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Background and purpose — Artificial intelligence (AI), 
deep learning (DL), and machine learning (ML) have become 
common research fields in orthopedics and medicine in gen-
eral. Engineers perform much of the work. While they gear 
the results towards healthcare professionals, the difference 
in competencies and goals creates challenges for collabora-
tion and knowledge exchange. We aim to provide clinicians 
with a context and understanding of AI research by facilitat-
ing communication between creators, researchers, clinicians, 
and readers of medical AI and ML research.

Methods and results — We present the common tasks, 
considerations, and pitfalls (both methodological and ethi-
cal) that clinicians will encounter in AI research. We discuss 
the following topics: labeling, missing data, training, testing, 
and overfitting. Common performance and outcome mea-
sures for various AI and ML tasks are presented, including 
accuracy, precision, recall, F1 score, Dice score, the area 
under the curve, and ROC curves. We also discuss ethi-
cal considerations in terms of privacy, fairness, autonomy, 
safety, responsibility, and liability regarding data collecting 
or sharing.

Interpretation — We have developed guidelines for 
reporting medical AI research to clinicians in the run-up to a 
broader consensus process. The proposed guidelines consist 
of a Clinical Artificial Intelligence Research (CAIR) check-
list and specific performance metrics guidelines to present 
and evaluate research using AI components. Researchers, 
engineers, clinicians, and other stakeholders can use these 
proposal guidelines and the CAIR checklist to read, present, 
and evaluate AI research geared towards a healthcare setting.

Machine learning (ML), deep learning (DL), and artificial 
intelligence (AI) have become increasingly common in ortho-
pedics and other medical fields. Artificial intelligence, defined 
in 1955, is “the science and engineering of making intelligent 
machines,” where intelligence is “the ability to learn and per-
form suitable techniques to solve problems and achieve goals, 
appropriate to the context in an uncertain, ever-varying world” 
(Manning 2020).

Machine learning implies models and algorithms that learn 
from data rather than following explicit rules. Deep learning 
(DL) is a form of ML that uses large and multilayered arti-
ficial neural networks. Neural networks are computational 
algorithms influenced by biological networks for information 
processing. They consist of several layers of “neurons” that 
communicate. By training the neurons how to communicate, 
interactions develop that solve a particular problem. DL is cur-
rently the most successful and general ML approach (Michie 
et al. 1994, Manning 2020).

Recent technological breakthroughs in computational hard-
ware (like specialized graphics processors [GPUs] and cloud 
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computing), software, and new algorithms have paved the way 
for a revolution in applications and utility. Together these have 
resulted in new and exciting developments. Examples range 
from new drug discoveries (Fleming 2018, Paul et al. 2020) to 
skin cancer detection (Esteva et al. 2017), automated screen-
ing of diabetic retinopathy (Gulshan et al. 2016, 2019), frac-
ture detection in radiographs (Badgeley et al. 2019, Qi et al. 
2020, Olczak et al. 2021), detecting rotator cuff tears in MRI 
(Shim et al. 2020) or vertebral fractures in CT scans (Nicolaes 
et al. 2019). As many methods require a deeper understanding 
of computer science, we see engineers perform much of the 
research geared towards healthcare professionals. This cre-
ates challenges between absolute correctness and a technical 
perspective, and something all stakeholders, including regular 
clinicians, can understand and benefit from. This paper aims 
to give clinicians a context and greater understanding of these 
AI methods and their results.

 
Machine learning, deep learning, and artificial intelligence
At its core, AI involves automating complex algorithms, 
which often depend heavily on statistics. Computation allows 
for calculations and modeling on a scale that humans could 
theoretically perform but which are too large and complicated 
to be feasible.

AI has its own language and different names for concepts 
familiar to medical professionals. Using different names 
obfuscates the fact that these are familiar concepts.

In ML, a model is akin to a test. For example, an ML model 
could test whether a radiograph fulfills the conditions for con-
taining a fracture. Depending on how well the image meets 
these conditions, it will calculate a probability for a fracture in 
the image. In contrast, regular statistics investigate individual 
features’ contribution to a particular outcome, e.g., how much 
does smoking or alcohol contribute to the risk of having a frac-
ture. The core difference is that AI models generally have a 
much richer set of features, often in the thousands. Individual 
features merge into patterns and regularly lose their interpret-
ability. AI models can mostly be considered “black boxes” as 
the path from input to output is often unclear. The main objec-
tive is, therefore, usually predicting a specific outcome.

Another difference from traditional statistics is that many 
ML models guess the correct answer and improve by studying 
the errors they make. For example, suppose we present the 
model with an image. In that case, the model could guess that 
the probability is 80% that there is a fracture. If we agree that 
there is a fracture, we can calculate that the error is 20%. By 
investigating what parameters were not suggesting fracture, 
we can nudge those parameters into the fracture category to be 
more likely to predict a fracture the next time. When reporting 
on AI interventions, the clinical setting is crucial for under-
standing performance. Clinicians must understand the tasks 
and performance measures and whether the outcomes are rel-
evant to the clinical setting.

Classification
A classification task is a task that categorizes observations to a 
set of known outcomes/classes, for example, type of fracture, 
normal vs. pathological ECG, or staging of a malignancy. Typ-
ically, the model produces a probability score per outcome. 
When there are 2 outcomes, e.g., fracture or not, we have a 
dichotomous outcome, a binary classification problem (e.g., 
“fracture” or “no fracture”). If there are several possible out-
comes, e.g., hip fracture Garden 1–4, it is a multi-class clas-
sification task.

The model’s core function is to separate the groups, i.e., it is 
preferred that the network provides probabilities close to 0% 
and 100% instead of around 50%. For example, an algorithm 
might state that there is a 20% probability of a fracture. For 
some purposes, this could be considered sufficient to decide 
on the absence of pathology, e.g., a suspected type A ankle 
fracture. In contrast, a scaphoid fracture may be unfortunate 
to miss, due to the risk of non-union when left untreated. Even 
at a 20% likelihood of a fracture, we might proceed with an 
MRI. Therefore, a reliable classifier’s key feature is better 
separation between groups with few cases in the conflicted 
region’ in this example, between 20% and 80%.

 
Image analysis, segmentation, and localization
Image analysis (also coined as “computer vision”) has gath-
ered much attention and success. It entails analyzing and clas-
sifying the contents of images, for example, fractures (Olczak 
et al. 2021). Sometimes the task is to classify the contents 
of the image and specify a feature’s location in an image. 
Suppose the objective is to locate an object in an image, for 
example, a femur fracture, and mark it with a bounding box 
(Qi et al. 2020). In that case, the task is image localization 
or object detection. A similar task is image segmentation. 
The task is then to mask out regions of interest, for example, 
marking out the actual boundaries of individual bones or frac-
ture lines.

 
Predicting continuous values (regression modeling)
Predicting continuous outcomes is done using regression 
modeling. Continuous outcomes could be predicting the angle 
of fracture displacement, the medial clear-space in an ankle 
radiograph, or the ulna-plus in a wrist radiograph.

 
Other tasks
Natural language processing (NLP) deals with language and 
text management. It could entail translating between lan-
guages, interpreting a written journal, generating a journal, or 
describing an image’s contents.

Clustering is a form of ML where the AI groups data into 
classes without prior knowledge. For example, given a col-
lection of radiographs, it is given the task of sorting them into 
groups. For instance, we could let the algorithm find which 
fractures are similar instead of manually choosing the groups.
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Pitfalls in the classification task for medical data
Outcome imbalances
Medical data is often skewed, with some outcomes being much 
more common than others. In general, we are more likely to 
find a healthy individual than an unhealthy individual. Hence, 
a negative test for a disease is the most likely outcome. In situ-
ations where there are multiple possible outcome types, e.g., 
an elaborate classification scheme, each outcome becomes 
less likely. That is, if we have 30 fractures and 3 groups, each 
subgroup will, on average, contain 10 fractures. In most cases, 
it becomes even more skewed, as some subgroups are more 
common than others.

By emphasizing rare cases, giving them more weight in 
computations during training, we can alleviate the imbalances 
during training.

 
Training and testing
Training is the process of an AI model iterating through a 
database of cases, with annotations, thereby learning from 
many examples. One iteration through the entire training set 
is called an “epoch,” a time-consuming process that can take 
hours to weeks to reach optimal performance. During this pro-
cess, it learns the important features of the data. 

The testing phase is when the model examines examples it 
has not seen before and on the basis of which it has to provide 
an outcome. Predictions of the model are compared with the 
ground truth in order to evaluate performance. 

During testing, model performance may not necessarily 
reflect accurate performance, as rare cases will be underrep-
resented. Unfortunately, recruiting more of the underrepre-
sented classes is labor-intensive. For example, suppose we 
have a class that occurs once in 300 cases. In that case, we 
need to review at least 600 images to find 2 examples. These 
rare cases are usually clinically interesting, and the effort 
needs to be balanced against the clinical importance.

A common practice is to manipulate images at random, e.g., 
rotating images, to force the network to find features inde-
pendent of the manipulations applied; this is a form of data 
augmentation.

 
Missing data
Some outcomes are so rare that they will not be present in 
the data, preventing the algorithm from detecting them. It is 
a fundamental difference from humans, who can learn what 
a class looks like before seeing it, e.g., a Pipkin fracture, and 
recognize when first seeing it.

 
Overfitting
An ML model learns by looking at examples. If it learns the 
training examples too well, it learns the individual patients 
instead of the problem’s general features, i.e., it learns to rec-
ognizes the individual training cases and the expected outcome, 

rather than the common traits that make up the outcome. Due 
to the size and flexibility of ML models used, this is a common 
problem and the reason why the gold standard is to split the data 
into at least a training and a test set. The test set is kept separate 
for final evaluation and is not used for training the model and is 
thus a more objective measure of performance. The same train-
ing case, or patient, must not be included in both the training 
and test set, as this would overestimate the accuracy. A valida-
tion set is similar to the test set, but is used to optimize settings 
for the model during training—and is not always reported. Con-
fusingly, the test set is sometimes called the validation set.

 

Performance measures

When reporting on ML algorithms, the clinical setting is 
essential for understanding the actual performance—and clini-
cians and readers must understand the results. There are many 
methods to measure performance, all with their strengths 
and weaknesses. In Table 1, we present common and widely 
accepted outcome measures or metrics.

 
The confusion table
Many of the performance measures presented here are familiar 
to clinicians from diagnostic testing, e.g., accuracy, specific-
ity, and sensitivity. ML contains a large number of additional 
performance measures that researchers can report. There is a 
need to strike a balance between measures that clinicians are 
familiar with and achieving methodological perfection.

When assessing an experiment’s outcome or a diagnostic 
test, it is common practice to present outcomes in a confusion 
table. A binary test has 2 possible outcomes. For a binary diag-
nostic test (e.g., presence of a fracture in a radiograph or plan-
tar flexion in Simmonds–Thompson’s test for Achilles tendon 
rupture), we have 4 possible outcomes. Table 2 will serve as 
the reference for understanding performance measures.

Suppose we are using a model to classify an ankle fracture 
into 1 of 3 outcomes—type A, type B, or type C malleolar 
fracture, excluding the “no fracture” outcome. We present the 
resulting 3-by-3 confusion table in Figure 1. The usual way to 
deal with the data is to divide it into subparts, where we look 
at each outcome separately, as in Table 3.

There is an underlying decision-making process when an 
outcome is positive or negative. For example, we might decide 
that if there is a > 50% chance of the presence of a certain con-
dition, the test is considered positive, and we would get one 
confusion table. However, if we decided that we need > 90% 
certainty to decide that a test is positive, we would get less 
positive test results and fewer false positives (FP). The result-
ing confusion table would look very different. A screening 
test might consider a > 20% likelihood as a positive outcome, 
resulting in many FP but very few false negatives (FN). The 
threshold where we decide that a test is negative or positive is 
called the decision threshold or classification threshold.
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Measuring performance
Accuracy
Accuracy is defined as the correct classification rate, i.e., the 
rate of correct findings. For instance, if we had a data set con-
taining 5 fractures in 100 radiographs and all those fractures 
were detected, we would have 100% accuracy. Suppose we 
have a test that always indicates “no fracture,” then the perfor-
mance of the test would be 95% accurate. The second test is 
very accurate but has no clinical value. Accuracy has limited 
value for imbalanced data sets.

Sensitivity (recall) and specificity
Sensitivity (also known as recall) and specificity are proper-
ties well known to clinicians. Sensitivity measures how likely 
a test is to exclude or detect a condition correctly. We can 

always achieve 100% sensitivity by saying that everyone has 
the condition. We would spot every case with the condition, 
but get also get many false positives.

Specificity represents the true negative (TN) rate, which 
should usually be high in medical tests, and is balanced with 
the sensitivity. In a more complex task where we want to dif-
ferentiate among multiple outcomes, the number of true nega-
tives will dominate for most outcomes, and specificity should 
generally be high. As with accuracy and other performance 
measures that consider the TN rate, specificity contains little 
information of value in unbalanced datasets.

Specificity and sensitivity represent the proportion of TP 
and TN, respectively, and not the probability of a condition.

A typical use case for high sensitivity is fracture detection. 
The Ottawa Knee Rule has a sensitivity of 98%, and a nega-

Table 1. Evaluation metrics 

Measure  Calculation or description

Accuracy (TP+TN)/(TP+TN+FN+FP)
Sensitivity, true positive rate TP/(TP+FN)
  (TPR), recall 
Specificity TN/(TN+FP)
Youden’s J sensitivity + specificity–1
False-positive rate (FPR) FP/(TN+FP) = 1–specificity
Precision, positive predictive value TP/(TP+FP) 
  (PPV) 
Negative predictive value (NPV) TN/(TN+FN)
F1-score, Dice score 2•precision•sensitivity/
  (precision + sensitivity)
  2•TP/(2•TP+FP+FN)
Model performance curves:
 Receiver operating characteristic 
   (ROC) curve sensitivity (y-axis) against 1–
  specificity (x-axis), i.e., 
  TPR against FPR
 Precision-recall (PR) curve Precision (y-axis) against 
  sensitivity (x-axis)
Area under the curve:
 AUC of the ROC curve (AUC) Statistic of model performance
 AUC of the PR-curve (AUPR) Statistic of model performance
Object detection and localization—image segmentation 
(localization in an image):
 Intersection over union (IoU) TP/(TP+FP+FN)
 Region of interest (ROI) Used in 2D and 3D image 
  segmentation
Continuous data (regression modeling): 
 Means squared error (MSE) ∑(true value–prediction)2/ 
  number of cases
 Root mean squared error (MSE) √MSE
 Mean absolute error (MAE) ∑(true value–prediction)/
  number of cases
Text data:
 Bilingual evaluation understudy Compares generated text with
   (BLEU) reference texts
 Recall-oriented Understudy for  Compares generated text with
 Gisting Evaluation (ROUGE) reference texts
Multiple measurements:
 Frequency weighted average Summarizes many different 
  outcomes

TP = true positive, FP = false positive, TN = true negative, 
FN = false negative.

Table 2. A 2-by-2 confusion table for a binary test—2 possible out-
comes 

   Prediction
 Positive Negative
Ground truth (detected) (not detected)

Positive (disease) True positive (TP) False negative (FN)
Negative (normal) False positive (FP) True negative (TN)

“Positive” and “negative” do not refer to benefit. Positive (P) refers to 
a condition’s presence and negative (N) to the condition’s absence.

Table 3. Dividing the 3-by-3 confusion matrix from Figure 1 into 3 
binary submatrices

 Predicted Type A Predicted Type B Predicted Type C
 True False  True False  True False

True TP FN True TP FN True TP FN)
  (18)  (8)   (116)  (21)   (33)  (14)
False FP TN False FP TN False FP TN
  (15)  (169)   (15)  (21)   (13)  (150)

3 11 33

12 116 9

18 4 4

A

C

B

A

B C

True malleolar class

Predicted malleolar class

Freq.

90
60
30

Figure 1. Confusion matrix for an ankle fracture classification experi-
ment, according to Danis-Weber (AO Foundation/Orthopedic Trauma 
Association (AO/OTA)) classification. There are 26 type A fractures, 
137 type B fractures, and 47 type C fractures. Data reproduced from 
(Olczak et al. 2020).
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tive test will allow us to not go further with further imaging 
studies. Specificity is roughly 50%, and half will have false-
positive tests. Conversely, we care more about specificity in 
meniscal tears as these are usually less acute, and the bottle-
neck is often the availability of MRI. Apley’s maneuver has 
a sensitivity of 20%. However, a specificity of 90% suggests 
that requesting an MRI will result in few unnecessary exams 
once encountered. Ideally, a test or algorithm should provide 
high sensitivity and specificity. However, depending on the 
clinical setting, we can choose to sacrifice one for the other.

Youden’s J combines specificity and sensitivity into one 
metric and is a way to summarize them into a single value, 
ranging from 0 to 1.

False positive rate (FPR)
The FPR is the proportion of negative outcomes that have been 
incorrectly predicted as positive and should be considered the 
opposite of sensitivity.

Positive predictive value (PPV) and negative predictive value 
(NPV)
Given a prediction, we want to know how likely it is for 
that prediction to be correct. PPV (also known as precision) 
answers the question: if we have a set of positive outcomes 
(cases predicted as positive), what proportion of those out-
comes were truly positive? NPV measures the same for nega-
tive cases, i.e., if we have a set of negative outcomes, what 
proportion of those outcomes are genuinely negative?

PPV and NPV, in contrast to specificity and sensitivity, give 
the probability of an outcome based on the prevalence in the 
sample.

Precision and recall
Precision and recall, as terms, are commonly used in ML 
studies but relatively unknown in medicine. In epidemiology, 
precision is the PPV, while recall is the sensitivity. Neither 
precision nor sensitivity takes into account TNs and, as such, 
they are less affected by class imbalances in data. Figure 2 
illustrates their relationship.

F1 score or the Dice score
Class imbalance has become more recognized in medical AI. 
It has become more common to use performance measures 
that take class imbalance into account. Precision and sensitiv-
ity are less sensitive to class imbalance. The F1 score, or Dice 
score, is a way to combine precision and sensitivity, and can 
be understood in terms of data overlap, as in Figure 2. The F1 
score is well suited for imbalanced class problems. It is also 
used in image segmentation and localization tasks; see section 
“Image segmentation or localization”.

Other good performance measures exist but are not com-
monly encountered, e.g., the Matthews correlation coefficient 
(MCC) and other F-scores. See the supplement for details.

 
Performance curves and area under the curve (AUC)
We derived the previous performance measures from the con-
fusion table based on classification outcomes. AI classification 
systems usually yield a probability score as output (e.g., 99% 
could result in a positive prediction while 3% are in a negative 
one) and classify data according to a decision threshold. These 
thresholds are generally arbitrary (e.g., at 50%). However, 
they can also be tuned on a separate development dataset or 
derived from the literature. We constructed the confusion table 
based on whether we detected a condition or not, depending 
on whether it was present. The outcome of the decision-mak-
ing process depends on the classification threshold.

To assess the predictions without relying on a single clas-
sification threshold, we can compute the negatives’ rate for all 
thresholds (i.e., from 0 to 1) and plot them in a curve. It is not 
feasible to compute the confusion matrix and outputs for all 
possible thresholds. Instead, we compute the confusion matrix 
for some thresholds, combine them into a curve, and estimate 
the area under the curve (AUC).

By computing AUC, we can estimate generic model perfor-
mance. The two curves mostly studied are the receiver-operat-
ing characteristic (ROC) and precision-recall (PR) curves. In 
Figure 3, we see the AUC and AUPR curves for the 3 types of 
malleolar fractures.

Receiver operating characteristic (ROC) curve
When research literature mentions AUC, it usually refers to 
the area under the ROC curve (AUC). We will use AUC for the 
area under the ROC curve unless otherwise explicitly stated. 
The ROC curve plots the sensitivity (the y-axis) against the 
FPR (the x-axis) for all decision thresholds in order to obtain 
a curve. Computing the area under that curve gives us the 
AUC, which measures the model’s overall accuracy. The ROC 
curve’s idea is to measure the model’s ability to separate the 
groups by penalizing based on how wrong probabilities are.

Interpretation
As AUC depends on the specificity, which includes the TN 
outcomes, it is sensitive to imbalanced data. For a clinical trial 
or practical application, high AUC risks overestimating per-

False negatives True negatives

False positivesTrue positives

Precision =

Sensitivity =

Figure 2. Graphical illustration of precision and sensitivity (or recall). 
Circles, “ ,” represent cases without the disease/class. Bullets, “●,” rep-
resent cases with the disease/class.
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formance, because it is related to the accuracy, which is sensi-
tive to data imbalance. One should consider a different perfor-
mance measure for imbalanced data sets. However, we usu-
ally encounter AUC during research and development, where 
it is used to measure the overall model performance. It does 
not confine the model to a specific decision threshold, as it is 
computed over all thresholds. The AUC is well understood, 
easy to interpret, and has nice properties. See Supplementary 
material.

Precision-recall (PR) curve
Precision is the same as PPV, and recall is the same as sen-
sitivity. The PR curve illustrates the tradeoff between preci-

sion and sensitivity and measures the model’s ability to sepa-
rate between the groups. As neither precision nor sensitivity 
depends on TN, it is considered well suited to class imbalance 
data.

Using AUPR to assess a model’s performance, as with the 
AUC, will measure the model’s performance in a way that is 
not affected by the classification threshold (Saito and Rehms-
meier 2015). Although it is a valid alternative to AUC, meth-
odological issues with AUPR as a performance measure do 
exist. There is no clear, intuitive interpretation of AUPR or 
its properties (unlike AUC, which corresponds to overall 
accuracy). There is no consensus on what a good AUPR is. 
AUPR, and similar performance measures, comprise an active 
research field. However, most of these performance measures 
still need more research and are not well established. Figure 3 
illustrates the differences between AUC and AUPR.

 
Image segmentation or localization
Sometimes the research problem is to detect a pathological 
lesion and locate it in an image to train the model to mark out 
the areas of interest as a human would. If there is sufficient 
overlap between the model and human reviewers, it is con-
sidered a success. The measures to evaluate segmentation and 
localization tasks presented next are equally valid for both 2D 
and 3D data sets. 

The F1 score is a commonly used performance measure 
based on its alternate interpretation as overlapping sets; how-
ever, the intersection over the union (IoU) is more intuitive 
(Figure 4).

Intersection over union (IoU) or Jaccard index
IoU is used to determine an image segmentation task’s perfor-
mance in image data, such as radiographs, CT or MRI slices, 
or pathology slides. It is a measure of the pixel overlap com-
paring the area of overlap with the combined area of the pre-
dicted and actual location (or ground truth) in percentages. 

Figure 3. ROC and PR curves for malleolar class predictions. The ROC 
curves (left) are monotonically growing functions of sensitivity (y-axis) 
and the FPR (x-axis). The AUC of the ROC curve corresponds to over-
all model accuracy. The PR-curves (right) have precision on the y-axis 
and sensitivity on the x-axis. Unlike the ROC, we see that it can oscil-
late and tends towards zero. The differences between the outcomes 
are also greater.
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Figure 4. Comparing the IoU and the F1 score in terms of data overlap. 
The overlapping sets illustrate why both are commonly used perfor-
mance measures in object detection and image segmentation. The IoU 
is the percentage of area overlap of correct detection. The F1-score is 
the “harmonic mean” where the TPs are given additional importance. 
We can transform one into the other (see supplement). See Table 1 for 
how to compute IoU and F1 score.
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While relying on the application and source, it is common to 
consider > 50% of pixels a sufficient overlap for success. 

Presence/absence measures
A localization task can also be used to determine the presence 
or absence of pathology. As this is a type of classification, the 
same measures used for other classification tasks are suited, 
e.g., ROC analysis (Chakraborty 2013). However, suppose we 
are interested in locating a lesion. In that case, the ROC or PR 
curve cannot measure the model’s ability to locate that region. 
An alternative measure used to incorporate the localization 
aspect is the free-response operating characteristic (FROC) 
(see Supplementary material).

Another option is the region of interest (ROI) analysis, where 
the image is divided into regions. For example, parts of a brain 
scan could be divided into their respective cortexes. For each 
region, the rater assigns a probability that a lesion is located 
in that region. Plotting the ROC curve, with the number of 
regions falsely assigned as having a lesion, the performance 
can then be studied using ordinary ROC analysis. In ordinary 
ROC analysis, the patient or image is the unit to be observed. 
In contrast, each region is of interest in ROI (Obuchowski et 
al. 2000, Bandos and Obuchowski 2018).

 
Continuous measurements
Examples of continuous measurements could be estimating 
the tibiofibular and medial clear spaces in ankle radiographs 
to assess for syndesmotic injury. As these are continuous 
values, usually measured in millimeters, an AI model measur-
ing these distances would use regression models to estimate 
the distance.

Root mean squared error (RMSE)
Mean squared error (MSE) is a common performance metric 
for continuous data. It computes the average squared error 
between the predicted and actual value. Squaring the error 
penalizes large errors, and it is thus more sensitive to outliers. 
Usually, the square root is taken from the MSE, giving the 
RMSE, which benefits from having the same unit and is easily 
relatable to the original value.

Mean absolute error (MAE)
MAE, or mean absolute deviation, finds the average distance 
between the predicted and actual value. MAE is less affected by 
outliers than MSE, as it does not square the difference in values.

 
Multiple measurements
Getting an AI model to detect the presence of pathology (2 
outcomes) to high accuracy is generally easy, and a trivial 
task with limited utility. For example, most orthopedic sur-
geons or radiologists are good at quickly spotting fractures or 
other pathologies. Rather, use-cases where an AI model will 
be useful are to classify, locate, or detect many different out-
comes or make difficult classifications.

A model will perform differently for each outcome, and 
we have to take this into account. As the number of outcomes 
increases, we will have to summarize multiple performance 
measures for all outcomes. As we would do with a group of 
individuals where we report a mean, we need to merge mul-
tiple outcomes into meaningful summary statistics.

Frequency weighted average (FWA)
Taking averages of the individual groups would give exces-
sive importance to small groups. In Figure 2 we noticed that 
type B fractures were more prevalent than type A fractures 
and it makes sense that they should contribute more to the 
overall accuracy. Weighting according to frequency (FWA), 
excluding true negatives when they are very dominant, can be 
written as:

 
last  ∑case = 1 ncase • measurecase

FWA =  
last            ∑case = 1 ncase

  

–––––––––––––––––––––––

where n is the number of cases. For example, frequency 
weighted average AUC (from Figure 1) would become: 
AUCFWA = (24 • 0.8 + 137 • 0.93 + 47 • 0.86)/(24 + 137 + 47) = 0.90. 

FWA can be applied to any metric, for instance, AUPRFWA = 
(24 • 0.27 + 137 • 0.87 + 47 • 0.63)/(24 + 137 + 47) = 0.75.

Medical language generation
Medical language generation involves the generation of medi-
cal text (e.g., diagnostic text or discharge summaries), with or 
without the use of input (e.g., radiographs). For example, Gale 
et al. (2018) trained a system to produce descriptive sentences 
to clarify deep learning classifiers’ decisions when detecting 
hip fractures from frontal pelvic radiographs.

The most common word-overlap measures in medical text 
generation are BLEU (Papineni et al. 2002) and ROUGE 
(Lin 2004). BLEU measures content overlap between the 
model and ground truth texts and penalizes short generated 
captions using a brevity penalty. BLEU-1 considers single 
words, while BLEU-2, -3, -4 consider texts with 2 to 4 words, 
respectively.

ROUGE-L(Recall) is in biomedical captioning the most 
common ROUGE variant. It measures the ratio of the length 
of the longest word subsequence in the human-generated text 
shared and the system-generated text. The measure comple-
ments BLEU by focusing on the human-generated text’s 
length instead of the system-generated text.

We also note that various language generation evaluation 
measures exist, such as METEOR (Banerjee and Lavie 2005), 
CIDEr (Vedantam et al. 2015), and SPICE (Anderson et al. 
2016). It is important to remember that human language com-
plexity is vast and cannot be captured fully by these measures. 
Human evaluation of text is therefore commonly required as 
a supplement.
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Ethical considerations and methodological biases

New technology comes with new ethical dilemmas, and AI 
is no exception. The potential benefits of AI are real, as are 
ethical considerations. As we invest resources in research and 
then the software, hardware, and other logistics, resources 
come from elsewhere. The ramifications of AI are consider-
able, but clinicians are poorly informed (Felländer-Tsai 2020). 
We briefly describe common ethical dilemmas that clinicians 
should be aware of and take into account. The fundamental 
ethical principles that concern medical practice and patient 
care and treatment comprise beneficence, non-maleficence, 
respect for patient autonomy, and justice.

 
Data and privacy
ML and AI are powerful methods often described as “data-
hungry,” as they are needed to learn desired patterns and cap-
ture rare or unusual cases. AI models, at their core, conclude 
statistical relationships and therefore thrive on large amounts 
of data during training, which encourages large-scale data col-
lection. Data, even in the right hands, can constitute a risk to 
patient integrity. For example, oversharing, overuse of per-
sonal data, or data theft all constitute risks to patient privacy 
and risk the data falling into the wrong hands or being used 
for the wrong purposes. Medical data is sensitive and cannot 
always be shared, causing problems for reproducibility and 
reporting on models’ outcomes. However, there are ways to 
anonymize and share data legally and responsibly (Hedlund et 
al. 2020), and this is highly encouraged.

 
Bias and fairness
Bias in AI mainly originates from the input data and the devel-
opment process, and the design decision. These biases trans-
fer to the output data, and an AI model will learn the data’s 
prejudice (Mittelstadt et al. 2016). Clinicians, biased by the 
AI interpretation, risk perpetuating that bias. Commonly 
acknowledged biases and confounders are gender, socioeco-
nomic, and race. For example, a skin cancer detector trained 
on a dataset dominated by fair skin can have problems detect-
ing melanoma in dark-skinned patients (Adamson and Smith 
2018, Kamulegeya et al. 2019). Badgeley et al. (2019) suc-
cessfully predicted hip fractures from radiographs. However, 
when they compensated for socioeconomic and logistical 
factors and healthcare process data (e.g., different scanners), 
model performance fell to random.

Bias comes from the source and handling of data as well 
as the design choices during algorithm creation. Above all, it 
is important to recognize, examine, and reflect on AI studies’ 
biases (Beil et al. 2019).

 
Informed consent and autonomy
AI poses a risk to patient autonomy and integrity. When AI 
models produce difficult-to-explain outcomes based on 

unknown data, it becomes difficult to base decisions on their 
output. AI models also pose a risk to clinician autonomy. As AI 
systems become more prevalent, there is a risk that society will 
divert the responsibility for decision-making to algorithms that 
are incompletely understood. Clinicians and healthcare sys-
tems might implicitly become forced to implement and follow 
them against better judgment, which will also implicitly force 
patients to subject themselves to AI (Lupton 2018).

 
Safety and interpretability
The power of AI systems comes from their ability to use large 
amounts of data to create complex models that consider thou-
sands of parameters. However, AI models, as developed today, 
are difficult to understand and interpret. AI models are mostly 
“black boxes.” What happens inside the model is usually 
unknowable. However, other medical technology and even 
many human analyses can also be considered black boxes. It 
is impossible to back-track the process fully in practice.

Understanding ML models is an active field of research. 
One way to address the challenge is to learn to create interpre-
table models from the start (Rudin 2019).

One popular way to understand AI models is to visualize the 
activating regions, i.e., the regions that lead to the classifica-
tion decision get mapped in vivid colors. These can be called 
heat, saliency, or class activation maps. Another method is to 
produce bounding boxes that constitute the region of interest. 
However, whether the correct or incorrect region is displayed, 
they still do not explain why the model reacted to that region 
(Rudin 2019). Such auxiliary maps can capture some AI mis-
predictions, but far from all. Other methods to achieve inter-
pretability include showing similar reference cases or deriving 
uncertainty measures (Pocevičičtč et al. 2020).

Transparency in AI is crucial for actual clinical implementa-
tions where errors could have critical implications. To critically 
assess AI results in the clinical workflow, we could supply stan-
dardized “model facts labels” along with the AI tool (Sendak et 
al. 2020); this is similar to the facts labels accompanying drugs 
to inform practitioners on suitable usage. Transparency could 
also help compensate for the sensitive nature of the data used to 
train and test them, which usually cannot be shared. 

 
Responsibility and liability
Who is responsible and liable for AI interventions is not 
always clear. A model that is 95% accurate is wrong 5% of 
the time. It is common for an AI model that is excellent at a 
task to fail at examples obvious to a human observer. Some 
errors are within normal parameters. If the patient accepted 
the AI intervention, we might consider this an unfortunate but 
acceptable risk. However, if an AI model suggests a course 
of action, but the underlying rationale is not clear, clinicians 
might not follow it. Suppose the recommendation was cor-
rect, and not following them caused harm to the patient. Are 
clinicians responsible? Suppose they followed the AI recom-
mendation, and it turned out to be a critical error, constituting 
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malpractice. Who is liable and responsible, legally but also 
morally? Currently, most AI interventions are tools that assist 
clinicians, rather than replacing them, and then the physician 
remains responsible.

 

Proposed guidelines for evaluating and 
presenting AI/ML research

Based on the previous discussion, we propose guidelines and 
a checklist for reporting and presenting AI and ML to clini-
cians and other non-machine learning experts. We first state 
our recommendations (Figure 5) on reporting and presenting 
AI and ML research to clinicians and provide a checklist for 
reporting (Table 4).

 
Recommendations for reporting outcomes
Figure 5 comprises recommendations for choosing outcome 
metrics suitable for clinicians. We choose these measures as 
they are (1) suitable and, in general, (2) most interpretable to 
a clinician. While the discussion regarding what makes a good 
choice is still ongoing, and deviations from our suggested 
metrics are possible, we expect that our suggestions will assist 
the indecisive clinician. We recommend including these met-
rics alongside any other metrics.

Continuous
Classification. AUC is a standard measure that most clinicians 
are familiar with or have at least encountered. It is, though, ill-
suited for heavily imbalanced data sets, where AUPR should 
accompany the AUC measure. If the performance in AUC is 
low, the additional information from AUPR is less relevant.

tive is to enhance efficiency while quickly viewing images, we 
are less concerned with rare, complex fracture cases. These 
will, regardless of the bounding box, require more attention.

Area or volumes
The F1 score is a common performance measure for seg-
mentation performance in images. However, we argue that 
its interpretation is non-intuitive compared with the IoU, as 
shown in Figure 4. We therefore recommend using IoU. As 
an alternative, used in particular for 3D imaging, we recom-
mend using ROI, which is more intuitive than most alternate 
performance measures.

Medical text
If we compare to a known text, such as in biomedical image cap-
tioning, we can use BLEU and ROUGE-L (Kougia et al. 2019). 
However, we observe that these 2 measures do not assess clinical 
correctness (Table 5). A single word could change the meaning 
of the text, for example, changing “presence” to “absence,” or 
adding “no” to a sentence, and could potentially cause adverse 
outcomes for patients. A human review will be necessary to 
ascertain clinical correctness. If we had a very accurate clini-
cal tagger (i.e., tagging text with clinical keywords), we would 
estimate clinical correctness via accuracy or F1 score, e.g., by 
tagging both the generated and the reference clinical texts and 
measuring accuracy and F1 over the extracted tags. 

Accuracy
Accuracy is an easily understood and often requested per-
formance measure. Even its weakness, overestimating per-
formance, is easy to understand. If the data is heavily imbal-
anced, however, the F1 score is the preferred choice.

Figure 5. Recommendations for choosing outcome metrics suitable for clinicians. The selected 
measures are selected for their (1) suitability and (2) their interpretability to a clinician. Deviations 
from these are possible; however, they need to be motivated, and we recommend also reporting 
these metrics. IoU (Intersection over Union); ROI (Region of Interest); MAE (Mean Average Error); 
RMSE (Root Mean Squared Error); AUC (Area Under the Receiver Operating Characteristic curve; 
AUPR (Area Under the Precision-Recall curve).
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Measurements. For continuous 
variables, e.g., angles, coordinates, 
or VAS pain, we can use root mean 
squared error (RMSE) or mean abso-
lute error (MAE). Both translate to 
values interpretable on the original 
scale and are familiar to many clini-
cians from traditional statistics.

Historically, we have been more 
interested in RMSE as outliers tend to 
be a major concern. For example, after 
wrist fracture surgery, most patients 
will have low VAS-pain levels. We 
are then primarily interested in iden-
tifying failures that risk high levels 
of VAS. Machine learning allows for 
new applications and, under some cir-
cumstances, we will at times prefer 
the MAE. For example, if the system 
draws a bounding box around a frac-
ture, the box must be close to the frac-
ture site most of the time. If the objec-
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Table 4. Clinical AI Research (CAIR) Checklist Proposal 

Section Reporting recommendations

TITLE AND ABSTRACT 
 Include that the method contains or uses an AI/ML. Broad terms such as “artificial intelligence” or “machine learning” are encouraged, 

but “deep learning” or similarly broadly specific terms would also work well. More precise terms are best suited in the abstract. 
State the AI tool’s intended use or purpose, in a disease context in the title and/or the abstract. What is the targeted condition?

INTRODUCTION
The introduction should focus on the clinical problem. The AI component is the tool used to solve the clinical problem. If possible, explain 

the AI’s intended part within the clinical pathway.
METHODS

State inclusion and exclusion criteria, at the participant and the input data level, separately.
 ● State why these criteria were used.
 ● How were rare pathologies handled?

Describe how the input data was acquired, selected, and handled, and include any form of preprocessing before analysis. If there were 
some specific considerations in handling the data, this should also be specified.
 ● Was the data split into separate train, validation, and test sets?
 ● Are there any differences in how test and training sets were selected and processed?
● How were patients or cases that occur more than once handled? Can they be found in both the test and training set? For example, 

same patient at different points in time or duplicate data.
 ● Are positive and negative cases from different sources? (For example, perhaps different machines are used in high- or low-probability 

settings, and the algorithm learns this pattern instead?)
 ● If there were minimum requirements on the data, state what those requirements were.

Specify if there was a human–AI interaction handling input data and level of expertise of the people handling it.
● How was the ground truth established (e.g., double review with consensus, consensus review, single review, secondary sources)? 

What was the level of expertise of the source or reviewers? What level of noise was present (e.g., Cohen’s kappa).
● If there was training involved in handling the data, this should be specified.

Describe how missing or poor-quality data was handled.
● Were extreme values or outliers handled separately? Explain how and why.

State the AI model’s specifications, design, and the parameters used in training it.
● The model’s data requirements, to serve its purpose, need to be clearly stated (e.g., data format, dimensions, time, etc.).
● How was the data preprocessed? It should be stated separately for training and test sets.
● What was the model architecture? Was a pre-trained model used? Was it pre-trained for the current study?
● If it was a pre-trained model, is the data the model was pre-trained on also part of the current data sets?
● What regularizers were used? (For example, dropout, white noise, batch normalization, stochastic weight averaging, etc.)
● How was the loss calculated? If a non-standard loss function was used, why was this particular loss chosen?
● What model-specific parameters were used in training the model? For example, learning rate, number of epochs, etc.

State the specific version of the AI model used in the study. AI models are likely to undergo many iterations. It is important for repro-
ducibility and tracking changes in the model if reused or implemented in a later study.

Specify the output of the AI. The output affects the model interpretation and post-processing.
● What was the type of output? For example, probabilities, bounding boxes, text, segmented images, models?

Explain how the output contributed to decision-making and evaluation of the model.
● In what way was the output decided upon? Sometimes the reason for deciding on that output needs to be specified. For example, 

when the output depends on a decision threshold, and the model used non-standard thresholds, or when different thresholds are 
used for different outcomes, it might be necessary to explain why they are different.

● If the output was used in later steps, how was it used? Include explanations of how the outputs informed, or led to, subsequent steps. 
For example, was the output used in subsequent steps by a user to inform an action or was it combined with a different model?

How was outcome performance measured? At times it could be necessary to state why a performance measure was chosen over a dif-
ferent performance measure.
● The performance measure most likely familiar to the clinicians should be the primary reporting measure. Sometimes, alternate or 

additional measures are required but it is important to ensure that these are adequately explained.
● In the statistical section, specify the exact version of the measure used, e.g., ROUGE-L-Recall, Rouge-L-Precision, or Rouge-L-F1.
● How was confidence evaluated? Bootstrapping, Monte Carlo simulation, p-value?
● For suggestions on how to choose performance measures, see Figure 5.

RESULTS
Describe the results of analysis and performance errors. If no such analysis was performed, justify why not. Performance errors and 

failure analysis are important for AI models and help communicate the limitations of the model.
DISCUSSION AND OTHER INFORMATION 

 State if and how the AI model/data can be accessed, including any restrictions to access or reuse. If it is not possible, state why. 
Include any details and license. While this is highly desirable, it is not always possible to make data or models readily available or make 
them available online.

Describe ethical considerations and implications of the model, and/or research. Biases and limitations, the input data or output, that 
impact generalizability should also be considered.

Guidelines for publishing, reviewing, and evaluating reporting of AI and ML content to clinicians. Clinical trials and clinical trial protocols, 
including AI interventions, should adhere to the CONSORT-AI (Liu et al. 2020a, 2020b) and SPIRIT-AI (Rivera et al. 2020) checklists.
However, those contain minimal reporting requirements. Besides, most studies are not in a clinical trial stage, and some of those recommenda-
tions are not necessarily applicable. The table elaborates on some important parts of reporting on studies utilizing AI/ML components.
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Clinical Artificial Intelligence Research (CAIR) Check-
list
See Table 4.

 

Discussion

AI and ML will most likely impact medicine in more ways 
than we can imagine. Arguing that clinicians need to be 
involved, we began by describing different tasks and pitfalls 
in machine learning and shared some ways to address them.

We followed by presenting the related concept of perfor-
mance measures. Performance measures describe the result of 
the study. Using the right performance measure will give a 
correct context to the outcome. However, performance mea-
sure choice is not always clear and occasionally depends on an 
experiment’s stage and the audience. For a prospective study 
or development of an AI model, a measure such as AUC is 
appropriate. When we use an AI model as an intervention in a 
clinical trial or in a production setting, where we implement a 
specific AI system, the actual expected performance is more 
important. MCC or precision-recall analysis with AUPR and 
F1-score are more suitable, as AUC could overestimate the 
model’s performance (Chicco and Jurman 2020).

We discussed some of the fundamental ethical problems and 
consequences of algorithmic medicine and AI interventions. 
We believe that this is essential for understanding and evaluat-
ing AI studies, including their limitations. Ethical consider-
ations can limit individual AI systems, but those limitations 
are sometimes necessary to safeguard the patients, who are the 
ultimate beneficiaries of medical AI.

The Enhancing the Quality and Transparency of Health 
Research, EQUATOR (Pandis and Fedorowicz 2011), network 
defines an AI intervention as an intervention that relies on an 
AI/DL/ML component (Liu et al. 2020a, 2020b, Rivera et al. 
2020). In line with the growing importance of AI research in 
healthcare, the SPIRIT (Standard Protocol Items: Recommen-
dations for Interventional Trials) 2013 and the CONSORT 
(CONsolidated Standard for Reporting Trials) 2010 were 
amended in 2020 with SPIRIT-AI and CONSORT-AI check-
lists. SPIRIT-AI and CONSORT-AI are additional checklists 
meant to deal with the particulars of AI studies. In particu-
lar, they address the particular biases involved. They do not 

specify how to conduct AI studies but give minimal recom-
mendations for reporting on them. Similar protocols for other 
study types are under development. For diagnostic and prog-
nostic studies, STARD-AI (Standards for Reporting Diag-
nostic Accuracy-Artificial Intelligence) reporting guidelines 
are in development. Moreover, TRIPOD-ML (Transparent 
Reporting of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis–Machine Learning) is in development 
(Liu et al. 2020b). However, CONSORT-AI and SPIRIT-AI 
are minimal reporting checklists.

We presented a proposal for recommendations and guide-
lines on reporting AI and ML research to clinicians and other 
healthcare stakeholders. We also proposed the CAIR checklist 
to facilitate these recommendations. We envision this proposal 
as the starting point of a broader consensus process on report-
ing, presenting, and understanding AI studies’ outcomes. We 
also hope to help healthcare professionals and other healthcare 
stakeholders interpret these studies.

We have not fully covered all aspects of AI and ML in 
medicine or orthopedics, which would be an impossible task. 
This paper focuses on 3 important areas for understanding 
and evaluating AI research in medicine. We have picked tasks 
commonly found in medical AI studies that are most likely 
to be encountered in orthopedics research. The selection can, 
and will, change as the field and clinicians’ familiarity with 
it evolve. For example, while drafting this paper, the CON-
SORT-AI and SPIRIT-AI guidelines were published, but TRI-
POD-ML and STARD-AI have not yet been.

 
Conclusion
With the advancement of technology, computational power, 
and a great deal of research, AI will be an important clini-
cal tool. For some this is a cause of concern, while for others 
this is an opportunity to improve health outcomes. What mat-
ters, in the end, is what is best for the patient. New tools can 
help clinicians do a better and more reliable job and automate 
tedious and trivial tasks, allowing them to focus on complex 
tasks.

There are also risks associated with AI. The risk is that cli-
nicians do not understand and take part in the process around 
them. Alternatively, they may embrace and not understand what 
the implications are. If low quality or wrongly guided research 
dominates, the implementation of meaningful outcomes might 
suffer. Ethical considerations that clinicians face every day are 

Table 5. Example sentences for medical text analysis using BLEU and ROUGE

GT Subtle impacted intertrochanteric hip fracture B1 B2 B3 B4 ROU
H1 No subtle impacted intertrochanteric hip fracture 83.3 81.6 79.4 76.0 100.0
H2 There is a hip fracture clearly appearent on the radiograph 20.0 14.9 28.1 38.6   40.0

H1 scored higher than H2 compared with the ground truth (GT, human-generated), using BLEU-1/-2/-3/-4 
(B1, B2, B3, B4) and ROUGE-L (ROU). However, given the ground truth (GT), H2 is clinically correct, while 
H1 is not.
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not always shared or understood by the developers behind the 
tools, who could have a different agenda than clinicians.

While we are very far from a time when AI will replace cli-
nicians, we are in a time when clinicians must deal with and 
benefit from AI. Clinicians need to understand the changes, 
research, and results that are happening every day. To guide 
those developments, what is most needed is for clinicians to 
be part of this development. In order to do that, they need to 
understand it. The goal of the CAIR checklist is to facilitate 
this.
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