment, (ii) novel (pair C) odours after
treatment and (iii) previously experienced but no longer recog-
nized ethyl butyrate versus pentanal odours after treatment.
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Figure 5 | Recognition of familiar odours in nasal–epithelial lesioned mice following concentration training. (a–d) Discrimination scores

(n¼ 11 mice) obtained for each of the final ten blocks of training on pair A odours at 1% v/v (a). Discrimination scores obtained for the first ten blocks of

training on pair A odours at concentrations of 0.01% v/v (b), 0.1% v/v (c) and 0.25% v/v (d). (e) Discrimination scores obtained for the final ten blocks of

training on pair B odours at 1% v/v. (f) Discrimination scores obtained for the last ten blocks of training on novel pair C odours for sham-treated

(open circles) and low-dose-ZnSO4-treated mice (grey-filled circles). (g) Recognition scores for pair A odours (green circles) previously presented at a

range of concentrations. Also plotted are the discrimination scores for pair C odours (red circles) for the block of trials immediately preceding and those

trials presented during recognition testing (indicated by thin red lines). (h) Discrimination scores for previously presented pair A odours in sham and
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Figure 6 | Effects of varying odour concentrations on ROI intensities. (a) Left, example bar graphs of ranked average pixel intensity for each ROI evoked

in session one by 1% v/v odours. ROI intensity is normalized to the maximum ROI in session one. Right, example bar graph of ranked average pixel intensity

for each ROI evoked in session two by either 1, 0.1, 0.05 or 0.01% v/v odours. ROI intensity is normalized to the maximum ROI from session two.

(b) Subtraction of session two ROI intensity values from session one values. (c) Average ROI pixel intensity map; large blue spots have the highest average

pixel intensity, small, orange spots have the lowest average pixel intensity. Change in average pixel intensity rank between session one (left) and session

two (right) is indicated by change of size and colour of an ROI spot. (d) Normalized ROI intensity change for subtraction values of all ROIs. Medians

have been normalized to 0. Boxes indicate the first (bottom) and third (top) quartile. Whiskers extend to the most extreme data values within the range

q1–1.5� (q3–q1) to q3þ 1.5� (q3–q1), where q1 and q3 are the 25th and 75th percentiles, respectively.
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Before treatment, there was no significant difference between the
discrimination scores during discrimination training for novel
pair B odours (repeated measures analysis of variance (ANOVA)
for the first five blocks, shams versus low-dose-ZnSO4-treated,
F(1,4)¼ 0.8, P40.52, Fig. 8a). This was also the case when block
scores from treated animals were aligned to the first block when
shams, on average, reached criterion (Fig. 8b). However, for
discrimination learning of novel set C odours ZnSO4-treated mice
performed significantly and consistently worse than shams for the
first 20 blocks (ANOVA, F(1,19)¼ 3.49, Po10� 4, Fig. 8c)
requiring more trials to reach criterion (n¼ 12 shams, n¼ 12
low-dose-ZnSO4-treated mice, Fig. 8d).

In low-dose-ZnSO4-treated animals, discrimination of pre-
viously experienced but not recognized odours (ethyl butyrate
versus pentanal) was initially impaired compared with shams, but
improved quickly (first block, shams, 89.5±2.20%, n¼ 12,
low-dose-ZnSO4-treated, 67.71±5.06%, n¼ 12, Po0.001;
second block, shams, 94.58±2.08%, low-dose-ZnSO4-treated,
90.83±4.35%, P40.22, Fig. 8e). Despite not accurately recogniz-
ing ethyl butyrate and pentanal, the post-treatment discrimina-
tion scores for these odours over the first five blocks were
significantly improved compared with the scores for the same
odours presented before treatment (ANOVA, F(1,118)¼ 12.68,
Po0.0005, Fig. 8e). Thus, after lesioning ZnSO4-treated mice
require more trials than shams to reach criterion on novel odours,
but their discrimination relearning of the unrecognized ethyl
butyrate versus pentanal pair is significantly better than for their
initial training period on the same odour pair before lesioning.

Taken together, our data show that low-dose ZnSO4 treatment
of the epithelium causes maps to be altered sufficiently such that
previously experienced odours are not recognized. Despite being
altered, these odour maps remain similar enough to pretreatment

maps such that previously encountered odours may be ‘relearned’
and discerned more quickly than genuine novel odours.

Discussion
In contrast to previous studies10,48,49 we have combined chronic
functional imaging with peripheral olfactory epithelial lesions to
directly examine the relationship between glomerular map
functionality and odour-quality perception. We show that
treatment of the epithelium with two different doses of ZnSO4

results in two distinct olfactory behavioural phenotypes. High-
dose treatment prevents recognition and discrimination of both
familiar and novel odours. In support of this observation, we find
no detectable odour-evoked signals on the dorsal surface of the
olfactory bulb, consistent with an anosmic phenotype50,51.

Low-dose ZnSO4 treatment, on the other hand, resulted in
mice that could not recognize previously presented odours,
although they could detect and eventually learn to discriminate
both previously presented and novel odour pairs. In contrast to
the high dose, our intrinsic-signal imaging data revealed that low-
dose ZnSO4 treatment results in a modest functional alteration of
the glomerular map. This suggests that the coding requirements
for correct odour discrimination and recognition are sensitive to
relatively minor changes to input patterns that is in contrast to
previous suggestions10,52.

One parsimonious explanation for our observations could be
that low-dose ZnSO4 treatment simply results in a homogenous
reduction in the strength of input to the bulb. In this scenario,
low-dose ZnSO4 treatment would impair recognition by causing
previously presented odours to be perceived at a novel, reduced
concentration. Alternatively, ZnSO4 treatment may cause mice to
perceive previously presented odours as having distinctly unique

Session 1
(1%)

1 1 1

S1 Rank
order

S2 Rank
order

0.5

0

–0.5

–1

0.5 0.5

0

1

0.5

0

1 1

0.5

0.5

0

–0.5

–1

S1 Rank
order

S2 Rank
order

In
cr

ea
si

ng
in

te
ns

ity

0

N
or

m
al

iz
ed

 R
O

I A
vg

.
pi

xe
l i

nt
en

si
ty

R
O

I A
vg

. p
ix

el
 in

te
ns

ity
no

rm
al

iz
ed

 to
 S

2

1 1

Rank
order

S1 Rank
order

21 21

Session 1
(1%)

ZnSO4 LD
Session 2

(1%)

ZnSO4 LD
Session 2

(1%)
Subtraction

1% - 1%
Session 1

(1%)

0
1

S1 Rank
order

21N
or

m
al

iz
ed

 R
O

I A
vg

.
pi

xe
l i

nt
en

si
ty

R
O

I A
vg

. p
ix

el
 in

te
ns

ity
no

rm
al

iz
ed

 to
 S

2

R
O

I i
nt

en
si

ty
S

1-
S

2

1
Rank
order

21

Sham
Session 2

(1%)
Subtraction

1% - 1%
Session 1

(1%)

Sham
session 2

(1%)
1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1 Sham ZnSO4 LD

N
or

m
al

iz
ed

 R
O

I i
nt

en
si

ty
 c

ha
ng

e

n = 15 n = 9

*

R
O

I i
nt

en
si

ty
S

1-
S

2

Figure 7 | Effects of nasal–epithelial lesioning on ROI intensities. (a) Left, example bar graph of ranked average pixel intensity for each ROI

evoked in session one (S1). ROI intensity is normalized to the maximum ROI in session one. Right, example bar graph of ranked average pixel intensity for

each ROI evoked in session two (S2). ROI intensity is normalized to the maximum ROI from session two. (b) Subtraction of session two ROI intensity

values from session one values. (c) Average ROI pixel intensity map; large blue spots have the highest average pixel intensity, small, orange spots have the

lowest average pixel intensity. Change in average pixel intensity rank between session one (left) and session two (right) is indicated by change of size and

colour of an ROI spot. (d–f) Example as above for activity maps recorded in sessions 1 and 2 from a low-dose-ZnSO4-treated animal. (g) Normalized

ROI intensity change for subtraction values of all ROIs. Medians have been normalized to 0. Boxes indicate the first (bottom) and third (top) quartile.

Whiskers extend to the most extreme data values within the range q1–1.5� (q3–q1) to q3þ 1.5� (q3–q1), where q1 and q3 are the 25th and 75th

percentiles, respectively. *Po0.001 (Ansari Bradley test of distribution).
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qualities. In agreement with others43,44,53, our results show that
in untreated mice trained on single concentrations, large
differences in the training versus test odour concentration can
cause mice to respond as if test odours appear in some way novel.
We show that this is not the case when naive mice are pretrained
on a series of test odour concentrations. However, despite being
concentration pretrained, low-dose-ZnSO4-treated mice do not
recognize familiar odours presented at familiar concentrations.

Consistent with the notion that ZnSO4 treatment alters odour
perception in a way that is different to changing concentration,
we observed significant differences in the relative intensity of
glomerular activity compared with sham treatment and the effect
of changing odour concentration. Previous studies focusing on
the presynaptic ORN activity have reported that the relative
intensity of glomerular activation is stable across a moderate
range of odour concentrations similar to those used in both our
imaging and behavioural experiments45,47. Conversely, axon
tracing studies in the rat have shown that moderate nasal

ZnSO4 irrigation results in irregular sparing of glomerular
innervation by ORNs, with the glomeruli receiving substantial
numbers of spared axons intermingled with those receiving sparse
or no innervation52. We therefore suggest that the non-
homogenous effect of low-dose ZnSO4 treatment on map
activity impacts the integrity of the glomerular representation
such that odour-quality perception is significantly impaired.

Previous studies in mouse show that the regenerative process
following complete ORN transection results in substantial
miswiring between the receptor neuron axon and the target
glomerulus54. Several months after transection when this
regenerative process is completed, deficits in odour recognition
have been observed in the hamster55. In our study we have
assessed odour perception and map integrity within ten days post
treatment, well before ORNs are believed to regenerate50,56.
Although low-dose ZnSO4 treatment perturbs input to the bulb,
significant glomerular activity is spared. We find that this rather
arbitrary manipulation impairs olfactory performance, whereby
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(1% v/v) discrimination training. (b) Discrimination learning for pair B odours plotted according to the first block when shams reached criterion (within

each training group). Below are the respective P-values for t-tests performed between shams and low-dose-ZnSO4-treated groups for each block.

(c) Average post-treatment discrimination scores for sham-treated (n¼ 12 mice, open circles) and low-dose-ZnSO4-treated mice (n¼ 12 mice, grey-filled

circles) for the first 30 blocks of novel pair C odour (1% v/v) discrimination training. (d) Discrimination learning for pair C odours plotted according to the

first block when shams reached criterion (within each training group). Below are the respective P-values for Student’s t-tests performed between shams

and low-dose-ZnSO4-treated groups for each block. (e) Discrimination learning scores for novel (1% v/v) ethyl butyrate (EB) and pentanal (Pent)

presented before lesioning (blue filled circles). Also plotted are the post-treatment discrimination learning scores for EB and Pent for low-dose-ZnSO4-

treated (grey filled circles) and shams (open circles).
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treated mice require significantly more trials to learn to discern
novel odours compared with shams. In the case of previously
presented odours not recognized after treatment, the impact of
ZnSO4 treatment on their discriminability is more subtle. Low-
dose-ZnSO4-treated mice discriminate with the same accuracy as
shams already after only one block of training. This rapid
relearning of non-recognized odours is indeed faster than for the
learning curve observed for mice when they are first exposed to
the same odour pair before lesioning.

This observation shows that after lesioning, the olfactory
system does not process the unrecognized and novel odours in
entirely the same way. The fact that low-dose-treated mice learn
to discern non-recognized odours more quickly than novel
odours indicates that odour stimulus templates stored before
treatment remain relevant to the non-recognized odours and may
be rapidly modified and used during post-treatment retraining.
Along these lines, theoretical models suggest that predictive
neuronal codes generated in advance of a stimulus40,57,58 enhance
the speed and accuracy of perceptual judgements. In this model, a
pre-existing odour template and incoming sensory information
interact to rapidly generate a sensory percept40,42. In accordance
with our results, recent behavioural and/or imaging experiments
indicate that activity patterns in piriform cortex may be the locus
of such odour stimulus templates16,17.

In summary, we show for the first time that perceptual
correlates of odour concentration and other elements of odour
identity are separable in rodents. We use this paradigm to
determine that the effects of nasal–epithelial lesion with moderate
concentrations of ZnSO4 differ from reduction in concentration
in that such lesions induce a unique change in the relative
intensity of glomerular maps. Our data contrast previous work,
indicating widespread lesions of the bulb have little or no impact
on odour quality perception that has led to the suggestion that the
spatially organized input to the bulb contains significant
redundant information10,11,48,59. Our results support theoretical
work and functional magnetic resonance imaging studies in
humans that show that a cortical prestimulus template is used by
the olfactory system to match incoming odour information to
perform accurate perceptual judgements. We show that even
relatively modest deviations from these templates can cause
previously experienced odour stimuli not to be recognized. This
suggests that coding in the olfactory bulb is non-redundant and
that significant amounts of all available information is acquired to
generate and match templates to perform rapid and accurate
olfactory perceptual judgements.

Methods
Animals. All procedures and experiments were carried out on male C57Bl/6 mice
over the ages of 4 weeks, in accordance with the UK Home Office and the Animals
and Scientific Procedures Act, 1986.

Behavioural training. Mice were given restricted access to water for 48 h before
behavioural training. After habituation to the olfactometer environment, they were
trained to discriminate between two odours. Infrared beam interruption triggered
presentation of either an Sþ (reward coupled) or S� (unrewarded) odour. Lick
patterns were recorded for the duration of the stimulus across four 350 ms time
bins (Supplementary Fig. S2a, top). Responses were deemed correct if the mouse
licked for three or more time bins during presentation of the Sþ odour, or if they
licked for two or fewer time bins during the S� odour. Between 8 and 12 Sþ and
12 and 8 S� odour trials were presented in a pseudo random order in blocks of 20
trials. Percentage of correct responses for Sþ and S� trials was averaged over 20
trials, giving an overall percentage for each block (Supplementary Fig. S2a, bot-
tom). The mouse was classed as discriminating correctly when the average of each
of five consecutive blocks first reached a criterion (Z80% correct, Supplementary
Fig. S2b). Mice usually performed between 20 and 30 blocks.

Those mice trained on a range of concentrations were first trained to
discriminate pair A odours at a concentration of 1% v/v. Next, pair A odours at
lower concentrations were interleaved among higher concentrations forming
pseudo blocks constituting, for example, 5Sþ trials of 0.01% v/v, 5Sþ trials of 1%

v/v, 5S� 0.01% v/v trials and 5S� 1v/v% trials. Discrimination accuracy scores
for two consecutive blocks were then averaged yielding full blocks (20 trials) of
10Sþ and 10S� trials for both high (1% v/v) and low (0.01% v/v) odours. The
same protocol was followed for blocks where the interleaved lower concentrations
were 0.1 and 0.25% v/v (for example, Fig. 4c, d). In total, mice were trained on
0.01% v/v odours for 30 blocks, 0.1% v/v odours for 20 blocks and 0.01% for 20
blocks, and 0.25% v/v odours for 7 blocks.

Mice were trained to discriminate an odour pair (for example, pair A) until they
reached criterion and thereafter for a further 40–50 blocks. They were then trained
to discriminate a second odour pair (for example, pair B) comprising two novel
odours. Once they had reached criterion on odour pair B, they were presented with
a recognition test consisting of a further 5 blocks, each comprising 16 pair B odour
trials (8 Sþ and 8 S� ) pseudo-randomly interleaved with four pair A odour trials
(that is, recognition test odours; two unrewarded Sþ and two S� trials)
(Supplementary Fig. S2c). The recognition test Sþ odour was unrewarded to
ensure that mice could not rapidly relearn to discriminate odour pair A.

Nasal flush. At least 1 day before treatment, mice were given free access to water.
Animals were anaesthetized with isoflurane (Abbott Laboratories, UK) and each
naris was flushed separately with 3 ml of either NaCl (9%, 263 mOsm, sham) or
ZnSO4 (8.4% ZnSO4, 275 mOsm) using a micropipette (Gilson, USA). This was
repeated two more times in immediate succession such that mice received a total of
three flushes per nares within 5 min. Mice treated with the high-dose ZnSO4 were
subject to a second ZnSO4 treatment of a further three flushes per nares within
24 h. All mice were allowed at least 24 h to recover after the last nasal flush before
returning to water restriction.

Data analysis. Images were first 2� 2 binned (WinMix BlockConverter, Optical
Imaging Ltd, USA), then those frames recorded during stimulus presentation
(frames 35–65) were divided by the average of prestimulus baseline frames
0–25 (Supplementary Fig. S3c), providing image stacks that revealed odour-evoked
changes in light reflection, that have been shown to correlate with increases
in glomerular activity in the olfactory bulb28,41,60. Image stacks from all
activity maps were aligned to the first map recorded in session one using
software custom written in Matlab (Mathworks, USA) and Labview (NI)
(Supplementary Fig. S4a).

Using ImageJ (NIH, Bethesda), circular ROIs 75 mm in diameter60,
Supplementary Fig. S4b) were positioned over areas with odour-evoked signal
in the first activity map recorded in session one during presentation of 1% v/v
odours. The same set of ROIs was imposed upon aligned images from all activity
maps of all sessions and concentrations for a particular odour and for a particular
olfactory bulb. For each image frame, all pixel intensity values were normalized by
dividing by the average pixel intensity of the whole image. The mean normalized
pixel value of each ROI was then determined and averaged over 40 stimulus frames
(frames 10–50 after odour onset) and subtracted from 1.

Pixel intensity values for each ROI were correlated with the concomitant ROI
recorded in other activity maps recorded in the same bulb for the same odour. All
ROI correlations for a given activity map were then averaged, yielding an r-value
for each activity map comparison (Supplementary Fig. S4c). Across-session
correlations were subtracted from within-session correlations, yielding a dissim-
ilarity score whereby high scores indicate large differences between session one
and session two odour-evoked activity maps. For determining relative ROI
intensities, activity maps that had within-session correlation coefficient r-values
lower than 0.5 and ROIs whose normalized average pixel intensity did not on
average drop below 0.9990 during odour presentation in both sessions one and two,
were removed to ensure that only those ROIs that contained signal in both session
were included in analyses. The number of ROIs removed from activity maps of
sham and low-dose-ZnSO4-treated mice following thresholding was not signifi-
cantly different (median of ratio of number of ROIs before filtering to after
filtering, sham, 1.83±1.5, n¼ 15 activity maps, low-dose-ZnSO4-treated,
2.71±1.3, n¼ 9 activity maps, P40.1). For activity maps recorded at different
concentrations, the mean ratio of number of ROIs obtained from activity maps
evoked by lower concentrations in session two were not significantly different from
the ratio obtained from 1% v/v presented in both sessions (1% v/v session one
versus 1% v/v session two, median ratio, 1±0.278, n¼ 7; session two, 0.1% v/v,
median ratio, 1.65±1.27, n¼ 5, P40.1; session two, 0.05% v/v, median ratio
1.19±0.67, n¼ 7, P40.1; session two, 0.01% v/v, median ratio, 1.57±0.89,
n¼ 7, P40.1).

After thresholding, intensity values of each ROI were averaged across blocks
and then ranked. Session two ROIs were ordered according to their rank in session
one. ROI intensity values for session one and two were then normalized to 1 and
session two values were subtracted from session one values to determine the extent
of change in relative ROI intensity across sessions for the whole activity map.
Subtraction values for all ROIs were then compiled and the population statistics
determined. A higher variance of subtraction values indicated a higher change in
relative intensity. ROI intensity subtraction values were compared using Ansari
Bradley tests after subtracting medians. Dissimilarity scores were compared using
Mann–Whitney’s U-tests.
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