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Detection of chronic obstructive pulmonary disease with deep 
learning using inspiratory and expiratory chest computed 
tomography and clinical information
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Background: In recent years, more and more patients with chronic obstructive pulmonary disease (COPD) 
have remained undiagnosed despite having undergone medical examination. This study aimed to develop 
a convolutional neural network (CNN) model for automatically detecting COPD using double-phase 
(inspiratory and expiratory) chest computed tomography (CT) images and clinical information.
Methods: A total of 2,047 participants, including never-smokers, ex-smokers, and current smokers, were 
prospectively recruited from three hospitals. The double-phase CT images and clinical information of each 
participant were collected for training the proposed CNN model which integrated a sequence of residual 
feature extracting blocks network (RFEBNet) for extracting CT image features and a fully connected feed-
forward network (FCNet) for extracting clinical features. In addition, the RFEBNet utilizing double- or 
single-phase CT images and the FCNet using clinical information were conducted for comparison.
Results: The proposed CNN model, which utilized double-phase CT images and clinical information, 
outperformed other models in detecting COPD with an area under the receiver operating characteristic 
curve (AUC) of 0.930 [95% confidence interval (CI): 0.913–0.951] on an internal test set (n=307). The AUC 
was higher than the RFEBNet using double-phase CT images (AUC =0.912, 95% CI: 0.891–0.932), single 
inspiratory CT images (AUC =0.888, 95% CI: 0.863–0.915), single expiratory CT images (AUC =0.897, 
95% CI: 0.874–0.925), and FCNet using clinical information (AUC =0.805, 95% CI: 0.777–0.841). The 
proposed model also achieved the best performance on an external test (n=516) with an AUC of 0.896 (95% 
CI: 0.871–0.931).
Conclusions: The proposed CNN model using double-phase CT images and clinical information can 
automatically detect COPD with high accuracy.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a 
highly prevalent and heterogeneous disease characterized 
by airway obstruction, inflammation, and emphysema (1).  
It has become a major public health issue and is listed 
as the third leading cause of death by the World Health 
Organization (2). The identification of COPD typically 
relies on a pulmonary function test (PFT) which determines 
the forced expiratory volume in 1 second (FEV1)/forced vital 
capacity (FVC) ratio to determine if it is less than 0.70 (1).  
However, the PFT requires strict training and quality 
control, and it is unable to directly observe lung structure. 
Compared to PFT, computed tomography (CT) is a more 
widely used disease inspection device, which can be used 
to quantitatively assess pulmonary structural abnormalities 
found in COPD patients. Nonetheless, some COPD 
patients lack significant textural symptoms on CT images, 
resulting in difficulty in detecting COPD through visual 

evaluation using CT images (3). Therefore, a convenient 
and accurate automatic strategy for detecting COPD based 
on CT images is imperative.

CT has been widely adopted for decades in routine 
screening to assess patients with pulmonary nodules 
and lung cancer (4-6). In recent years, several automatic 
detection methods based on chest CT have been proposed 
for diagnosing lung diseases, especially for detecting 
COPD (7-13). For example, González et al. proposed a 
convolutional neural network (CNN) model to achieve a 
COPD detection accuracy of 0.773 using four canonical 
CT slices, which were obtained at predefined anatomic 
landmarks in the CT volume (7); Tang et al. conducted 
a proof-of-concept study to examine the use of deep 
residual networks for COPD detection and achieved an 
area under the receiver operating characteristic (ROC) 
curve (AUC) of 0.889 (8); Ho et al. introduced a COPD 
grouping method based on deep learning (DL) and a 
parametric response mapping technique, which achieved 
a classification accuracy of 0.893 (9); Sun et al. proposed 
a weekly supervised DL approach for COPD detection, 
which obtained an AUC of 0.934 for an internal and 0.866 
for an external test set (10). Although these methods have 
shown promising results, they only consider the images 
obtained from a single inspiratory CT, ignoring the 
potential benefits of expiratory CT images (14). Gawlitza 
et al. found that incorporating expiratory CT imaging can 
enhance the correlation between quantified CT parameters 
and lung function parameters, thereby improving the 
discriminative performance of different subtypes of COPD 
using quantified CT (15). Hasenstab et al. developed a DL 
algorithm using both inspiratory and expiratory CT to 
stage COPD severity by quantifying emphysema and air 
trapping on CT images (16). 

In addition, patient clinical information is often essential 
in achieving a final diagnosis of COPD, including such items 
as age, sex, smoking status, respiratory symptoms, COPD 
assessment test (CAT), and clinical COPD questionnaire 
(CCQ) (17,18). However, few works have focused on 
improving the detection of COPD by fully exploring the 
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features on both inspiratory- and expiratory-phase (double-
phase) CT and clinical information. Therefore, we propose 
a novel CNN model to automatically diagnose COPD 
by using double-phase chest CT images with clinical 
information. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-367/rc).

Methods

Data acquisition

This is a prospective cohort study of which the data were 
collected from three hospitals. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Board of The 
First Affiliated Hospital of Guangzhou Medical University 
(No. 2018-53), and informed consent was provided by all 
individual participants. The participant inclusion criteria 
of the study were as follows: (I) aged 40–80 years; (II) 
participants who are willing to participate in the study 
and provide a signed informed consent form; and (III) 
participants who complete PFT and double-phase chest 

CT scan (imaging at full inspiration and full expiration). 
The exclusion criteria were as follows: (I) lung cancer; 
(II) pneumoconiosis; (III) chronic cavitary pulmonary 
tuberculosis; (IV) liver cancer; and (V) history of other 
lung diseases except for asthma (e.g., active pulmonary 
tuberculosis, pneumoconiosis, extensive bronchiectasis, 
pulmonary aspergillosis).

According to the inclusion and exclusion criteria, a total 
of 2,047 participants were enrolled in the final analysis (see 
Figure 1). In addition, all participants underwent a clinical 
information questionnaire consisting of relevant factors 
such as sex, age, smoking status (never-smokers, ex-smokers, 
and current smokers), chronic respiratory symptoms (cough, 
expectoration, dyspnea, and wheezing), CAT, and CCQ. 
All participants (n=1,531) collected from two of the three 
hospitals using a United-Imaging scanner (United Imaging 
Healthcare, Shanghai, China) were denoted as Dataset A. 
All participants (n=516) collected from the other hospital 
using a Siemens scanner (Siemens Healthcare, Erlangen, 
Germany) were denoted as Dataset B. Detailed patient 
characteristics of the two datasets are shown in Table 1 and 
detailed scan parameters are shown in Table 2. According 
to the data dividing rule of DL, the data in Dataset A were 
randomly divided into a training (n=1,224) and an internal 
testing set (n=307), and the data in Dataset B were used as 
an external test set.

COPD diagnosis was confirmed by an FEV1 to FVC 
ratio of less than 0.70 after inhalation of a bronchodilator 
and the severity of COPD was staged by the Global 
Initiative for Chronic Obstructive Lung Disease (GOLD) 
standard. 

Data processing

Inspired by previous study, we adopted an object detector 
to automatically select four representative canonical CT 
slices, including an axial slice at mitral valve, a coronal slice 
at ascending aorta, and two sagittal slices at right and left 
hila at preselected anatomic landmarks from an entire CT 
volume of each participant (19). Then, each representative 
CT slice was normalized to a standard lung window (i.e., 
window level: −400, window width: 1,400) to the grey value 
[0, 1] and down sampled to the size of 256×256 by a bilinear 
interpolation method to reduce the size of the image (20). 
Finally, the four preselected CT slices from inspiratory 
CT volume and those from expiratory CT volume of each 
participant were joined to an image with size of 2×512×512 
which serves as input for the model. Thus, the input image 

Multicenter dataset (n=2,140)

PFT and double-phase CT are eligible (n=2,103)

Eligible dataset (n=2,047)

Excluded dataset 
•	 Unqualified expiratory CT (n=24)
•	 Unqualified PFT (n=13)

Excluded dataset 
•	 Lung cancer (n=31)
•	 Pneumoconiosis (n=8)
•	 Chronic cavitary pulmonary 

tuberculosis (n=5)
•	 Liver cancer (n=3)
•	 Active pulmonary tuberculosis (n=2)
•	 Bronchiectasis (n=2)
•	 Aspergilloma (n=2)
•	 Mutilated carcinoma (n=2)
•	 Empyema (n=1)

Figure 1 Flow diagram of participants inclusion. CT, computed 
tomography; PFT, pulmonary function test.
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Table 1 Patient’s characteristics of Dataset A and Dataset B, respectively

Variables
Dataset A (n=1,531) Dataset B (n=516)

COPD (n=539) Non-COPD (n=992) COPD (n=369) Non-COPD (n=147)

Men, n (%) 483 (89.6) 588 (59.3) 342 (92.7) 82 (55.8)

Age (years), mean ± SD 64.1±7.3 58.4±7.9 65.5±6.9 59.4±7.9

Smoking status, n (%)

Never-smokers 86 (16.0) 525 (52.9) 42 (11.4) 85 (57.8)

Ex-smokers 149 (27.6) 126 (12.7) 125 (33.9) 24 (16.3)

Current smokers 304 (56.4) 341 (34.4) 202 (54.7) 38 (25.9)

Respiratory symptoms, n (%)

Cough 179 (33.2) 121 (12.2) 190 (51.5) 33 (22.4)

Expectoration 240 (44.5) 204 (20.6) 208 (56.4) 42 (28.6)

Dyspnea 214 (39.7) 211 (21.3) 171 (46.3) 42 (28.6)

Wheezing 100 (18.6) 102 (10.3) 75 (20.3) 17 (11.6)

CCQ, mean ± SD 0.5±0.6 0.3±0.4 0.8±0.7 0.5±0.7

CAT, mean ± SD 4.3±4.9 2.9±3.7 6.3±5.6 4.4±5.6

FEV1 (L), mean ± SD 1.98±0.62 2.42±0.56 1.92±0.57 2.38±0.59

FVC (L), mean ± SD 3.29±0.77 3.07±0.74 3.38±0.77 3.06±0.77

FEV1/FVC, mean ± SD 59.3±10.5 79.1±6.3 56.4±9.0 78.4±5.2

FEV1% predicted, mean ± SD 74.6±21.4 96.5±15.1 74.2±18.2 98.5±14.1

GOLD stage, n (%)

GOLD 1 242 (44.9) NA 147 (39.8) NA

GOLD 2 218 (40.4) NA 189 (51.2) NA

GOLD 3 64 (11.9) NA 30 (8.1) NA

GOLD 4 15 (2.8) NA 3 (0.8) NA

Dataset A contains all participants from two of the three hospitals and Dataset B contains those from the other hospital. COPD, chronic 
obstructive pulmonary disease; SD, standard deviation; CCQ, clinical COPD questionnaire; CAT, COPD assessment test; FEV1, forced 
expiratory volume in one second; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease; NA, not applicable.

Table 2 Detailed CT scan parameters

Parameters United-Imaging Siemens

Scan model uCT 760 Definition AS Plus

Scan type Spiral Spiral

Scan region Lungs Lungs

Rotate time (s) 0.5 0.5

Tube voltage (kV) 120 120

Inspiratory (mAs) 200 200

Expiratory (mAs) 50 50

Thickness (mm) 0.75 0.75

Interval (mm) 0.5 0.5

Acquisition matrix 512×512 512×512

CT, computed tomography.

size of each patient was dramatically reduced to 2×512×512 
from volumetric double-phase CT images, which helps to 
accelerate model training and testing. 

In processing of the clinical information, sex, cough, 
expectoration, gasp, and wheezing were encoded by means 
of one-hot encoding. In addition, age, CCQ, and CAT 
scores were divided into two parts according to their 
distribution, then each part was encoded using one-hot 
encoding. Smoking status included never-smokers, ex-
smokers, and current smokers; among them, ex-smokers 
and current smokers were labeled in the same category and 
never-smokers was labeled other category, then encoded 
using one-hot encoding. Finally, clinical information was 
formed into a nine-dimensional vector, which used as input 
for model in the form of text. 
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Model development

Figure 2 shows the architecture of the proposed CNN 
model. The model includes image feature extractor, text 
feature extractor, and fusion classifier. The image feature 
extractor is a sequence of residual feature extracting blocks 
network (RFEBNet), which is used to extract image 
features from the selected slices of double-phase CT. 
Details of RFEBNet are shown in the bottom of Figure 2. 
The first block of RFEBNet consists of a two-dimensional 
convolutional layer with 64 filtering kernels of size 3×3, 
batch normalization, rectified linear unit (ReLU) activation 
function, and a Maxpool, namely, Conv layer→BN 
layer→ReLU layer→Maxpool layer. After the first block, 
the input images with size 2×512×512 are transformed into 
feature maps with size of 64×256×256 (21-23). Then, the 
feature maps are further fed into a sequence of residual 
feature extracting blocks (RFEBs). Every RFEB consists 

of the following structure: Conv layer→BN layer→ReLU 
layer→Conv layer→BN layer→ReLU layer. In addition, 
a shortcut path is established to sum the input before 
the first Conv layer in each RFEB before performing 
the second ReLU layer. Four RFEB’s Conv layer use 64 
filtering kernels of size 3×3, 128 filtering kernels of size 
3×3, 256 filtering kernels of size 3×3, and 512 filtering 
kernels of size 3×3, separately. As a result, the size of feature 
maps is 512×32×32 along the RFEBs. Subsequently, the 
feature maps obtained from the last RFEB are put into 
an AdaptiveAvgPool layer to reduce the feature maps size 
as 512×1×1. Finally, the feature maps are then flattened 
to a 512-dimensional feature vector. The text feature 
extractor is a fully connected feed-forward network 
(FCNet), which is used to extract text features from the 
corresponding clinical information. The FCNet contains 
one fully connected (FC) layer. Specifically, the extracted 

Figure 2 The proposed network architecture for COPD classification. The architecture includes three parts, i.e., a sequence of RFEBNet, 
a FCNet, and a fusion classifier. RFEBNet is used as an image feature extractor. FCNet is used as a text information extractor. Extracted 
features from images and clinical information are fed into the fusion classifier for determining COPD or Non-COPD. CT, computed 
tomography; RFEBNet, residual feature extracting blocks network; FC, fully connected; COPD, chronic obstructive pulmonary disease; 
CCQ, clinical COPD questionnaire; CAT, COPD assessment test; FCNet, fully connected feed-forward network; ReLU, rectified linear unit.
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nine-dimensional clinical text vector is encoded by the FC 
layer into 256-dimensional feature vector. After these two 
extractors, the 512-dimensional image feature vector and 
256-dimensional text feature vector were concatenated 
and inputted into the fusion classifier for COPD and non-
COPD classification. 

To evaluate the performance of our proposed CNN 
model, four neural networks, namely, Model I: RFEBNet 
using inspiratory chest image as input; Model E: RFEBNet 
using expiratory chest CT image as input; Model I + E: 
RFEBNet using double-phase chest CT image as input; and 
Model C: FCNet using clinical information as input, were 
also performed for comparison.

Model training

In the training process, training samples were augmented 
online by random rotation of −30° to 30°, and flipping 
horizontally and vertically to improve network robustness. 
The model training parameters were set as follows. The 
number of epochs was set to 100. The initial learning rate 
was set to 0.0001 and decayed by five times at each 30 epochs. 
The batch size was set to eight and weight decay set to 0.001. 
The Adaptive Movement Estimation (Adam) algorithm was 
used to optimize the model. All models were implemented 
with Pytorch framework on a workstation equipped with 
an NVIDIA RTX A6000 GPU (NVIDIA, Santa Clara, CA, 
USA) with 48 GB memory capacity.

Model evaluation

To evaluate the performance of the proposed CNN model 

in detecting COPD, the ROC curve and its 95% confidence 
interval (CI), AUC, as well as other evaluation metrics 
including sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and F1-score 
were calculated. Furthermore, the proposed CNN model’s 
generalizability was evaluated using an external testing set 
(Dataset B).

Feature extraction visualization

Class activation maps (CAMs) are a visualization technique 
used to identify which regions of an image contribute the 
most to a model’s classification decision. In the context of 
the proposed CNN model for COPD detection, CAMs 
were computed to identify the regions of interest for COPD 
detection. The CAMs indicate the relative importance of 
each pixel in the CT image for the classification decision (24).

Statistical analysis

Statistical analysis was conducted using Python version 3.7 
and Scikit-learn version 0.24.2 (https://pypi.org/project/
scikit-learn/0.24.2/). The 95% CIs were computed using 
bootstrapping with 1,000 bootstraps. The significance of 
AUC was tested using the Delong test, and a P value of less 
than 0.05 was considered statistically significant.

Results

The results of different models in terms of evaluation 
metrics for diagnosing COPD in the internal test set 
(n=307) are shown in Table 3. Our proposed CNN model, 

Table 3 Internal test performance of different models on detecting COPD using parts of Dataset A (n=307)

Model Model C Model I Model E Model I + E Proposed

AUC 0.805 (0.777, 0.841) 0.888 (0.863, 0.915) 0.897 (0.874, 0.925) 0.912 (0.891, 0.932) 0.930 (0.913, 0.951)

Sensitivity 0.769 (0.676, 0.842) 0.667 (0.569, 0.753) 0.787 (0.696, 0.858) 0.824 (0.736, 0.889) 0.833 (0.747, 0.896)

Specificity 0.709 (0.640, 0.770) 0.900 (0.847, 0.936) 0.869 (0.813, 0.911) 0.879 (0.824, 0.920) 0.905 (0.853, 0.940)

PPV 0.589 (0.503, 0.670) 0.783 (0.682, 0.859) 0.766 (0.674, 0.839) 0.788 (0.699, 0.857) 0.826 (0.739, 0.889)

NPV 0.849 (0.784, 0.898) 0.833 (0.774, 0.879) 0.883 (0.827, 0.923) 0.902 (0.850, 0.938) 0.910 (0.858, 0.944)

F1-score 0.667 (0.595, 0.738) 0.720 (0.642, 0.798) 0.776 (0.706, 0.847) 0.805 (0.738, 0.873) 0.829 (0.764, 0.895)

Dataset A contains all participants from two of the three hospitals. Data in parentheses are 95% confidence intervals. Model C: a fully 
connected neural network using clinical information as input; Model I: a sequence of residual feature extracting blocks network using 
inspiratory chest CT image as input; Model E: a sequence of residual feature extracting blocks network using expiratory chest CT image 
as input; Model I + E: a sequence of residual feature extracting blocks network using double-phase chest CT images as inputs. COPD, 
chronic obstructive pulmonary disease; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, 
negative predictive value; CT, computed tomography. 

https://pypi.org/project/scikit-learn/0.24.2/
https://pypi.org/project/scikit-learn/0.24.2/
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by combining double-phase CT and clinical information, 
achieved the best classification performance on detecting 
COPD with an AUC of 0.930, sensitivity of 0.833, specificity 
of 0.905, PPV of 0.826, NPV of 0.910, and F1-score of 
0.829. In contrast, Model C, which was based on FCNet 
using clinical information only, had the worst classification 
performance with an AUC of 0.805, sensitivity of 0.769, 
specificity of 0.709, PPV of 0.589, NPV of 0.849, and F1-
score of 0.667. Model I + E, which was based on RFEBNet 
using inspiratory and expiratory CT, had an AUC of 0.912, 
sensitivity of 0.824, specificity of 0.879, PPV of 0.788, NPV 
of 0.902, and F1-score of 0.805. It had better performance 

than Model I (based on RFEBNet using inspiratory only) 
and Model E (based on RFEBNet using expiratory CT only) 
in terms of AUC (0.912 vs. 0.888, P value <0.001 and 0.912 
vs. 0.897, P value =0.042, respectively). 

The external test set had similar results with the internal 
test set (Table 4). The proposed model also achieved the 
highest evaluating metrics in terms of AUC, specificity, 
PPV, NPV, and F1-score, except that the sensitivity was 
slightly lower than that of Model I + E. The corresponding 
ROC curve comparison of the different models in the 
internal and external test set are shown in Figure 3. 

As depicted in Figure 4, the proposed model exhibited 

Table 4 External test performance of different models on detecting COPD using Dataset B (n=516)

Model Model C Model I Model E Model I + E Proposed

AUC 0.826 (0.791, 0.865) 0.810 (0.783, 0.845) 0.829 (0.791, 0.865) 0.845 (0.809, 0.886) 0.896 (0.871, 0.931)

Sensitivity 0.856 (0.815, 0.890) 0.818 (0.774, 0.856) 0.889 (0.851, 0.918) 0.924 (0.891, 0.948) 0.905 (0.870, 0.932)

Specificity 0.660 (0.577, 0.735) 0.626 (0.542, 0.703) 0.544 (0.460, 0.626) 0.517 (0.433, 0.600) 0.694 (0.612, 0.766)

PPV 0.863 (0.823, 0.896) 0.846 (0.803, 0.881) 0.830 (0.789, 0.865) 0.828 (0.787, 0.862) 0.881 (0.843, 0.911)

NPV 0.647 (0.564, 0.722) 0.579 (0.498, 0.656) 0.661 (0.569, 0.743) 0.731 (0.633, 0.811) 0.744 (0.662, 0.813)

F1-score 0.860 (0.827, 0.893) 0.832 (0.796, 0.868) 0.859 (0.829, 0.891) 0.873 (0.842, 0.904) 0.893 (0.863, 0.923)

Dataset B contains those from the other hospital. Data in parentheses are 95% confidence intervals. Model C: a fully connected neural 
network using clinical information as input; Model I: a sequence of residual feature extracting blocks network using inspiratory chest CT 
image as input; Model E: a sequence of residual feature extracting blocks network using expiratory chest CT image as input; Model I + 
E: a sequence of residual feature extracting blocks network using double-phase chest CT images as inputs. COPD, chronic obstructive 
pulmonary disease; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive 
value; CT, computed tomography. 

Figure 3 ROC curve comparison between different models in the internal (A) and external (B) tests, respectively. Model I + E: a sequence of 
residual feature extracting blocks network using double-phase chest CT images as inputs; Model E: a sequence of residual feature extracting 
blocks network using expiratory chest CT image as input; Model I: a sequence of residual feature extracting blocks network using inspiratory 
chest CT image as input; Model C: a fully connected neural network using clinical information as input. ROC, receiver operating 
characteristic; AUC, area under the receiver operating characteristic curve; CI, confidence interval; CT, computed tomography. 
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excellent calibration for COPD detection, as indicated 
by the Hosmer-Lemeshow test (P>0.99), suggesting no 
evidence of poor calibration. Figure 5 presents several 
examples of original inspiratory CT images and their 
corresponding saliency maps between COPD and non-
COPD, which were obtained by our proposed model. 
Saliency maps display regions of an image that are most 
relevant to a model’s decision-making process, with hotter 
colors indicating higher importance. The information 
derived from saliency maps suggests that the proposed 
model focuses on areas around the lung and some rib 
margin. As shown in Figure 5, most of the regions in the 
non-COPD lung were blue (Figure 5E,5F), whereas many 
hot colors appeared in the COPD lung and some rib 
margins (Figure 5A-5D).

Discussion

In this study, we developed a novel CNN model that 
integrates double-phase CT images and clinical information 
to improve the accuracy of COPD detection. It achieved the 
highest AUC in the internal test set, and its generalizability 
was validated by the external test set.

The proposed model demonstrated superior performance 
in COPD detection. One of the key factors contributing to 
the model’s success is the use of double-phase CT images. 

This allows for capturing more features on identifying 
COPD. For example, the air-trapping is a potential early 
symptom of COPD that can only be observed on expiratory 
CT images (14). Another critical component is that we 
implemented model concatenation, not only extracting 
images features but also incorporating clinical information. 
This multivariate model is more in line with clinical diagnosis 
practice. Therefore, by merging this clinical information with 
the double-phase CT images, the proposed model was better 
equipped to identify COPD. 

This study has significant implications for clinical practice 
in detecting COPD. The Model E using expiratory CT 
images had better performance in many evaluation indicators 
compared to the Model I using inspiratory CT images. 
This suggests that expiratory CT may provide more useful 
COPD features for detection than inspiratory CT. This 
finding emphasizes the importance of considering the role 
of expiratory CT in COPD detection in clinical practice. 
Another strength of this study is the inclusion of a well-
representative population of over 2,000 patients from three 
hospitals, including never-smokers, ex-smokers, and current 
smokers undergoing COPD screening. These findings may 
have important implications for the development of future 
screening and diagnostic approaches for COPD.

Nevertheless, our study had two limitations. Firstly, 
obtaining additional expiratory CT images increased the 

Figure 4 Detection of COPD by the proposed model in the internal test set. (A) The predicted probabilities represent the predicted 
probability that the proposed model assigns to the outcome of COPD. The observed proportions reflect the actual proportion of participants 
within each decile who were diagnosed with COPD. Reference lines illustrate perfect correlation, with a slope of 1 and an intercept of 0. 
(B) The Hosmer-Lemeshow test assessed as calibration quality. A nonsignificant P value (>0.05) suggests that there is no evidence for poor 
calibration. COPD, chronic obstructive pulmonary disease.
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Figure 5 Feature visualizations of proposed model for detecting COPD using CAMs technique. The columns from left to right are the 
original inspiratory CT image, a class activation map, and a class activation map overlaying the original image. (A-D) COPD cases. (E,F) 
Non-COPD cases. COPD, chronic obstructive pulmonary disease; CAMs, class activation maps; CT, computed tomography.
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radiation dose to the patient, whereas this study aimed to 
evaluate the utility of expiratory CT imaging for COPD 
detection and did not focus on the potential risks associated 
with increased radiation exposure. Secondly, compared 
with obtaining inspiratory CT images, it is more difficult to 
obtain true expiratory CT images from patients, particularly 
those with shortness of breath.

Conclusions

The proposed CNN model, which fully utilizes the 
information from double-phase CT images and clinical 
data, has demonstrated the ability to improve the accuracy 
of COPD detection. Our findings suggest that the proposed 
model has the potential to be used as an automatic screening 
tool for identifying COPD patients in clinical practice.

Acknowledgments

The authors thank all the participants who participated in 
this study.
Funding: This study was supported by the Foundation 
of Guangzhou National Laboratory (Nos. SRPG22-
016 and SRPG22-018), the Clinical and Epidemiological 
Research Project of State Key Laboratory of Respiratory 
Disease (No. SKLRD-L-202402), the Plan on Enhancing 
Scientific Research in Guangzhou Medical University (No. 
GMUCR2024-01012), and the Key Scientific Research 
Project of Universities in Guangdong Province (No. 
2023KCXTD026).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-367/rc

Data Sharing Statement: Available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-367/dss

Peer Review File: Available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-367/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-367/coif). The authors 
have no conflicts of interest to declare. 

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee of Scientific Research Project Review of The 
First Affiliated Hospital of Guangzhou Medical University 
(No. 2018-53) and informed consent was provided by all 
individual participants.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global 
Strategy for the Diagnosis, Management, and Prevention 
of Chronic Obstructive Lung Disease 2017 Report. 
GOLD Executive Summary. Am J Respir Crit Care Med 
2017;195:557-82.

2.	 Prevalence and attributable health burden of chronic 
respiratory diseases, 1990-2017: a systematic analysis for 
the Global Burden of Disease Study 2017. Lancet Respir 
Med 2020;8:585-96.

3.	 Bellamy D, Smith J. Role of primary care in early diagnosis 
and effective management of COPD. Int J Clin Pract 
2007;61:1380-9.

4.	 Tammemagi MC, Schmidt H, Martel S, et al. Participant 
selection for lung cancer screening by risk modelling (the 
Pan-Canadian Early Detection of Lung Cancer [PanCan] 
study): a single-arm, prospective study. Lancet Oncol 
2017;18:1523-31.

5.	 de Koning HJ, van der Aalst CM, de Jong PA, et al. 
Reduced Lung-Cancer Mortality with Volume CT 
Screening in a Randomized Trial. N Engl J Med 
2020;382:503-13.

6.	 Mets OM, Buckens CF, Zanen P, et al. Identification 
of chronic obstructive pulmonary disease in lung 
cancer screening computed tomographic scans. JAMA 

https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-24-367/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Thoracic Disease, Vol 16, No 9 September 2024 6111

© AME Publishing Company. J Thorac Dis 2024;16(9):6101-6111 | https://dx.doi.org/10.21037/jtd-24-367

2011;306:1775-81.
7.	 González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. 

Disease Staging and Prognosis in Smokers Using Deep 
Learning in Chest Computed Tomography. Am J Respir 
Crit Care Med 2018;197:193-203.

8.	 Tang LYW, Coxson HO, Lam S, et al. Towards large-scale 
case-finding: training and validation of residual networks 
for detection of chronic obstructive pulmonary disease 
using low-dose CT. Lancet Digit Health 2020;2:e259-67.

9.	 Ho TT, Kim T, Kim WJ, et al. A 3D-CNN model with 
CT-based parametric response mapping for classifying 
COPD subjects. Sci Rep 2021;11:34.

10.	 Sun J, Liao X, Yan Y, et al. Detection and staging of 
chronic obstructive pulmonary disease using a computed 
tomography-based weakly supervised deep learning 
approach. Eur Radiol 2022;32:5319-29.

11.	 Xu C, Qi S, Feng J, et al. DCT-MIL: Deep CNN 
transferred multiple instance learning for COPD 
identification using CT images. Phys Med Biol 
2020;65:145011.

12.	 Wu Y, Du R, Feng J, et al. Deep CNN for COPD 
identification by Multi-View snapshot integration of 3D 
airway tree and lung field. Biomedical Signal Processing 
and Control 2023;79:104162.

13.	 Du R, Qi S, Feng J, et al. Identification of COPD From 
Multi-View Snapshots of 3D Lung Airway Tree via Deep 
CNN. IEEE Access 2020;8:38907-19.

14.	 Labaki WW, Martinez CH, Martinez FJ, et al. The Role 
of Chest Computed Tomography in the Evaluation and 
Management of the Patient with Chronic Obstructive 
Pulmonary Disease. Am J Respir Crit Care Med 
2017;196:1372-9.

15.	 Gawlitza J, Trinkmann F, Scheffel H, et al. Time to 
Exhale: Additional Value of Expiratory Chest CT in 
Chronic Obstructive Pulmonary Disease. Can Respir J 

2018;2018:9493504.
16.	 Hasenstab KA, Yuan N, Retson T, et al. Automated CT 

Staging of Chronic Obstructive Pulmonary Disease 
Severity for Predicting Disease Progression and Mortality 
with a Deep Learning Convolutional Neural Network. 
Radiol Cardiothorac Imaging 2021;3:e200477.

17.	 Jones PW, Harding G, Berry P, et al. Development and 
first validation of the COPD Assessment Test. Eur Respir 
J 2009;34:648-54.

18.	 van der Molen T, Willemse BW, Schokker S, et al. 
Development, validity and responsiveness of the Clinical 
COPD Questionnaire. Health Qual Life Outcomes 
2003;1:13.

19.	 González G, Washko GR, Estépar RS. Automated Agatston 
score computation in a large dataset of non ECG-gated 
chest computed tomography. Proc IEEE Int Symp Biomed 
Imaging 2016;2016:53-7.

20.	 Zhou RG, Hu W, Fan P, et al. Quantum realization of 
the bilinear interpolation method for NEQR. Sci Rep 
2017;7:2511.

21.	 He K, Zhang X, Ren S, et al. Deep Residual Learning for 
Image Recognition. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR). Las Vegas, NV, 
USA: IEEE; 2016:770-8.

22.	 Ioffe S, Szegedy C. Batch Normalization: Accelerating 
Deep Network Training by Reducing Internal Covariate 
Shift. PMLR 2015;37:448-56.

23.	 Eckle K, Schmidt-Hieber J. A comparison of deep 
networks with ReLU activation function and linear spline-
type methods. Neural Netw 2019;110:232-42.

24.	 Kwaśniewska A, Rumiński J, Rad P. Deep features class 
activation map for thermal face detection and tracking. 
2017 10th International Conference on Human System 
Interactions (HSI). Ulsan: IEEE; 2017:41-7.

Cite this article as: Zhang Z, Wu F, Zhou Y, Yu D, Sun C, 
Xiong X, Situ Z, Liu Z, Gu A, Huang X, Zheng Y, Deng Z, 
Zhao N, Rong Z, He J, Xie G, Ran P. Detection of chronic 
obstructive pulmonary disease with deep learning using 
inspiratory and expiratory chest computed tomography and 
clinical information. J Thorac Dis 2024;16(9):6101-6111. doi: 
10.21037/jtd-24-367


