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Abstract: Zearalenone (ZEN) is a common mycotoxin pollutant found in agricultural products.
Aptamers are attractive recognition biomolecules for the development of mycotoxin biosensors.
Even though numerous aptasensors have been reported for the detection of ZEN in recent years,
many of them suffer from problems including low sensitivity, low specificity, tedious experimental
steps, high-cost, and difficulty of automation. We report here the first evanescent wave optical-fiber
aptasensor for the detection of ZEN with unprecedented sensitivity, high specificity, low cost, and
easy of automation. In our aptasensor, a 40-nt ZEN-specific aptamer (8Z31) is covalently immobilized
on the fiber. The 17-nt fluorophore Cy5.5-labeled complementary DNA strand and ZEN competitively
bind with the aptamer immobilized on the fiber, enabling the signal-off fluorescent detection of ZEN.
The coating of Tween 80 enhanced both the sensitivity and the reproducibility of the aptasensor.
The sensor was able to detect ZEN spiked-in the corn flour extract with a semilog linear detection
range of 10 pM-10 nM and a limit of detection (LOD, S/N = 3) of 18.4 ± 4.0 pM (equivalent to
29.3 ± 6.4 ng/kg). The LOD is more than 1000-fold lower than the maximum ZEN residue limits
set by China (60 µg/kg) and EU (20 µg/kg). The sensor also has extremely high specificity and
showed negligible cross-reactivity to other common mycotoxins. In addition, the sensor was able to
be regenerated for 28 times, further decreasing its cost. Our sensor holds great potential for practical
applications according to its multiple compelling features.

Keywords: zearalenone; evanescent wave optical-fiber aptasensor; aptamer; mycotoxin

1. Introduction

Zearalenone (ZEN) is one of the most widely distributed mycotoxins produced by
Fusarium [1]. It is a phenolic isophthalic acid lactone, and its molecular structure is
similar to that of estrogen (estradiol), so ZEN has estrogen-like activity [2]. It can cause
estrogenic effects and can also enter humans and animals through food and feed, resulting
in reproductive disorders and a potential threat to mammals, which may even lead to
death [3–5]. The main pollution sources of ZEN are grains, including major crops such as
corn, wheat, and sorghum, as well as milk and spices [6–8]. ZEN contaminates 25% of the
world’s food [9] and many countries have limited the content of ZEN in variety of crops
and food [10]. For examples, the maximum residue limits for ZEN in corn are 60 [11] and
20 µg/kg [12] in China and EU, respectively. Therefore, there is an urgent need to establish
an easy-to-operate, sensitive, low-cost, and fast method to detect ZEN in crops to protect
the health and safety of humans and animals.

The chromatography and mass spectrometry-based methods are the standard methods
routinely used in laboratories and have high sensitivity and accuracy. However, these
methods require complex sample preparation steps, high cost, and professional personnel,
therefore they are not capable of on-site applications. Antibody-based methods such
as ELISA and lateral flow test strips have developed into commercialized products but
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suffer from the great batch-to-batch variation of antibodies. Different from antibodies,
nucleic acid aptamers are in vitro isolated binding ligands [13,14]. Aptamers have the
excellent batch-to-batch consistency since they are prepared by organic synthesis instead of
in vivo immunization reaction as used for the preparation of antibodies. Aptamers also
have other advantages over antibodies including high stability, low cost, easy chemical
modification and probe design, and great flexibility to be compatible with various detection
platforms. With the maturing of the in vitro aptamer selection technologies (SELEX) [15–20],
the development of aptasensors for the rapid and facile detection of ZEN has become a
research hotspot [21].

Over the past ten years, the ZEN-binding aptamers with nanomolar affinity have been
isolated by several research groups (Supporting Information (SI) Table S1). Based on these
aptamers, different types of ZEN-aptasensors including colorimetric, fluorescence, and
electrochemical sensing platforms have been reported (SI Table S2) [22,23]. By using various
types of nanomaterials, the sensitivities of the aptasensors have been improved orders
of magnitude, especially for the electrochemical aptasensors, which are inherent much
more sensitive than optical sensors. However, each aptasensor still suffers from different
problems such as low sensitivity, complicated preparation of nanomaterial–biomolecule
complexes and electrodes, the need for enzymes, high cost, a long assay time, and so on
(Table 1). To overcome these problems, tedious and expensive signal amplification steps
and pre-samplings are included, which trades-off the desired benefits of biosensors in cost
and assay time.

Table 1. The 8Z31-based aptasensors reported in recent years.

Aptasensor LOD a

(ng/mL)
Linear Range

(ng/mL) Strength Weakness Assay
Time b

Cost
(USD) Ref.

Competitive
ELAA 0.7 1–104 High throughput Immobilization of

ZEN 3 h 10–20 [24]

Colorimetric
lateral flow assay 20 5–200 Convenient Low sensitivity 5 min 3–5 [25]

AuNP-ELAA 0.08 0.1–160 High throughput Limited shelf-time of
AuNP-aptamer 1 h - [26]

Mesoporous
SiO2-

fluorescence
0.012 0.005–150 Simple operation Long assay time 2.5 h - [27]

CoSe2/AuNRs
-enzymatic-

Electrochemical
1.37 × 10−6 10−5–10 High sensitivity

Complicated
nanomaterial and

electrode
preparation;

multistep detection;
need of enzyme

6 h - [28]

NADL-EWOF 7.34 × 10−7 3.18 × 10−7–
3.18 × 10−2

High sensitivity;
high anti-matrix

interference;
low-cost

Low throughput 6 min c 0.5 d This
work

a LOD for the detection of ZEN in buffer; b excluding the time for sample treatment; ELAA: enzyme-linked
aptamer assay; AuNP: gold nanoparticle; c no sample treatment required; d cost for one test.

Evanescent wave optical-fiber sensor (EWOF) is a type of portable device based on the
evanescent wave generated on the fiber surface when the total reflection of laser inside the
optical fiber [29–31]. It has the advantages of miniaturization, automation, and low cost, but
suffers from low sensitivity when small molecule-binding aptamers are used as recognition
ligands. Due to this limitation, the application of EWOF for the detection of mycotoxins,
which typically have low contents within a complex food matrix, is limited [32,33]. Recently,
we developed an ultrasensitive evanescent wave optical fiber aptasensor for the detection
of small molecules by constructing nanoscale affinity double layer on the fiber (NADL) [34].
The NADL consists of an aptamer layer and a microextraction layer, which can achieve
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in situ target purification, detection and in situ target enrichment. We demonstrated the
ultrasensitive detection of alternariol spiked in the wheat flour [35]. The application of
EWOF aptasensor for the detection of ZEN has never been achieved.

In this work, we report the first EWOF aptasensor for the ultrasensitive, simple,
low-cost, and rapid detection of ZEN. For fair comparison with the reported aptasensors
(Table 1), we fabricated the NADL-based sensor using the most widely utilized 40-nt
ZEN-binding aptamer, 8Z31 (SI, Table S1) [36]. The Cy5.5-labeled complementary DNA
strand and ZEN competitively bind with the aptamer functionalized on the fiber, enabling
signal-off fluorescence detection of ZEN. The coating of Tween 80 greatly enhanced both
the sensitivity and the reproducibility of the aptasensor. We evaluated the sensor in terms
of sensitivity, specificity, resistance to matrix interference, and regeneration ability. Our
sensor shows the unprecedented sensitivity and excellent anti-matrix interference capability.
The direct detection of ZEN spiked in the corn flour was achieved simply by diluting the
extract within about 1 h total assay time including sample extraction. The sensitivity of
our sensor was more than 1000 times lower than the maximum residues limits of ZEN in
food samples. The sensor also has excellent specificity, showing negligible cross-reactivity
with nine other common mycotoxins. In addition, our sensor can be easily regenerated,
which is of great significance to further reduce the cost. The estimated cost per test is much
lower than the most used ELISA kits and test strips. Our sensor has great potential for
practical applications and the same technique can be extended to fabricate aptasensors for
the ultrasensitive detection of other mycotoxins.

2. Materials and Methods
2.1. Materials

The amino group and spacer modified ZEN binding-aptamer 8Z31 (5′-NH2-AAAAAA
AAAATCATCTATCTATGGTACATTACTATCTGTAATGTGATATG-3′) and the fluorescent
dye labeled cDNA (5′-CATTACAGATAGTAA TG-Cy5.5-3′) were synthesized and purified
through high performance liquid chromatography (HPLC) by Sangon Biotech (Shang-
hai, China). All the DNA probe stock solutions at 100 µM were prepared in RNase free
water and stored at −80 ◦C. The binding buffer contains 100 mM NaCl, 20 mM Tris–
HCl, 2 mM MgCl2, 5 mM KCl, and 1 mM CaCl2 (pH 7.4). Tris (hydroxymethyl) methyl
aminomethane (Tris), sodium chloride (NaCl), magnesium chloride (MgCl2), potassium
chloride (KCl), and calcium chloride (CaCl2) were all purchased from the Shanghai Sangon
Biotechnology Co., Ltd. (Shanghai, China). Sulphuric acid (H2SO4), hydrochloric acid
(HCl), and toluene were all purchased from Beijing Chemical Works (Beijing, China). Vom-
itoxin (DON), ochratoxin (OTA), aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1
(AFG1), aflatoxin G2 (AFG2), aflatoxin M1 (AFM1), fumonisin B1 (FB1), and fumonisin
B2 (FB2) were kindly provided by Beijing Academy of Agriculture and Forestry (Beijing,
China). Hydrofluoric acid (HF), hydrogen peroxide (H2O2), Tween 80, zearalenone (ZEN),
glutaraldehyde (GA), sodium dodecyl sulfate (SDS), sodium borohydride (NaBH4), and
3-aminopropyltriethoxysilane (APTS) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Corn flour was purchased from Beijing Zhonghua Shilian Trade Centre (Beijing,
China). The optical fiber regeneration buffer was bought from Beijing Hanyue Rujia Biotech.
(HY-4-003, Beijing, China).

2.2. Instrumentation

A EWOF sensor was bought from Beijing Reliance S&T Co. (Beijing, China) and its
basic components were described in the literature [34]. Optical fibers (UV 576/600) were
purchased from Beijing Scitlion Technology Co., Ltd. (Beijing, China). Spectrophotometer
(UV-2550) was purchased from SHIMADZU CO., LTD. (Tokyo, Japan). Vortex (Vortex-
Genie 2) was purchased from Scientific Industries (America). High-speed temperature-
controlled centrifuge (3-30K) was purchased from Sigma (Germany). Electronic balance
(CP224S SARTORIUS AG) was brought from Shjingmi. Co., Ltd. (Shanghai, China). PH
meter was purchased from ShengCi Co., Ltd. (Shanghai, China). Oven (DHG-9055A)
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was purchased from Shanghai Hengyi Co., Ltd. (Shanghai, China). Ultrasonic cleaner
(KH-4000KDE) was purchased from Kunshan Hechuang Co., Ltd. (Shanghai, China).

2.3. Functionalization of the Optical Fiber

The modification method of the optical fiber is the same as that reported previously
by our group [34,35,37]. Briefly, a razor blade was used to strip 3.5 cm of the resin layer at
one end of the fiber. The fiber was immersed vertically in HF until the exposed portion of
the fiber etched into a tapered structure with a diameter of approximately 230 µm. After
scraping off the remaining cladding on the upper end of the fiber, the fiber was cleaned
with a freshly prepared piranha (H2SO4/H2O2 = 3:1 v/v) solution at 120 ◦C, then dried at
70 ◦C. The dried fiber was completely immersed in a toluene solution containing 2% (v/v)
APTS for one hour at room temperature. The fiber was then completely immersed in a
solution containing 2.5% (v/v) glutaraldehyde and incubated at room temperature for 3 h
to introduce aldehyde groups on the surface of the fiber. Afterwards, the aldehyde-based
fiber was immersed in 650 µL of 500 nM amino-modified DNA solution and incubated
at room temperature for 7 h to covalently immobilize the aptamer on the fiber. The fiber
was then immersed in a 0.3% (m/v) sodium borohydride solution for half an hour at room
temperature. Before detection, the optical fiber was immersed in a 1% (m/v) aqueous
solution of Tween 80 and allowed to stand for half an hour to complete the sealing of the
optical fiber interface. We also fabricated the aptamer-functionalized optical fiber without
the Tween 80 layer for comparison.

2.4. Corn Flour Sample Pretreatment

Two grams of corn flour was mixed with 10 mL of 50% acetonitrile aqueous solution
and extracted with shaking for 30 min, and then assisted by ultrasound for 20 min. The
mixture was centrifuged (10,000 r/min) for 15 min and the supernatant (extract) was
collected. To 90 µL of the extract was added 10 µL of different concentrations of ZEN
(50 fM–5 µM, 10-fold gradient).

2.5. Detection of ZEN by EWOF Aptasensor

A series of ZEN standard solutions at various concentrations were prepared in the
binding buffer. The standard solutions of the corn meal extracts spiked with ZEN as
prepared above were mixed with cDNA, respectively. The final sample used for detection
is consisted of 1× binding buffer, 30 nM cDNA, and ZEN at different concentrations. The
sample was then pumped into the chamber containing the functionalized fiber and held in
the chamber for 180 s after flushing the tubing and chamber through binding buffer for 30 s.
The sensor response curve was in situ recorded. After each measurement, the sensor was
regenerated by rinsing with the regeneration buffer for 2 min. The specificity tests were
performed with 100 pM concentrations of various non-target mycotoxins (AFB1, AFB2,
DON, AFG1, AFG2, AFM1, OTA, FB1, and FB2) using the same procedure.

3. Results and Discussion
3.1. The Setup of NADL-EWOF Sensor

The typical EWOF consists of the optical system (laser, optical fiber coupler, filter,
photodiode, and signal amplifier), the mechanic fluidic system (peristatic pump, tubes,
reaction chamber), and data analysis system (software and computer) (Figure 1A). The
tapered optical fiber is installed inside the reaction chamber. The inlet and outlet tubes are
connected to the chamber for automatic sample injection and waste elution with controlled
flow rate and time.

The tapered silica dioxide optical fiber was used for this study due to its easy fabrica-
tion and low cost (Figure 1B). The total reflection of the incident laser inside the fiber leads
to the formation of the evanescent wave propagated vertical to the surface of the fiber. The
intensity of the evanescent wave exponentially decreases as the function of the distance
away from the fiber surface with the effective length about 100 nm (referred as evanescent
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wave field). The evanescent wave can excite the fluorescence emission of Cy5.5 inside the
evanescent wave field. The intensity of the emission fluorescence is then measured by the
photodiode detector after the filter.
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The sensing mechanism of the NADL-EWOF aptasensor for the detection of ZEN is
depicted in Figure 1C. The NADL consists of an aptamer layer and a microextraction layer.
The physically absorbed Tween 80 layer is used as the microextraction layer. Upon the
injection of sample, the ZEN is in situ enriched and purified due to the attraction from the
Tween 80 layer and the aptamer. The enriched ZEN competes with the Cy5.5-cDNA to bind
with the ZEN-binding aptamer immobilized on the fiber, thereby enabling ultrasensitive
signal-off detection of ZEN.

3.2. The Functionalization of Optical Fiber

The optical fiber was functionalized with the ZEN-binding aptamer by following the
well-established protocol (Figure 2). Specifically, the amino group modified aptamer 8Z31
was covalently immobilized on the fiber via six steps. (1) The hydroxyl groups on the fiber
were generated by oxidation in piranha. (2) The hydroxyl groups were converted into the
amino groups by salinization. (3) The amino groups were further transformed into the
aldehyde groups by the mild cross-linking reaction between the amino group and one of
the two aldehyde groups of glutaraldehyde. (4) The left aldehyde groups then reacted with
the amino groups of the aptamer, leading to the covalent immobilization of aptamers on the
fiber via the formation of the imine bonds. (5) The less stable imine groups were reduced
by NaBH4 to form the stable C-N bonds, along with the reduction in the aldehyde groups
into the hydroxyl groups. (6) The fiber was further coated with Tween 80 by physical
absorption.

The 17-nt Cy5.5-cDNA was complementary to the 3′ end of 8Z31 aptamer, which was
extending away from the fiber surface. It has been reported that the hybridization at the
upper locations is kinetically much more favorable than that near the surface. The Cy5.5
group was modified at the 3′ end of the cDNA to make the Cy5.5 closer to the fiber surface
and therefore to generate the higher fluorescence intensity upon hybridization. Upon the
injection of sample, ZEN is in situ enriched and purified due to the attraction from the
Tween 80 layer and the aptamer. The enriched ZEN competes with the Cy5.5-cDNA to bind
with the ZEN-binding aptamer immobilized on the fiber, thereby enabling ultrasensitive
signal-off detection of ZEN. We also fabricated the aptamer-functionalized optical fiber
without the Tween 80 layer for comparison. Both the Cy5.5-cDNA and the bound and
enriched ZEN on the fiber were easily washed off by rinsing with the regeneration buffer,
enabling the reuse of the aptasensor.
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3.3. The Feasibility Test

We conducted the proof-of-concept experiment using the Tween 80-coated N ADL-
EWOF by the respective injection of the blank sample with or without 1 nM ZEN. The
fluorescence signal rapidly increases upon the injection of the blank sample (black curve,
Figure 3), suggesting that the immobilized ZEN-binding aptamer was able to successfully
hybridize with the Cy5.5-cDNA. The maximum signal was reached after the injection of the
blank sample, followed by a slight decrease that was probably due to the weak dissociation
of cDNA. The signal drops back to the baseline after the injection of the regeneration buffer
(0.5% SDS, pH 1.9), suggesting the success of the complete dissociation of cDNA from the
fiber surface.
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Figure 3. Representative in situ signal responses of the EWOF aptasensor for the detection of 1 nM
ZEN (red curve). The black curve is the reference signal in the absence of ZEN (blank sample). The
fluorescence intensities of the samples with or without ZEN (FZEN or F0) immediately before the
injection of the regeneration buffer (0.5% SDS, pH 1.9) was used to calculate the signal decrease
percentage (S% = (F0 − FZEN)/F0).



Biosensors 2022, 12, 438 7 of 13

In contrast, the fluorescence signal increase was substantially decreased when the
sample contains 1 nM ZEN (red curve, Figure 3). The result was in good agreement with
the proposed competitive sensing mechanism (Figure 2) and therefore proofed the success
of the sensor design. The calculated signal decrease percentage (S% = (F0 − FZEN)/F0)
was 65%. It implied that the sensitivity of our ZEN aptasensor should be quite high since
the LODs for most classic EWOF aptasensors were around 1 nM. Upon the injection of
the 0.5% SDS solution, the signal also drops back to the baseline, which indicated the
complete dissociation of cDNA from the fiber surface. The fiber was further rinsed with
the commercial regeneration buffer for 2 min to wash off the bound ZEN.

3.4. Ultrasensitive Detection of ZEN via NADL-EWOF Aptasensor

The samples containing different concentrations of ZEN were sequentially pumped
into the chamber installed with the optical fiber from low to high concentrations of ZEN.
The statistically meaningful signal decrease was observed when the concentration of ZEN
was 1 fM (Figure 4A). The fluorescence signals were gradually decreased as the increase
in the ZEN concentration in the concentration range from 1 fM to 0.1 nM. The signal
decreased percentage reached level-off when the concentration of ZEN was 0.1 nM. The
LOD (S/N = 3) based on the 3 times standard deviations of the blank sample was 2.31 fM
(equivalent to 7.34 × 10−7 ng/mL). The semilog linear dynamic range was from 1 fM to
100 pM, which covers five orders of magnitude. Comparing to the reported 8Z31-based
aptasensors (Table 1), our sensor has the lowest LOD. Our sensor is even more sensitive
than most electrochemical aptansensors (SI, Table S2), but much simpler and faster. In
addition, neither enzymes nor nanomaterials are required, which lowers the cost and favors
the reproducibility as well.
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To demonstrate the importance of the Tween 80 layer, we also fabricated the optical
fiber without the Tween 80 coating and performed the detection of ZEN using this fiber.
The statistically reproducible signal decrease was observed when the concentration of ZEN
was 1 pM (Figure 5A). The LOD (S/N = 3) was 2.31 pM. The semilog linear dynamic range
was from 1 pM to 1 nM. Comparing to the Tween 80-coated NADL-EWOF aptasensor
(Figure 4), the low LOD was about 1000-fold higher, and the linear dynamic range was
100-fold narrower. The results clearly demonstrated the function of Tween 80 for enhancing
the sensitivity of the sensor. We also performed the multiple repeated experiments for both
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aptasensors with and without Tween 80 coating. The reproducibility of the NADL-EWOF
aptasensor was excellent, while the EWOF without Tween 80 coating showed limited
reproducibility (data not shown).
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Figure 5. Detection of ZEN in buffer by EWOF aptasensor without Tween 80 coating: (A) original
response curves for the detection of samples containing ZEN at a wide concentration range; (B) the
titration curve generated according to the signal decrease percentage (S%). The fluorescence intensities
used for the calculation of the S% were indicated in (A). The error bars in figure (B) are the standard
deviations derivatized from the three replicates.

3.5. Regeneration Performance Tests

To explore the reusability of the NADL-EWOF aptasensor, we performed reproducibil-
ity tests. The 35 cycles of tests were performed, and a test cycle included the sequential
injections of the blank sample (cDNA only), 0.5% SDS (pH 1.9), the ZEN sample (1 pM ZEN
and cDNA), and the regeneration buffer. The sensor was successfully regenerated for up to
28 cycles (Figure 6) according to the regeneration criteria suggested in the literature [38].
The good reusability of the aptasensor greatly reduces the detection cost. It also improves
the reliability of the results since the repeated measurements could be performed using the
same fiber. In fact, every few aptasensors can be reused.
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3.6. Specificity Tests

The good reusability of the NADL-EWOF aptasensor allowed us to perform the speci-
ficity tests using a single optical fiber, enabling the highly reliable results. We assessed the
specificity of the aptasensor against a panel of common mycotoxins including deoxyni-
valenol (DON), aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin
G2 (AFG2), aflatoxin M1 (AFM1), ochratoxin A (OTA), fumonisin B1 (FB1), and fumonisin
B2 (FB2). The results showed that our sensor had excellent specificity for ZEN (Figure 7).
Specifically, the signal decrease percentages were all less than 13% when the aptasensor
was challenged with 100 pM of the other mycotoxins except ZEN. In sharp contrast, the
signal decrease percentages in the presence of 10 and 1 pM of ZEN were 54 and 45%. The
results indicated that the specificity of the sensor was quite high.
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3.7. Real Sample Analysis

We tested the applicability of the NADL-EWOF aptasensor for the detection of ZEN
spiked in the diluted corn flour extract. The fluorescence responses gradually decreased as
the increase in the ZEN concentration. The statistically meaningful fluorescence decrease
was observed when the concentration of ZEN was 10 fM in 1000-fold diluted corn extract
(Figure 8A). The results indicated that the aptasensor was capable for the ultrasensitive
detection of ZEN in real sample matrix. The calculated LOD (S/N = 3) according to
the fitted calibration equation was 18.4 ± 4.0 fM (corresponding to 18.4 ± 4.0 pM in the
undiluted corn flour extracts), which was equivalent to 29.3 ± 6.4 ng/kg and more than
1000-fold lower than the allowed maximum ZEN residue set by China (60 µg/kg) and EU
(20 µg/kg). The semilog linear dynamic range was from 10 fM to 10 pM (corresponding to
10 pM to 10 nM in the undiluted corn flour extracts). The above results demonstrated that
the NADL-EWOF aptasensor had great potential for the rapid and sensitive detection of
ZEN in real samples.



Biosensors 2022, 12, 438 10 of 13

Biosensors 2022, 12, x FOR PEER REVIEW 10 of 14 
 

 
Figure 7. Specificity tests against a panel of common mycotoxins. DON: deoxynivalenol; AFB1: 
aflatoxin B1; AFB2: aflatoxin B2; AFG1: aflatoxin G1; AFG2: aflatoxin G2; AFM1: aflatoxin M1; OTA: 
ochratoxin A; FB1: fumonisin B1; and FB2: fumonisin B2. All the measurements were repeated three 
times and the errors were calculated from the three repeats. 

3.7. Real Sample Analysis 
We tested the applicability of the NADL-EWOF aptasensor for the detection of ZEN 

spiked in the diluted corn flour extract. The fluorescence responses gradually decreased 
as the increase in the ZEN concentration. The statistically meaningful fluorescence 
decrease was observed when the concentration of ZEN was 10 fM in 1000-fold diluted 
corn extract (Figure 8A). The results indicated that the aptasensor was capable for the 
ultrasensitive detection of ZEN in real sample matrix. The calculated LOD (S/N = 3) 
according to the fitted calibration equation was 18.4 ± 4.0 fM (corresponding to 18.4 ± 4.0 
pM in the undiluted corn flour extracts), which was equivalent to 29.3 ± 6.4 ng/kg and 
more than 1000-fold lower than the allowed maximum ZEN residue set by China (60 
μg/kg) and EU (20 μg/kg). The semilog linear dynamic range was from 10 fM to 10 pM 
(corresponding to 10 pM to 10 nM in the undiluted corn flour extracts). The above results 
demonstrated that the NADL-EWOF aptasensor had great potential for the rapid and 
sensitive detection of ZEN in real samples. 

 
Figure 8. (A) The dose–response curves and the calibration curve (B) of the NADL-EWOF 
aptasensor upon the injection of corn extract samples spiked with ZEN at a broad concentration 
range. The concentrations of ZEN shown in the figures are the final concentrations of ZEN in the 
1000-fold diluted corn flour extracts. The actual ZEN concentrations in the undiluted corn flour 
extracts are 1000-times of the values shown in the figures. 

Figure 8. (A) The dose–response curves and the calibration curve (B) of the NADL-EWOF aptasensor
upon the injection of corn extract samples spiked with ZEN at a broad concentration range. The
concentrations of ZEN shown in the figures are the final concentrations of ZEN in the 1000-fold
diluted corn flour extracts. The actual ZEN concentrations in the undiluted corn flour extracts are
1000-times of the values shown in the figures.

4. Conclusions

In conclusion, we successfully constructed the first NADL-EWOF aptasensor for the
detection of ZEN. Our sensor possesses the unprecedented sensitivity and represents the
most sensitive aptasensor reported so far. Furthermore, it showed the excellent specificity
against nine most common mycotoxins. The sensor also has great anti-matrix interference
capability, which allows the direct detection of ZEN-spiked in the corn flour extracts simply
by sample dilution. In addition, the sensor was successfully regenerated up to 28 times
simply by rinsing with the regeneration buffer for 2 min. The total assay time for a single
measurement including regeneration and the sample extraction was about 1 h. Our sensor
is highly attractive for the practical applications based on its multiple advantages including
high sensitivity, good specificity, and strong resistance to matrix interference, rapidity, and
low detection cost. The one limitation of NADL-EWOF is its low throughput. The EWOF
sensors with multiple detection channels and the plane waveguide sensors are rapidly
developed in recent years and can overcome this problem.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12070438/s1, Table S1: ZEN-binding aptamers used in the
aptasensors; Table S2: Literature reported aptasensors for the detection ZEN. Refs. [39–74] are cite in
Supplementary Materials file.
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