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ABSTRACT

Background. Hypothyroidism and low free triiodothyronine (FT3) syndrome [low FT3 levels with normal thyroid-stimulating
hormone (TSH)] have been associated with reduced kidney function cross-sectionally in chronic kidney disease (CKD)
patients with severely reduced estimated glomerular filtration rate (eGFR) or end-stage kidney disease (ESKD). Results on
the prospective effects of impaired thyroid function on renal events and mortality for patients with severely reduced eGFR
or from population-based cohorts are conflicting. Here we evaluated the association between thyroid and kidney function
with eGFR (cross-sectionally) as well as renal events and mortality (prospectively) in a large, prospective cohort of CKD
patients with mild to moderately reduced kidney function.

Methods. Thyroid markers were measured among CKD patients from the German Chronic Kidney Disease study. Incident
renal endpoints (combined ESKD, acute kidney injury and renal death) and all-cause mortality were abstracted from
hospital records and death certificates. Time to first event analysis of complete data from baseline to the 4-year follow-up
(median follow-up time 4.04 years) of 4600 patients was conducted. Multivariable linear regression and Cox proportional
hazards models were fitted for single and combined continuous thyroid markers [TSH, free thyroxine (FT4), FT3] and
thyroid status.
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Results. Cross-sectionally, the presence of low-FT3 syndrome showed a significant inverse association with eGFR and
continuous FT3 levels alone showed a significant positive association with eGFR; in combination with FT4 and TSH, FT3
levels also showed a positive association and FT4 levels showed a negative association with eGFR. Prospectively, higher FT4
and lower FT3 levels were significantly associated with a higher risk of all-cause mortality (Nevents¼297). Per picomole per
litre higher FT3 levels the risk of reaching the composite renal endpoint was 0.73-fold lower (95% confidence interval
0.65–0.82; Nevents¼615). Compared with euthyroid patients, patients with low-FT3 syndrome had a 2.2-fold higher risk and
patients with hypothyroidism had a 1.6-fold higher risk of experiencing the composite renal endpoint.

Conclusions. Patients with mild to moderate CKD suffering from thyroid function abnormalities are at an increased risk of
adverse renal events and all-cause mortality over time.
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INTRODUCTION

Chronic kidney disease (CKD) is recognized as a global health
problem due to its high cost, reduced patient quality of life [1],
high comorbidities and poorer prognosis of other diseases such
as metabolic diseases [2]. The thyroid gland influences meta-
bolic processes in the body and clinical/translational research
supports a connection between thyroid and kidney function.
Patients with CKD and end-stage kidney disease (ESKD) are
prone to hypothyroidism [3–9] and low free triiodothyronine
(FT3) syndrome [combined low FT3 levels with normal thyroid-
stimulating hormone (TSH) levels] [6, 10]. Thyroid function can
also affect kidney function, CKD progression, and increase car-
diovascular disease (CVD) disease risk. CKD patients have a
high risk for CVD and impaired thyroid function may increase
their CVD risk as well as mortality, as has been shown for ESKD
patients [11, 12]. Zoccali et al. [13] reported T3 to be a strong
marker of survival in ureamic patients. Fan et al. [14] reported a
high prevalence of low-T3 syndrome in a very small cohort of
CKD patients with severely reduced kidney function and
patients with ESKD, suggesting low-T3 syndrome to be a risk
factor of CKD progression. Rhee et al. [11] reported hypothyroid-
ism to be associated with higher mortality in haemodialysis
patients. Despite the strong evidence supporting a connection
of thyroid and kidney function, the directionality and causality
of the association are still unclear [15] and little is known about
the influence of impaired thyroid function on patients with
moderately reduced estimated glomerular filtration rate (eGFR),
making the implementation of preventive measures for this
high-risk subpopulation difficult.

We therefore set out to evaluate the cross-sectional and pro-
spective association of thyroid function markers (TFMs) and the
presence of thyroid dysfunction, defined as hypothyroidism,
hyperthyroidism and low-FT3 syndrome, with eGFR (cross-sec-
tionally), all-cause mortality (prospectively) and a composite re-
nal endpoint [ESKD, acute kidney injury (AKI), death due to
untreated ESKD; prospectively] in a large German cohort of
mostly CKD Stage 3 patients, the German Chronic Kidney
Disease (GCKD) study.

MATERIALS AND METHODS
Study population

The GCKD study is a prospective European ancestry cohort
study of 5217 CKD patients, ages 18–76 years at baseline (2010–
12), under regular nephrologist care [16, 17]. The major inclusion
criteria were reduced eGFR of 30–60 mL/min/1.73 m2 or protein-
uria, defined as a urinary albumin:creatinine ratio (UACR)

>300 mg/g with an eGFR >60 mL/min/1.73 m2. Patients undergo
regular, standardized study visits, questionnaire-based inter-
views, physical examinations and bio-sampling by trained per-
sonnel. All hospital discharge records, death certificates and
records from treating nephrologists are collected continuously.
The GCKD study was approved by all the ethics committees of
the participating institutions and registered in the national reg-
istry for clinical studies (DRKS 00003971). Written informed con-
sent was obtained from all participants.

Baseline variables

Serum and urinary creatinine was determined using an isotope
dilution mass spectrometry (IDMS)-traceable methodology
(Creatinine plus, Roche, Basel, Switzerland). Urinary albumin
was determined using a turbidimetric method (Tina-quant,
Roche). GFR (mL/min/1.73 m2) was estimated using the
creatinine-based Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation [18]. Serum cholesterol was
measured using an enzymatic test for direct quantitative identi-
fication of cholesterol [CHOD-PAP; Modular (P), Roche].

TFM was measured in 2014–15 from baseline specimens
stored at �80�C at the Institute of Clinical Chemistry and
Laboratory Medicine, Greifswald, Germany, TSH was deter-
mined using a chemiluminescence approach (Dimension
VISTA, Siemens Healthcare Diagnostics, Deerfield, IL, USA) and
free thyroxine (FT4) and FT3 were determined using a competi-
tive immunoassay method (Dimension VISTA, Siemens
Healthcare Diagnostics). Interassay coefficients of variation are
listed in Supplementary data, Table S1. Thyroid functional sta-
tus (euthyroidism, hypothyroidism, hyperthyroidism or low-
FT3 syndrome) was based on reference ranges [19–21] of TSH
(0.49–3.29 mU/L), FT4 (9.8–18.8 pmol/L) and FT3 (3.3–6.1 pmol/L)
levels:

• euthyroidism: TSH, FT3, FT4 within reference ranges;
• hypothyroidism (subclinical and overt): TSH>3.29 mU/L and

FT4 within the reference range or <9.8 pmol/L;
• hyperthyroidism (subclinical and overt): TSH<0.49 mU/L

and FT4 and FT3 within or above the reference range and
• low-FT3 syndrome: FT3<3.3 pmol/L and TSH within the ref-

erence range.

Uncategorized patients with TFM distributions not covered
by any of the above categories were considered as ‘undefined’
(n¼ 196).

Medication intake was obtained using the Anatomical
Therapeutic Chemical (ATC) classification system. Patients
were evaluated for the intake of thyroid medication (ATC codes:
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thyroid hormones, H03A; antithyroid medication, H03B) and
anti-arrhythmic medication (ATC code: C01B).

Diabetes mellitus (DM) was defined as haemoglobin
A1c�6.5% or intake of anti-diabetic medication. Amputation
corrected body mass index (BMI) was calculated from weight
and height. Age, sex, centre and smoking were based on self-
reports at enrolment. A positive history of CVD was determined
by a positive medical history for stroke (defined as either stroke
or carotid artery operation/stenting), peripheral arterial disease
(defined as either amputation or peripheral artery operation/
stenting) and/or coronary heart disease (defined as either myo-
cardial infarction or bypass operation or percutaneous coronary
intervention).

Prospective endpoint abstraction

Endpoints are continuously abstracted from hospital discharge
letters, nephrologist outpatient letters and death certificates
based on a standardized, specific endpoint abstraction cata-
logue. To guarantee quality and reduce interobserver variability,
endpoints were abstracted by a specialized endpoint committee
consisting of four medical doctors. Difficult cases were dis-
cussed within the team. Quality control was ensured by con-
ducting regular ring trials. Abstracted event data from the first
4 years of follow-up were available (median 4.04 years). Events
of interest were all-cause mortality (defined as any death;
Ndeath events¼ 297) and a composite renal endpoint consisting
of ESKD, AKI or renal death (Nevents¼ 615: NESKD events

¼ 155 , NAKI events¼ 456, Nrenal death events¼ 4). ESKD was defined
as either the start of any form of dialysis or kidney transplan-
tation. AKI was defined by applying the Acute Kidney Injury

Network (AKIN) criteria [22] using available creatinine values
for each patient. Creatinine values of the acute event were
compared with the last creatinine values recorded from each
patient before the event. Lastly, AKI events were also ab-
stracted for patients requiring temporary dialysis. In order to
ensure homogeneity, only AKIs requiring hospital admission
were abstracted.

Statistical analyses

Cross-sectional baseline characteristics of patients by thyroid
status were compared using chi-squared and Kruskal–Wallis
tests for variables as appropriate (Table 1).

For statistical analyses, patients on anti-arrhythmic medica-
tion as well as one further patient with highly incomplete data
at baseline and follow-up were excluded from the GCKD cohort
(N¼ 5102; Supplementary data, Figure S1). For the main analy-
ses, patients with any missing information on relevant varia-
bles were additionally excluded from the GCKD cohort (analysis
set n¼ 4600; Supplementary data, Table S2). TSH and UACR
were logarithmically transformed before analyses due to
skewed distributions.

Cross-sectional analysis. To evaluate the association of each
thyroid trait [log(TSH), FT4 and FT3] and thyroid functional sta-
tus with eGFR (outcome), different linear regression models
were fitted: unadjusted (Model 1), minimally adjusted (age, sex
and centre; Model 2) and fully adjusted [age, sex, centre, BMI,
history of CVD, DM, cholesterol and log(UACR); Model 3]. In ad-
dition, the same models were fitted that simultaneously con-
tained all three thyroid traits (Supplementary data, Table S3).

Table 1. Baseline characteristic of the analysis set (N¼4600) and by thyroid functional status

Variable
Analysis set

(N¼ 4600)
Euthyroidism

(n¼ 3404)
Hypothyroidism

(n¼ 221)
Hyperthyroidism

(n¼539)

Low-FT3
syndrome
(n¼ 240)

Undefinedc

(n¼ 196) P-value*

Age (years) 60.0 6 12.1 59.5 6 12.2 55.7 6 14.9 62.7 6 9.5 63.2 6 10.8 60.7 6 11.4 <0.001
Men 2733 (59.4) 2146 (63.0) 115 (52.0) 277 (51.4) 96 (40.0) 99 (50.5) <0.001
eGFRa (mL/min/1.73 m2) 49.6 6 18.4 50.3 6 18.2 51.0 6 23.0 47.5 6 16.7 43.5 6 16.8 48.7 6 19.5 <0.001
UACRb (mg/g), mean (IQR) 52.5 (9.7–393.7)55.4 (10.0–395.1)190.1 (14.2–949.3) 27.3 (7.1–231.1) 51.1 (11.1–376.0)46.8 (8.4–333.3)<0.001
TSHa,b (mU/L), mean (IQR) 1.2 (0.8–1.8) 1.3 (0.9–1.8) 4.1 (3.7–4.9) 0.3 (0.1–0.4) 1.3 (0.9–1.6) 0.9 (0.5–1.6) <0.001
FT4a (pmol/L) 14.3 6 2.9 13.9 6 1.8 13.5 6 2.2 16.4 6 3.6 15.0 6 3.2 15.7 6 8.2 <0.001
FT3a (pmol/L) 4.2 6 0.7 4.3 6 0.5 4.1 6 0.8 4.4 6 0.9 3.0 6 0.4 4.0 6 1.3 <0.001
Thyroid medication

intaked, n (%)
1043 (22.7) 512 (15.0) 73 (33.0) 264 (49.0) 109 (45.4) 85 (43.4) <0.001

Thyroid hormone
intake, n (%)

965 (21.0) 453 (13.3) 68 (30.8) 253 (46.9) 108 (45.0) 83 (42.4) <0.001

Anti-thyroid medication,
n (%)

78 (1.7) 59 (1.7) 5 (2.2) 11 (2.1) 1 (0.4) 2 (1.0) 0.168

Current smoking,a n (%) 731 (15.9) 558 (16.4) 30 (13.6) 75 (13.9) 43 (17.9) 25 (12.8) 0.264
DM, n (%) 1628 (35.4) 1164 (34.2) 69 (31.2) 197 (36.6) 111 (46.3) 87 (44.4) <0.001
BMIa (kg/m2) 29.7 6 6.0 29.6 6 5.8 30.2 6 6.4 29.3 6 5.4 30.2 6 7.1 31.3 6 7.2 0.017
History of CVD,a n (%) 1369 (29.8) 995 (29.2) 60 (27.2) 156 (28.9) 90 (37.5) 68 (34.7) 0.033
Hypertension,a n (%) 4424 (96.2) 3274 (96.2) 212 (95.9) 523 (97.0) 227 (94.6) 188 (95.9) 0.592
Cholesterola (mg/dL) 211.6 6 53.0 210.6 6 48.7 234.1 6 80.1 208.9 6 50.4 210.3 6 71.2 211.2 6 61.3 <0.001
HDL cholesterola,b (mg/dL), mean (IQR)48.4 (39.4–61.4) 48.2 (39.2–60.8) 50.1 (40.3–61.2) 49.6 (39.6–63.1) 49.8 (40.4–66.4) 48.0 (39.6–60.4) 0.228

Values are presented as mean 6 standard deviationunless stated otherwise. eGFR, UACR, TSH: mU/L; FT4: pmol/L; FT3: pmol/L; low-FT3 syndrome: low FT3 levels in

combination with normal TSH levels; IQR: interquartile range; HDL: high-density lipoprotein.
aMissing covariate information in the GCKD cohort: TSH (n¼339), FT4 (n¼5), FT3 (n¼4), eGFR (n¼27), smoking (n¼ 13), cholesterol (n¼7), HDL (n¼5), BMI (n¼49),

UACR (n¼64) and hypertension (n¼2).
bSkewed distribution: variables displayed as p50 (p25–p75).
cUndefined refers to patients that could not be assigned to one of the four thyroid functional categories by their respective thyroid hormone levels.
dThyroid hormone intake plus anti-thyroid medication.

*Reported P-values for difference: v2 (categorical) and Kruskal–Wallis tests (continuous) for variables as appropriate.
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Analysis of prospective endpoints. For the association analysis
of thyroid traits and thyroid functional status with prospective
endpoints (all-cause mortality and composite renal endpoint),
Cox proportional hazards regression analysis was conducted to
evaluate the time from study entry to first respective event,
whichever occurred first [23] (Supplementary data, Tables S4
and S5). Multiple/recurrent events in a patient were thereby ig-
nored. Models similar to the cross-sectional analysis were fitted
for TFM (single and combined) as well as for thyroid functional
status: unadjusted (Model 1), minimally adjusted (Model 2) and
fully adjusted (Model 3). Estimated risks are expressed as hazard
ratios (HRs) for all-cause mortality and cause-specific HRs for
the composite renal endpoint, with death from other causes as
the competing event [24].

Competing events analysis used the same models.
Subdistribution hazard analyses were carried out for the com-
posite renal endpoint evaluating potential indirect effects of
markers on the composite renal endpoint [25] (Supplementary
data, Table S6). Cumulative incidence functions were plotted.
Proportional hazards assumptions were checked with
Schoenfeld’s residuals, with no major deviations (data not
shown).

Statistical significance. A Bonferroni correction that accounts
for the three thyroid markers and two outcomes was applied to
define statistical significance: P-values <0.05/(3� 2) ¼ 8.3� 10�3

were considered significant. Spearman correlation between all
markers ranged from �0.203 to 0.072.

Adjustment variables. Prior to the reported analysis, adjust-
ment variables were selected via a two-step procedure:
literature-based biological plausibility followed by variable se-
lection using backward elimination based on the Akaike infor-
mation criterion in regression models that did not contain
thyroid markers (Supplementary data, Table S7). Ultimately,
one common adjustment variable set was chosen to be used in
Model 3 (fully adjusted).

Additional analyses. In order to validate results obtained from
the main analysis based on complete cases, two additional
analyses were carried out:

i. Imputed data analysis: The generation of the dataset used
in the main analysis led to the additional exclusion of 502
patients due to incomplete data (10%; Supplementary data,
Figure S1). We used a multiple imputation approach (R pack-
age ‘mice’, R foundation, Vienna, Austria) to generate 10
complete datasets for each outcome by repeatedly replacing
missing values using chained equations (default setting)
[26]. The imputation was done on the GCKD cohort exclud-
ing the one patient with highly incomplete data at baseline
and follow-up (n¼ 5216). Per outcome, the same analyses as
in the main analysis (excluding patients on anti-arrhythmic
drugs) were then conducted in each complete imputed data-
set (n¼ 5102). Afterwards, single estimates were pooled to
obtain combined estimates for all associations reported
from the main analysis [26] (Supplementary data, Tables S8–
S10).

ii. Sensitivity analysis: Since almost one-quarter of all patients
were under thyroid hormone substitution (21.0%), another
dataset that only included patients not treated for thyroid
disorders was defined (n¼ 3557; Supplementary data, Figure
S1) in order to investigate whether treatment of patients
changes the association of thyroid function with eGFR, the

composite renal endpoint and mortality (Supplementary
data, Tables S11–S14). The same analyses as in the main
analysis were carried out to contrast the results of the main
analysis.

RESULTS

Table 1 gives an overview of patient characteristics by thyroid
functional status for the analysis set. Compared with euthyroid
patients (59.5 years), hypothyroid patients tended to be younger
(55.7 years), have higher UACR values and a lower percentage
are men. Patients with hyperthyroidism (62.7 years) were older
than euthyroid patients. Other differences between the euthy-
roid patient group and thyroid disease groups included older
age, lower eGFR and higher comorbidity rates for diabetes and a
history of CVD in the low-FT3 syndrome group. A P-value for
difference using the chi-squared test for categorical and
Kruskal–Wallis test for continuous variables showed significant
results for age, sex, eGFR, UACR, diabetes and cholesterol.

Supplementary data, Table S2 compares the GCKD cohort
(N¼ 5217) with the analysis set (n¼ 4600; exclusion of patients
with missing variable information [n¼ 502]) and the sensitivity
set (n¼ 3557; restriction to patients not treated for thyroid disor-

ders). The analysis set was similar to the GCKD cohort except
for slightly higher median UACR values in the analysis cohort
(50.9 versus 52.5 mg/g).

Differences between the analysis set and the sensitivity set
were a higher proportion of men (59.4 versus 66.3%) and a
higher median UACR (52.5 versus 64.4 mg/g) in the sensitivity
set.

Cross-sectional association of TFMs and
thyroid functional status with eGFR

Table 2 shows the cross-sectional associations of various thy-
roid traits on eGFR (mL/min/1.73 m2).

For TFMs added singularly to the regression model, FT3
(pmol/L) showed a highly significant positive association with
eGFR (per 1 pmol/L increase of FT3, eGFR was 2.99 mL/min/
1.73 m2 higher; P¼ 1.6e–15). For the combined TFM analysis, FT3
showed a highly significant positive association with eGFR (per
1 pmol/L increase of FT3 eGFR was 3.12 mL/min/1.73 m2 higher;
P¼ 1.6e–16) and FT4 showed a significant negative association
with eGFR (per 1 pmol/L increase of FT4 eGFR was 0.27 mL/min/

1.73 m2 lower; P¼ 2.5e–03). Patients with low FT3 syndrome had
a significantly lower eGFR (mL/min/1.73 m2) than euthyroid
patients (effect size �4.68 mL/min/1.73 m2; P¼ 3.3e–05).

For analyses in the imputed dataset, results were very simi-
lar (Supplementary data, Table S7) to the analysis dataset, but
the association with FT4 added singularly to the regression
model resulted in a significant negative association with eGFR
(per 1 pmol/L increase of FT4 eGFR was 0.22 mL/min/1.73 m2

lower; P¼ 7.7e–03).
In the sensitivity analyses excluding patients treated for thy-

roid disorders, all associations were similar in direction and
mostly stronger in magnitude (Supplementary data, Table S10)
compared with the main analysis, except for smaller effect sizes
for TSH in the combined TFM analysis, as well as for hyperthy-
roid patients and patients from the undefined group compared
with euthyroidism.
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Association of TFMs and thyroid functional status with
all-cause mortality

For the single TFM analysis, higher FT3 (per pmol/L) levels were
associated with a 0.74-fold lower risk of all-cause mortality [95%
confidence interval (CI) 0.62–0.89; Nevents¼ 297; Table 3], there-
fore patients with lower FT3 levels had a higher risk of all-cause
mortality.

Moreover, higher FT4 (pmol/L) was significantly associated
with a higher hazard for all-cause mortality [hazard ratio (HR)
1.05; P¼ 4.7e–04]. For the combined TFM analysis, all associa-
tions were similar in direction and magnitude (FT3: HR 0.74,
P¼ 2.0e–03; FT4: HR 1.06, P¼ 8.2e–05).

Neither TSH nor any thyroid diseases were significantly as-
sociated with all-cause mortality.

For analyses in the imputed dataset (Supplementary data,
Table S8), results were similar in direction and magnitude to the
analysis dataset.

In sensitivity analyses, the significance of the association for
FT3 (single TFM: HR 0.69, P¼ 5.3e–04; combined TFM: HR 0.65,
P¼ 7.8e–05) remained (Supplementary data, Table S11) and FT4
only stayed significant for the combined TFM analysis (HR 1.09,
P¼ 1.4e–03).

Association of TFMs and thyroid functional status with
the composite renal endpoint

For the single and combined TFM analyses, higher FT3 (per
pmol/L) significantly decreased the hazard for a renal event
0.73-fold (Table 4); conversely, lower FT3 (per pmol/L) signifi-
cantly increased the hazard for a renal event 1.3-fold. To illus-
trate a potential dose–response relationship, a model
including FT3 categorized into quartiles was fitted. Patients in
the lowest quartile (0.77–3.81 pmol/L) had a higher hazard for a
renal event compared with patients in other quartiles
(Figure 1).

Compared with euthyroid patients, the hazard for develop-
ing a renal event in patients with low-FT3 syndrome was 2.2-
fold higher (Table 4). The hazard for a renal event for hypothy-
roid patients was also increased 1.6-fold compared with euthy-
roid patients (Figure 2 and Table 4).

For the imputed dataset, results were similar in direction
and magnitude to the analysis dataset (Supplementary data,
Table S9).

In the sensitivity analysis (Supplementary data, Table S12),
the magnitude and strength of the associations for FT3 (HR 0.76,
P¼ 2.8e–04) and low-FT3 syndrome (HR 1.9, P¼ 7.5e–04)
remained.

The analysis of the competing event and the subdistribution
hazard analysis of the composite renal endpoint for the analysis
and sensitivity set did not reveal any additional insight
(Supplementary data, Tables S6 and S13). Cause-specific HRs
and subdistribution HRs were of the same magnitude and level
of significance, indicating no indirect effects on the outcome.

Table 2. Cross-sectional associations of TFMs and thyroid functional status with eGFR in the analysis set (n¼4600)

Model Effect on eGFR, mL/min/1.73 m2 (95% CI) Standard error P-value

Single TFMa

TSH, log-transformed �0.15 (�0.67–0.37) 0.26 5.8e–01
FT4 �0.17 (�0.34–0.00) 0.09 5.4e–02
FT3 2.99 (2.26–3.72) 0.37 1.6e–15

Combined TFMb

TSH, log-transformed �0.14 (�0.66–0.39) 0.27 6.1e–01
FT4 �0.27 (�0.45 to �0.10) 0.09 2.5e–03
FT3 3.12 (2.38–3.86) 0.38 1.6e–16

Euthyroidism versus Ref Ref Ref
Hypothyroidism �1.62 (�3.92–0.67) 1.17 1.7e–01
Hyperthyroidism �1.26 (�2.79–0.26) 0.78 1.1e–01
Low FT3 syndrome �4.68 (�6.89 to �2.47) 1.13 3.3e–05
Undefined �0.90 (�3.32–1.51) 1.23 4.6e–01

TSH, mU/L; FT4, pmol/L; FT3, pmol/L.

Per thyroid trait, linear regression models were fitted and adjusted for age, sex, centre, BMI, history of CVD, DM, UACR (log-transformed), smoking and cholesterol.

Significant P-values (P�8.3e–03) are indicated in bold.
aSingle TFM: TFMs are added to the regression model singularly.
bCombined TFM: all TFMs are entered together into the regression model.

Table 3. Associations of TFMs and thyroid functional status with all-
cause mortality in the analysis set (N 5 4600, Nevents 5 297)

Model HR (95% CI) P-value

Single TFMa

TSH, log-transformed 1.12 (0.97–1.29) 1.1e–01
FT4 1.05 (1.02–1.08) 4.7e–04
FT3 0.74 (0.62–0.89) 1.6e–03

Combined TFMb

TSH, log-transformed 1.14 (0.99–1.31) 7.2e–02
FT4 1.06 (1.03–1.08) 8.2e–05
FT3 0.74 (0.61–0.90) 2.0e–03

Euthyroidism versus Ref Ref
Hypothyroidism 1.48 (0.90–2.44) 1.2e–01
Hyperthyroidism 1.42 (1.02–1.97) 3.8e–02
Low FT3 syndrome 1.31 (0.84–2.04) 2.3e–01
Undefined 1.53 (0.93–2.53) 9.4e–02

TSH, mU/L; FT4, pmol/L; FT3, pmol/L.

Per thyroid trait, Cox proportional hazards models were fitted and adjusted for

the baseline variables: age, sex, centre, eGFR, BMI, history of CVD, DM, UACR

(log-transformed), smoking, cholesterol. Significant P-values (P�8.3e–03) are in

bold.
aSingle TFM: TFMs are added to the regression model singularly.
bCombined TFM: all TFMs are entered together into the regression model.
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DISCUSSION

To the best of our knowledge, the GCKD study is the largest co-
hort of patients with moderately reduced kidney function; avail-
able TSH, FT4 and FT3 measurements; a solely European ethnic
background and under regular nephrologist care. This unique
setting enables us to follow a large cohort of CKD patients for a
long period of time before reaching ESKD, resulting in higher
numbers of adverse events and more stable associations. It also
clearly separates the GCKD study from advanced CKD/ESKD co-
hort studies, small-sample CKD cohort studies, population-

based cohorts with small numbers of CKD patients and any
cross-sectional cohort studies. Since all GCKD patients are un-
der state-of-the-art nephrologist care, the known influence of
different levels of care on CKD and ESKD patient outcomes is
thus minimized [27, 28].

In our study, we detected a high prevalence of thyroid dys-
function, with about one-quarter of patients classified as hypo-
thyroid either by laboratory tests or thyroid hormone
substitution, but also a large proportion of hyperthyroid
patients (�10%). Cross-sectionally, we demonstrated that higher
FT3 levels alone and lower FT4 in combination with higher FT3
levels were significantly associated with higher baseline eGFR,
as well as that low-FT3 syndrome was associated with reduced
eGFR compared with euthyroidism. Prospectively, higher FT3
levels alone decreased hazards for all-cause mortality and the
composite renal endpoint. In contrast, higher FT4 levels were
significantly associated with an increased hazard for all-cause
mortality. Moreover, we observed a significant association of
hypothyroidism and low-FT3 syndrome compared with euthyr-
oidism with the composite renal endpoint.

The prevalence of hypothyroidism in CKD cohorts is
reported to be higher than the prevalence of hypothyroidism in
population-based studies and indeed our findings in the GCKD
study are higher (�25%) than those from the German
population-based Study of Health in Pomerania (SHIP) (4.2%)
and Cooperative Health Research in the Augsburg Region
(KORA; �11.8%) studies [20], but comparable to other studies of
CKD Stages 3–5 patients, such as the Veterans Health Study [29]
(�25% hypothyroidism; different age, sex and ethnic composi-
tion). The prevalence of hyperthyroidism has been reported to
be the same for CKD patients as for the general population [30].
Our results were analogous to other population-based studies.
After restricting the GCKD dataset to participants not treated for
thyroid disorders, the prevalence of hyperthyroidism was
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FIGURE 1: Cumulative incidence function for the composite renal endpoint by quartiles of FT3 (n¼4600, Nevents¼615) in the analysis set. The number of patients at risk

per quartile over time is displayed in the adjacent table. FT3 quartile distribution: first quartile: 0.77–3.81 pmol/L; second quartile: 3.82–4.19 pmol/L; third quartile: 4.20–

4.57 pmol/L; fourth quartile: 4.58–15.5 pmol/L.

Table 4. Associations of TFMs and thyroid functional status with the
composite renal endpoint in the analysis set (N¼4600, Nevents¼615)

Model HR (95% CI) P-value

Single TFMa

TSH, log transformed 1.06 (0.96–1.16) 2.4e–01
FT4 1.01 (0.98–1.04) 7.4e–01
FT3 0.73 (0.65–0.82) 3.5e–07

Combined TFMb

TSH, log-transformed 1.06 (0.96–1.16) 2.6e–01
FT4 1.02 (0.99–1.04) 3.1e–01
FT3 0.73 (0.64–0.82) 3.1e–07

Euthyroidism versus Ref Ref
Hypothyroidism 1.59 (1.16–2.18) 3.4e–03
Hyperthyroidism 1.11 (0.85–1.44) 4.4e–01
Low-FT3 syndrome 2.15 (1.65–2.81) 1.7e–08
Undefined 1.48 (1.04–2.11) 2.8e–02

TSH, mU/L; FT4, pmol/L; FT3, pmol/L.

Per thyroid trait, Cox proportional hazards models were fitted and adjusted for

the baseline variables: age, sex, centre, eGFR, BMI, history of CVD, DM, UACR,

smoking, cholesterol. Significant P-values (P� 8.3e–03) are in bold.
aSingle TFM: TFMs are added to the regression model singularly.
bCombined TFM: all TFMs are entered together into the regression model.
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similar to that of the German population-based SHIP study [31,
32]. Since 21% of all GCKD patients were on thyroid hormone
substitution, we evaluated thyroid functional status for these
patients. It should be noted that for patients on thyroid hor-
mone substitution (n¼ 925), 26.1% had prevalent, iatrogenic hy-
perthyroidism by thyroid hormone constellation. Although we
could not detect a higher risk of reaching the composite renal
endpoint or death for hyperthyroid patients in our study, hyper-
thyroidism was previously related to increases in heart rate,
cardiac contractility, systolic and mean pulmonary artery pres-
sure, cardiac output, diastolic relaxation and myocardial oxygen
consumption [33]. A pathophysiological reason for this in-
creased number of hyperthyroid patients may be that T4 mono-
therapy of hypothyroidism often requires TSH-suppressive
doses of T4 for symptom elimination [34–36], which overlap
with symptoms of CKD (fatigue, memory and mood changes).
T4/T3 combination therapy may therefore be a superior treat-
ment regime for CKD patients since it mimics thyroid function
tests of healthy controls best and leads to more favourable
changes in serum cholesterol, N-terminal pro b-type natriuretic
peptide, sex hormone–binding globulin and procollagen type I
N-terminal propeptide, thereby indicating a more euthyroid
state in peripheral target tissues [37]. This may be of special in-
terest in CKD patients since, for example, cholesterol is one of
the target modifiable markers in CVD management [38].

In our study, we detected an association of lower FT3 levels
and low-FT3 syndrome with lower eGFR cross-sectionally, vali-
dating the reported associations of low T3 levels and low-FT3
syndrome with declining eGFR [14, 39] from two smaller retro-
spective studies of patients with severely reduced eGFR and
ESKD. Other cross-sectional findings are mostly available from
population-based studies and indicate an association between
higher TSH levels or hypothyroidism with lower eGFR [9, 29, 40,
41], which we did not observe in our cohort. Pathophysiological
mechanisms contributing to all of the above associations have
been reported for advanced CKD and are diverse, including a

reduced peripheral deiodinase activity [42], drugs (amiodarone,
steroids, b-blockers) [43, 44], accumulation of inorganic iodide
and uraemic toxins in combination with chronic metabolic aci-
dosis [45]. We tried to account for these factors wherever possi-
ble in the GCKD study (amiodarone use); nonetheless, these
factors already seem to play an essential role in patients with
moderate CKD.

Since T3 has been reported as a strong marker of survival in
uraemic patients, we evaluated the effect size of FT3 and other
thyroid traits on all-cause mortality in CKD patients. Yang et al.
[46] detected a more reliable association of low T3 levels with
mortality than FT4 in a small (n¼ 211), South Korean, CKD Stage
4 cohort with overt proteinuria, consistent with our findings.
Rhee et al. [29] investigated the association of TSH levels and
risk of death among 227 422 US veterans with Stage 3 CKD, but
FT3 levels were not measured. Here, high-normal and lower
TSH levels were associated with a higher risk of death. In our
study, we were able to analyse a full set of thyroid hormone
markers with mortality for patients with moderate CKD. We
were able to detect a significant association of lower FT3 and
higher FT4 levels with all-cause mortality, but not TSH. Future
interventional studies could clarify the potential benefits of T3
replacement therapy on mortality, especially since conversion
of T4 to T3 and the compensatory increase of TSH is impaired in
CKD and uraemia [47].

There are conflicting results on the longitudinal effect of hy-
pothyroidism, hyperthyroidism, low-FT3 syndrome and thyroid
hormones on eGFR. Some authors reported a negative impact of
hypothyroidism on eGFR [9, 48], but other investigators reported
that hypothyroidism could be described as rather beneficial for
the progression of CKD [41, 49, 50]. In experimental animal mod-
els, long-term hyperthyroidism may lead to incident CKD or
CKD progression [51]. Here, low T3 might serve as an adaptive
mechanism in order to slow the progression and the conse-
quences of CKD, but treatment of hypothyroidism in CKD
patients improves eGFR, renal function [52] and renal graft
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function [53]. Fan et al. [14] suggested low-T3 syndrome to be a
predictor of CKD progression. To clarify some of the raised
issues, especially for patients with moderate CKD, we set out to
analyse the association of a full panel of thyroid hormones with
eGFR and adverse renal events. In the GCKD study we were able
to detect higher UACR values for hypothyroid patients com-
pared with euthyroid patients, but the association of low-FT3
syndrome with hypothyroidism was only nominally significant,
most likely due to small case numbers for hypothyroidism. But
we were able to detect a highly significant association of lower
FT3 levels, hypothyroidism and low-FT3 syndrome with a
higher risk of developing adverse renal events over time, em-
phasizing the negative impact of low thyroid function on renal
function and adverse renal events, even in the early stages of
CKD, despite higher comorbidity rates for low-FT3 syndrome
patients, who may have other factors influencing this associa-
tion, such as infections. It should be noted that T4 monotherapy
is associated with low serum T3 levels and CKD patients are
known to have reduced iodothyronine deiodinase 2 (DIO2) activ-
ity [42], further impairing peripheral conversion of T4 to T3.
Moreover, the well-known DIO2 Thr92Ala single nucleotide
polymorphism has a higher prevalence in hypothyroid patients
(11.3%) than in the general population (10.7%) [54] and reduces
DIO2 activity and serum levels of T3 in thyroid-deficient
patients [55], a status that may hold true for CKD patients.
These issues might be resolved by prescription of T3–T4 combi-
nation therapy [37]. Hoever, trials in population-based studies
were unable to show a superiority of combination therapy ver-
sus T4 monotherapy [34–36], but no trials have been conducted
for CKD patients so far to clarify if this high-risk subpopulation
may benefit from T3–T4 combination therapy.

The strengths of our study include its large sample size of
CKD patients in an early phase of their disease course with a ho-
mogeneous ethnic background under standard nephrologist
care, ensuring a homogeneously treated, statistically powerful
cohort, as well as the use of standardized questionnaires to col-
lect all information and a standardized event abstraction pro-
cess, which reduces heterogeneity, the collection of detailed
medication information, a full thyroid marker panel and a reli-
able estimation of all biomarker measurements in certified
laboratories.

Our study has some limitations. The reported estimates of
the effects of TFMs on the different outcomes may still be bi-
ased due to residual confounding in the absence of knowledge
and data not available in the GCKD study, such as dietary io-
dine, chronic inflammation, protein-energy wasting and malnu-
trition. Furthermore, our results may not be generalizable to
other populations of different ethnicity or patients with normal
or highly reduced eGFR. Finally, repeated measurements of
TFMs over time were not available to study time-varying
effects.

In summary, patients with mild to moderate CKD suffering
from a high prevalence of thyroid function abnormalities are at
an increased risk of adverse renal events and all-cause mortal-
ity over time.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.
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