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Abstract

Background: We sought to enhance the cytometric analysis of myelodysplastic syn-

dromes (MDS) by performing a pilot study of a single cell mass cytometry (MCM) assay to

more comprehensively analyze patterns of surface marker expression in patients

withMDS.

Methods: Twenty-three MDS and five healthy donor bone marrow samples were

studied using a 34-parameter mass cytometry panel utilizing barcoding and internal

reference standards. The resulting data were analyzed by both traditional gating and

high-dimensional clustering.

Results: This high-dimensional assay provided three major benefits relative to traditional

cytometry approaches: First, MCM enabled detection of aberrant surface maker at high

resolution, detecting aberrancies in 27/31 surface markers, encompassing almost every

previously reported MDS surface marker aberrancy. Additionally, three previously

unrecognized aberrancies in MDS were detected in multiple samples at least one devel-

opmental stage: increased CD321 and CD99; and decreased CD47. Second, analysis of

the stem and progenitor cell compartment (HSPCs), demonstrated aberrant expression in

21 of the 23 MDS samples, which were not detected in three samples from patients with

idiopathic cytopenia of undetermined significance. These immunophenotypically abnor-

mal HSPCs were also the single most significant distinguishing feature between clinical

risk groups. Third, unsupervised clustering of high-parameter MCM data allowed identifi-

cation of abnormal differentiation patterns associated with immunophenotypically aber-

rant myeloid cells similar to myeloid derived suppressor cells.
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Conclusions: These results demonstrate that high-parameter cytometry methods that

enable simultaneous analysis of all bone marrow cell types could enhance the diag-

nostic utility of immunophenotypic analysis in MDS.

1 | INTRODUCTION

The myelodysplastic syndromes (MDS) are characterized by ineffec-

tive hematopoiesis, dysplasia, and peripheral blood cytopenias

(Greenberg et al., 2011; Greenberg et al., 2017). The clinical course is

heterogeneous with the disease evolving rapidly to acute myeloid leu-

kemia (AML) in some patients, whereas in others symptoms are mild

and patient survival is prolonged. Although well characterized at the

level of cytogenetic changes and gene mutations, the pathogenesis of

MDS still remains incompletely understood.

Using fluorescence-based flow cytometry, several previous stud-

ies demonstrated that the type and degree of immunophenotypic

aberrancy observed in MDS patient samples correlated both with

diagnostic subtype and with overall survival (Matarraz et al., 2010;

Maynadie et al., 2002). The European LeukemiaNet has recently

developed standardized criteria for the classification of MDS by flow

cytometry that encompasses many of these recent findings and pro-

vides a basis for the analysis of MDS by flow cytometry (Della Porta

et al., 2012; Westers et al., 2012). Our investigation extends these

studies by utilizing the novel technology of mass cytometry (MCM)

(Bandura et al., 2009; Bendall et al., 2011; Ornatsky et al., 2008;

Ornatsky, Baranov, Bandura, Tanner, & Dick, 2006; Razumienko et al.,

2008), simultaneously analyzing 33 metal-labeled antibodies to char-

acterize the immunophenotypic and functional variation of marrow

cell populations. Using this method, we evaluated up to 37 dimensions

per single cell in bone marrow samples from MDS patients, patients

with ICUS (Wimazal et al., 2007), and normal donors.

Mass cytometry is a recent innovation that enables the creation

of highly multiparametric data by conjugating antibodies against cell

surface and intracellular markers to atoms of heavy metal rather than

fluorophores. The binding of these antibodies to cells can then be

detected and quantitated by vaporizing and ionizing the cell and mea-

suring the amount of each heavy metal atom bound (along with its

conjugated antibody) to each cell by time-of-flight mass spectrometry

(ICP-MS). The much higher resolution of ICP-MS for detecting single

Dalton differences in atomic mass enables up to 50 measurement

channels per cell and could theoretically allow up to 120 channels.

The data generated in this study allowed for the creation of high-

dimensional models of aberrant hematopoietic development in MDS.

This approach was facilitated by our recent development of method-

ologies for the assessment clinical samples by mass cytometry with

barcoding techniques that permitted multiple samples to be stained

and analyzed with high precision (Behbehani et al., 2014; Zunder

et al., 2015). The results of these analyses suggest that simultaneous

analysis of all cell populations in the bone marrow of patients with

MDS can yield additional diagnostic and prognostic insights and could

allow for a more objective phenotypic classification of MDS.

2 | METHODS

2.1 | Antibodies

Antibodies, isotope conjugates, manufacturers, and concentrations

are listed in Table S1. Primary antibody transition metal-conjugates

were either purchased or conjugated using the MaxPAR antibody

conjugation kit (Fluidigm) according to the manufacturer's instruc-

tions. Following conjugation, antibodies were diluted to 100×

working concentration in Candor PBS Antibody Stabilization solu-

tion (Candor Bioscience GmbH) and stored at 4�C.

2.2 | Human samples

Fresh bone marrow aspirates were collected within 24 hr after aspiration

into heparinized tubes and fixed using a fixation/stabilization buffer

(Smart Tube, Inc.), according to the manufacturer's instructions and fro-

zen at −80�C for up to 36 months prior to analysis. Samples were col-

lected from patients at Stanford University Hospital undergoing routine

bone marrow aspiration and who provided informed consent to donate a

portion of the sample for tissue banking as part of a protocol approved

by the Stanford University Institutional Review Board in accordance with

the Declaration of Helsinki. The clinical characteristics of each patient are

shown in Table S2, with the risk-based clinical status of MDS patients

indicated by IPSS category and morphologic characteristics (Greenberg

et al., 1997). Five healthy control samples were obtained from Allcells,

Inc. using the same protocol. Normal bone marrow samples came from

three women and two men (ages: 38, 23, 23, 18, 41). Bone marrow cell

samples were thawed just prior to analysis in a 4�C water bath, and red

cells were lysed using a hypotonic lysis buffer (Smart Tube).

2.3 | Antibody staining

Prior to antibody staining, mass tag cellular barcoding was per-

formed as previously described (Behbehani et al., 2014; Zunder

et al., 2015) and detailed in Data S1. Barcoding allowed groups of

20 MDS and healthy control samples to be stained with surface

and intracellular antibodies in a single tube and simultaneously

analyzed by mass cytometry as a single mixed sample. Barcoded

cells were incubated with anti-surface marker antibodies in 2 ml

of cell staining medium (CSM; 1xPBS with 0.5% bovine serum

albumin and 0.02% sodium azide) for 50 min with continuous

mixing. Cells were washed twice with CSM, and surface anti-

bodies were fixed in place by a 15-minute incubation with 1.5%

paraformaldehyde (PFA; Electron Microscopy Sciences).
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Subsequently, after a 15-minute incubation at −20�C in methanol,

cells were washed once with PBS and CSM prior to incubation

with antibodies against intracellular signaling proteins for 50 min

at room temperature (Krutzik & Nolan, 2003). After completion of

antibody staining, cells were washed twice with CSM and then

incubated 12–36 hr in PBS with a 1:5000 dilution of the iridium

intercalator pentamethylcyclopentadienyl-Ir(III)-dipyridophenazine

(Fluidigm) and 1.5% paraformaldehyde. Excess intercalator was

then washed away and samples were run on a CyTOF™ mass

cytometer (Fluidigm) (Behbehani et al., 2015).

2.4 | Immunophenotypic aberrancy analysis

Aberrant immunophenotype analysis was performed by first gating

the normal populations into developmental immunophenotypic

subsets on the basis of standard surface markers (as in Figure S1).

MDS cells in each population were compared to the normal samples

across 31 surface markers. As normal healthy donor and MDS samples

were all stained and analyzed in the same tube simultaneously, the

same exact gates were used to identify immunophenotypic

populations from all samples. The median expression level of each

marker in each gated population from each patient sample was then

calculated. MDS sample aberrancy was defined as an MDS sample

median expression level greater than or less than the median of the

similar healthy bone marrow cell population plus or minus twice the

absolute variance of the healthy control samples. The summed num-

ber of markers with aberrant expression patterns was calculated for

each gated immunophenotypic population from each patient sample.

Statistical comparisons of median marker expression levels and popu-

lation frequencies between sample groups were performed with the

Mann–Whitney U test. This process is fully detailed in Data S1.

F IGURE 1 SPADE analysis enables detection of aberrant surface marker expression patterns. (a) SPADE plots of normal bone marrow sample
#6. SPADE clustering was performed on all samples (normal and MDS) simultaneously to generate a single tree structure for all samples. All of the
cell events from each sample were then mapped to the common tree structure. Each cell cluster (node) of the SPADE tree in (a) is colored for the
median expression of the indicated markers from low (blue) to high (red). (b) SPADE tree colored for the fold change in each cell node for each of

the indicated markers relative to the average of the eight healthy donor samples for the same node. Cell nodes in (b) are colored from lowest
expression relative to normal (blue) to highest expression relative to normal (red); yellow and light green colors indicate no change in expression
relative the average of the control samples. These can be compared to the normal samples shown in Figure S4. HR indicates higher-risk MDS
(IPSS of Int-2 or High) LR indicates lower-risk MDS (IPSS of low or Int-1). The eight replicate control samples came from five healthy donors. The
size of each node is correlated to the fraction of cells mapping to the node; however, a minimum size was enforced for most nodes to allow
visualization of node color. Immunophenotypic grouping of nodes was performed manually on the basis of the median marker expression level of
each node, and based on analysis of the relevant biaxial plots (e.g., CD38 vs. CD34) [Color figure can be viewed at wileyonlinelibrary.com]
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2.5 | Data analysis

Immunophenotypic assignments were based on previous studies

from our laboratory (Behbehani, Bendall, Clutter, Fantl, & Nolan,

2012; Bendall et al., 2011) and others (van Lochem et al., 2004). All

gating and extraction of median expression levels was performed

using Cytobank (www.cytobank.org). SPADE and viSNE analyses

were performed as previously described (el-AD et al., 2013; Qiu

et al., 2011), clustering markers are indicated in Table S1. Both ana-

lyses were performed using Cytobank; SPADE analysis was per-

formed on all analyzed events, while data files were sampled to

≤5,000 events each for viSNE analyses. K-means binning analysis of

CD34+CD38low cells was performed utilizing the same sampled cells

and same surface markers employed in the viSNE analysis. Binning

analysis of total cell populations was performed similarly on all cells

and the same surface markers using the K-mediods algorithm with

K = 100. X-shift clustering was performed in accordance with the

previously published methods (Samusik, Good, Spitzer, Davis, &

Nolan, 2016); briefly, 10,000 cells from each sample were sampled

from each MDS or controls sample and all sampled events were

pooled into a single X-shift analysis to generate minimum spanning

trees for each MDS and control sample. These analyses are further

described in Data S1.

3 | RESULTS

3.1 | Consistent immunophenotypic
measurements by mass cytometry

Thirty-one whole bone marrow aspirate samples were collected from

nine patients with higher-risk MDS (HR-MDS; IPSS = Int2/High/

RAEB-T), 12 with lower-risk MDS (LR-MDS; IPSS = Low/Int1), and

three patients with ICUS (a total of 26 samples from 24 patients). In

addition, five BM samples from normal donors were simultaneously

analyzed as internal reference comparisons (Table S2). Two similar

antibody panels incorporating 34 different antibodies were used for

analysis (Table S1). The staining panels included 31 markers of cell

surface proteins and three markers of intracellular signaling. All sam-

ples were barcoded, such that 20 samples (MDS and healthy) could be

combined into a single tube for simultaneous antibody staining and

analysis. These protocols produced highly reproducible measurements

of surface marker expression levels. Across replicates of the normal

samples, the average coefficient of variation (CV) was 11.9%, with

29 of the 31 evaluable antibodies having CVs of less than 20%

(Table S1) (Behbehani et al., 2014). These data are consistent with

prior studies (Bendall et al., 2011; el-AD et al., 2013; Han et al., 2015)

and confirmed that mass cytometry can be used with a high degree of

F IGURE 1 (Continued)
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reproducibility and accuracy for the analysis of clinical samples from

patients with MDS.

3.2 | High-dimensional characterization of surface
marker expression enables high-resolution aberrant
immunophenotype assessment

To perform immunophenotypic analysis of the mass cytometry data,

both traditional gating of cell populations based on standard surface

markers and SPADE high-dimensional clustering of the data were per-

formed using 19 of the surface markers. SPADE (spanning tree pro-

gression analysis of density normalized events) allows cells to be

grouped into clusters of immunophenotypically similar cells with each

cell cluster connected to its most related neighboring clusters across

all clustering dimensions and represented in a minimum-spanning tree.

The cell type corresponding to each cluster or group of clusters is

then manually annotated by analysis of the relevant surface markers

(e.g., CD3) of the cells in the cluster. The resulting SPADE analysis of

normal bone marrow yielded cell groupings (nodes) that corresponded

to commonly defined immunophenotypic subsets of normal hemato-

poietic development (Bendall et al., 2011; Qiu et al., 2011) and was

consistent across all of the healthy donors; an example from one

healthy donor is shown in Figures 1a and S2. As shown in Figure 1b,

the fold difference in each marker could then be compared between

each MDS sample and the healthy donors at each cell node. This

enabled visualization of 15 common, previously identified, aberrant

expression patterns (CD44, CD15, CD34, HLA-DR, CD11b, CD38,

CD33, CD117, CD45, CD64, CD99, CD16, CD7, CD56, CD123)

(Felzmann et al., 1993; Della Porta et al., 2012; Kern, Haferlach,

Schnittger, & Haferlach, 2010; Maynadie et al., 2002; Ogata et al.,

2002; Xie et al., 2010; Zhang et al., 2000) in samples from MDS

patients from both high- and low-risk patient groups. In addition, our

results demonstrated that aberrant increased CD321 and decreased

CD47 expression could also be observed in MDS (Figure 1b and S3).

Finally, we noted aberrant increased expression of CD99 in the ery-

throid progenitor populations in four of 11 samples from patients with

lower-risk MDS, an aberrancy not previously reported in low-risk

MDS (Figure 1b; and S3C). For comparison, the variance of each indi-

vidual normal sample to the average of all normal samples is shown in

Figure S4. Raw median intensity levels for each population are shown

in Table S3.

The simultaneous measurement of 31 markers also allowed analy-

sis of aberrant marker expression by manual gating of each

immunophenotypic population. Surface marker expression in MDS

samples was evaluated compared to normal samples by first gating cells

from the normal samples into immunophenotypic developmental sub-

sets based on standard surface markers (as shown in Figure S1). Of

note, the immunophenotypic analysis demonstrated the presence of a

dim-mid CD33+ population within the lin−CD34+CD38low cells, this

F IGURE 1 (Continued)
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population was gated separately as “CD33+MPP” cells as this level of

CD33 expression was significantly higher than the HSC population or

other MPP cells. Each population from each of the normal and MDS

samples was then compared across the 31 surface markers as shown in

Figure 2a. As the normal and MDS samples were stained and analyzed in

the same tubes simultaneously, levels of each surface maker in each of

30 immunophenotypic cell populations of each patient sample could be

reliably assessed. The summed number of markers (of the 31) with aber-

rant expression levels was calculated for each gated immunophenotypic

population in each patient sample (a summary of aberrancies is shown in

Figure 2b). Immunophenotypic aberrancies were detected at every stage

of myeloid development, spanning from HSCs to mature myeloid

populations in almost all MDS samples. In the majority of patients, aber-

rancies were also detected in most nonmyeloid immunophenotypic

populations (including B, T, and NK cells), suggesting that MDS has

wide-ranging effects in the bone marrow. In total, changes in at least

one gated HSPC or myeloid population in at least one sample were

noted for 27 of the 31 surface markers in the panel (Tables S4 and S5).

As shown in Table S4, the markers with aberrant expression varied by

cell population, with marker aberrancies generally found in the cell

populations that normally express each marker. The most specific

changes were noted in the hematopoietic stem and progenitor cell com-

partments (HSC, MPP, CD33+MPP, and CMP/GMP) where all MDS

samples had at least one abnormality in one of these populations, while

only one sample from a patient with a ICUS (ICUS18; Figure 2b)

exhibited a single abnormality in the CMP/GMP population (Figure 2b

and Tables S4 and S5). These findings suggest that high parameter mass

cytometry could potentially be much more sensitive than traditional flow

cytometry approaches for MDS diagnosis.

3.3 | Aberrant MDS immunophenotypes could be
detected with multiple analysis approaches

The immunophenotypic aberrancies detected by mass cytometry

could be detected regardless of the approach used to analyze the

MCM data. Almost all changes noted in the manual gating analysis

(Figure 2) could also be noted in the SPADE clustering (Figures 1 and

F IGURE 2 Systematic detection of multiple small aberrancies defines large immunophenotypic changes across hematopoiesis in patients with
MDS. (a) Method for defining aberrant marker expression. All immunophenotypic gates were defined on the basis of the normal samples and the
same gates were applied to the each of the MDS samples. Once each population was gated, the median expression of each of the 31 surface
markers was extracted and compared to the median expression in the eight samples from five healthy donors for each gated population. MDS
samples that were outside twofold the total variance of the normal samples were considered to be aberrant for that marker (CD117 is shown as
an example). (b) The total number of aberrant markers (of 31 measured markers) was summed for each population and each patient. Each box is
colored for the number of the 31 markers that was aberrant for each patient (rows) in each gated immunophenotypic population (columns). The
color scale ranges from green indicating no aberrant marker expression to the highest numbers of aberrancies colored red. The exact number of
aberrant markers expressed (of the 31 tested) is printed in each box. The high rates of aberrancy observed in the pre-B cell population may be
due in part to contamination of this gate with dimly CD19-positive malignant myeloid cells due to the limited number of markers defining this
immunophenotypic subset (CD19 and CD10) and to the relatively dim staining of these antibodies in normal cells. Because the normal reference
range used for this analysis was larger than the absolute variance of the healthy donor samples; no aberrancies were observed in the healthy
donor control samples by definition. Note that samples MDS3, MDS13, and MDS21 come from serial biopsies of the same patient (each several
months apart) and demonstrate consistent properties [Color figure can be viewed at wileyonlinelibrary.com]
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S3). These same abnormalities could also be appreciated in a completely

independent clustering approach based on Voronoi clustering as previ-

ously described (Samusik et al., 2016). This approach, known as X-shift,

uses weighted K-nearest neighbor density estimation to find local den-

sity maxima, which then become the basis for the clustering as shown

in Figure S5. Similar to the SPADE and manual gating approaches, once

cell events were organized into immunophenotypic clusters, abnormal

increases or decreases in surface marker expression could be readily

detected with much higher sensitivity. Almost all abnormalities could be

defined in each of the three approaches (manual gating, SPADE cluster-

ing, and X-shift clustering).

Finally, we performed a manual analysis of our gated mass cyto-

metry data in using an approximation of the European LeukemiaNET

recommendations (Della Porta et al., 2012; Westers et al., 2012) as

shown in Table S6. Performing this analysis required significant modifica-

tion, as side scatter is not measurable by mass cytometry, these modifi-

cations are detailed in Data S1. Using this approach, 19 of the 23 MDS

samples demonstrated abnormalities in two or more of the approximated

parameters. These comparisons demonstrate that abnormal surface

marker expression patterns detected by mass cytometry are not

restricted to the approach used to analyze the data, and can be detected

by a variety of novel and established analysis approaches.

3.4 | MDS stem and progenitor cells exhibit
abnormal high-dimensional immunophenotypic
patterns

Further analyses were focused on the stem and progenitor cell com-

partment (HSC, MPP, CD33+MPP), in which 21 of 23 MDS samples

exhibited at least one aberrancy (average = 2.7) in one of the three

populations. By contrast, no aberrancies were detected within these

populations in the three samples from patients with ICUS. In addition

to analysis of the total number of immunophenotypic aberrancies,

specific aberrancies were more frequently found in patients with

higher-risk MDS. These aberrancies were particularly informative in

the immunophenotypic hematopoietic stem and progenitor cell

(HSPC) compartment (lin−CD34+CD38low). Significant increases

(~twofold) in median expression of CD117 (p = .007) and HLA-DR

(p = .02) were shown when comparing HSPCs from all MDS samples

F IGURE 2 (Continued)
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to the HSPCs from healthy donor samples. MDS HSPCs also exhibited

a (~40%) decrease in CD34 expression (p = .002) as compared to

healthy donor HSPCs. Differences in CD117, HLA-DR, and CD34

were also demonstrated as aberrant expression patterns within gated

immunophenotypic populations of cells (outside fourfold the variance

of normal) in 11/23, 13/23, and 16/23 samples, respectively. Compar-

ison of marker expression within the HSPCs between patients with HR-

MDS and LR-MDS also revealed significant differences (Figure S6). HR-

MDS HSPCs (lin−CD34+CD38low) were characterized by a ~twofold

increase in CD99 compared to LR-MDS (p = .0018) and a ~threefold

decrease in CD45 compared to LR-MDS (p = 8.8 × 10−5; Figure S6).

Differences in CD99 and CD45 could also be appreciated as aberrant

expression patterns in 4/11 and 6/11 of the HR-MDS samples, respec-

tively. Analysis of aberrancy in CD117, HLA-DR, CD34, CD45, and

CD99 were sufficient to identify at least one aberrancy in 21 of the

23 samples, suggesting that these markers would be the best candidates

for inclusion in smaller cytometry panels (Tables S4 and S5). Three other

markers, CD44, CD47, and CD321 were also commonly abnormal in

the MDS HSPC population (aberrantly expressed in 11, 8, and 7 sam-

ples, respectively); however, these markers were variably either high or

low in MDS or (in the case of CD321) altered in a smaller fraction of

cells and thus not statistically different in MDS as a whole (Figure 2b

and S6, and Tables S3, S4, and S5).

In order to simultaneously view and compare the entire aberrant

expression pattern within the HSPC populations as a function of MDS

risk, a visualization tool called viSNE was utilized. ViSNE is a modifica-

tion of t-SNE (t-stochastic neighbor embedding) that employs a

nonlinear, iterative process of single cell alignment to minimize the

multidimensional distance between events and represents the high-

dimensional distribution of cell events in a two-dimensional map

(el-AD et al., 2013; van der Maaten & Hinton, 2008). The HSPC popu-

lation (lin−CD34+CD38low) of each sample was analyzed along with

the five healthy donor samples. Healthy donor samples exhibited a

consistent localization on the viSNE plot and patients with low-risk

MDS consistently demonstrated viSNE patterns with small differences

compared to healthy controls. Samples from patients with the RA-RS

MDS subtype were most similar to the viSNE patterns exhibited by the

control samples (Figure 3). By contrast, most patients with Int-1 and all

patients with higher-risk MDS exhibited viSNE patterns that were

clearly different from the healthy donor samples (Figure 3). These

F IGURE 3 viSNE analysis of CD34+CD38low subset reveals distinct immunophenotypic patterns in high-dimensional space. Each sample was
analyzed by viSNE (up to 5,000 sampled events per individual) using 19 dimensions (Table S1). A gate (light blue line) encompassing the vast
majority of normal CD34+CD38low events is shown for reference. The MDS subtype and sample is indicated for each viSNE map. Each cell event
is colored for its expression level of CD38 from blue (0 ion counts) to red (approximately 40 ion counts). Red cell events still fall within the
CD34+CD38low gate and demonstrated dim CD38 expression. Note that samples MDS3, MDS13, and MDS21 come from serial biopsies of the
same patient (each several months apart) and demonstrate consistent properties [Color figure can be viewed at wileyonlinelibrary.com]
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differences in HSPC immunophenotype were confirmed by an indepen-

dent multidimensional binning approach (Figure S7) that also demon-

strated that the HSPCs from samples of healthy controls and two of the

three patients with ICUS clustered together in a region of the dendro-

gram distinct from the MDS samples. To further assess the relevance of

these global differences in surface marker expression pattern, the sum

total fold increase in median expression relative to normal was calcu-

lated for the HSPC population (as detailed in Data S1) and this sum was

compared to survival for the 11 patients (13 samples) for whom survival

endpoints have been reached. The sum total of HSPC marker abnormal-

ity was inversely correlated with survival time from biopsy R = −.56

with a p < .05, supporting that metrics of surface marker expression in

the HSPC population could have relevance for monitoring clinical dis-

ease progression in MDS (Figure S8), as has been seen in other

cytometric analyses of MDS (Kern et al., 2010).

3.5 | Patterns of cell frequency distribution
correlate with clinical risk and allow for automated
classification

The distribution of cell frequencies across the immunophenotypic

populations (by SPADE analysis or manual gating) demonstrated

that the pattern of cell frequencies throughout development was

correlated with the clinical risk of each patient (Figure 4). The most

significant single distinguishing feature between clinical risk groups

was the increased frequency (>40-fold) of immunophenotypic

HSPCs in HR-MDS compared to LR-MDS (p = 9 × 10−7) or normal

(p = 6.3 × 10−6). Furthermore, this high-parameter analysis

detected a > 12-fold increase in the HSPC frequency in two

patients with IPSS Int-2 disease with blast frequencies of <5% fol-

lowing therapy (MDS#21 and MDS#27), similar to a previous study

using fluorescent flow cytometry (Will et al., 2012). The frequency

of cells in each SPADE cluster was then used to perform a hierar-

chical clustering of the global cell distribution across development

in all samples. This approach clustered patients into groups with

different clinical risk as shown in Figure 5. As this analysis was

based on the simultaneous analysis of all 19 surface markers uti-

lized in the clustering and on all cells in each sample, the results

were stable across a variety of perturbations. For example, remov-

ing data regarding the expression of CD34 did not reduce the abil-

ity of the clustering analysis to group similar risk sample together,

and resulted in a nearly identical hierarchical tree, demonstrating

the robustness of this analytic approach (Figure 5). Again, an inde-

pendent binning analysis of all cell events resulted in a similar hier-

archical tree (Figure S9).

F IGURE 3 (Continued)
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3.6 | Modeling of aberrant differentiation in MDS

As these results suggested that analysis of global differentiation

changes may be a diagnostically useful parameter in MDS, viSNE

was used to assess cell immunophenotype across the developmental

progression from HSCs to both mature granulocytes and mature

monocytes by manually removing all cell events expressing antigens

of nongranulocyte or nonmonocyte lineages (respectively) and

aligning the remaining cells in single viSNE analysis of both lineages.

The approach is outlined in Figure S10. By using gated populations

of healthy donor cells at each defined immunophenotypic stage of

development, this approach allows for the characterization of the

high dimensional aberrations in MDS cell immunophenotype that

occur during the progression of hematopoiesis. As shown in

Figure 6, developmental progression is relatively normal in low-risk

MDS, where a relative reduction in the frequency of committed pro-

genitors and fully differentiated cells in the monocyte and granulo-

cyte lineages is the most prominent finding. By contrast, in higher

risk MDS samples (IPSS Int-2 and high) cell development frequently

occurred along an abnormal path intermediate between

granulocytes and monocytes with a relative or even absolute

absence of normally differentiated granulocytes and monocytes

(Figure 6). This developmental path ended in a population of

immunophenotypically aberrant myeloid cells (IAMCs) that could

also be identified by manual gating (Figure S1) and were character-

ized by expression of CD64, CD11b, CD44, CD45, CD45RA (all at

moderate levels) and the near complete absence of HLA-DR (<10%

the intensity of monocyte expression), and lack of CD14 and CD15

(Figure S11 and Table S7). This phenotype is potentially consistent

with myeloid derived suppressor cells; however, this mass cytometry

assay panel was not capable of further functional characterization.

These IAMCs were rare in the healthy donor samples (0.48% on

average) while 10 of the MDS samples exhibited these cells at a fre-

quency of >2.5% and 5 MDS samples had a frequency of greater

than 10% (Figure S12). Patients with higher-risk MDS (RAEB-T/

AML, IPSS-High, and IPSS-INT-2) demonstrated an increase in the

frequency of this cell population compared to the healthy donors

(p = .012) or patients with lower-risk MDS (IPSS-Low and IPSS-Int-

1; p = .029). This type of progression modeling represents another

objective and potentially automatable approach enabled by high

dimensional cytometry that could further improve the recognition of

abnormal hematopoietic development in patients with MDS.

F IGURE 4 Distribution of cell frequency across hematopoietic development correlates with MDS risk. (a) SPADE tree colored for the fraction
of total cells in each node from lowest (blue) to highest (red). The size of each node is correlated to the fraction of cells mapping to the node;
however, a minimum size was enforced for most nodes to allow visualization of node color. (b) The frequency of cells in the indicated (manually
gated) stem and progenitor cell compartments for patients of each MDS risk group. Error bars indicate standard errors of the means. Asterisk
denotes the eight replicate normal samples came from five donors [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

4.1 | Mass cytometry enables high-dimensional
characterization of aberrant marker expression
in MDS

This first application of MCM for the analysis of MDS detected all

major established aberrant expression patterns in MDS, as well as

novel aberrant expression patterns of CD321, CD99, and CD47.

Importantly, using high-parameter single-cell analysis and internal nor-

mal reference samples, we detected deviations from the

immunophenotypic boundaries of normal hematopoiesis in every ana-

lyzed MDS sample and in at least one sample for 27 of 31 markers

tested. The detected abnormalities found in this mass cytometry data

were not specific to any single data analysis approach but were

detected by (a) manual gating with comparison to normal samples,

(b) SPADE clustering with comparisons of each MDS cell cluster to

the normal cells in the same cluster, (c) X-shift density maxima cluster-

ing with comparison of each density-derived cluster of MDS cells to

the normal cells of the same cluster. The high degree of similarity in

the results of these independent analytic approaches strongly sug-

gests that the high sensitivity of mass cytometry for detecting abnor-

malities in MDS is a property of simultaneously measuring a large

number of surface marker parameters and not simply the result of a

specific approach used to analyze the resulting data.

The HSPC cell compartment appeared to be particularly useful

for assessment of immunophenotypic aberrancies. This cell compart-

ment was immunophenotypically normal in all three patients from our

cohort with ICUS, and was abnormal (by one or more of the high

dimensional analyses) in 21 of 23 samples from patients with MDS

(Figures 1 and 2 and Figures S5 and S6). The most useful markers

were CD117, HLA-DR, CD34, CD45, and CD99, which were consis-

tently high or low in MDS, while CD44 and CD47 were commonly

abnormal but could be either high or low in any one MDS sample

(Figure 1, Figure S3, Tables S3, S4, and S5). High dimensional analysis

likely exhibits this additional sensitivity for detection of

immunophenotypic variations because of the ability to group cells into

developmentally similar immunophenotypic clusters, thereby allowing

comparisons to be made across developmentally similar MDS and

control cell populations. A similar increase in the sensitivity of aber-

rant marker detection was found in our previous mass cytometry

studies of AML (Behbehani et al., 2015), and a recent report noted

improved prognostic accuracy of gene expression profiling when anal-

ysis was performed based on the differential expression patterns

between AML populations and developmentally similar normal cells

(Rapin et al., 2014).

F IGURE 4 (Continued)
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4.2 | High-dimensional analysis detects altered
developmental patterns characteristic of MDS

The measurement of all surface markers simultaneously on all cells

enabled an extremely detailed analysis of hematopoietic development

in MDS through the use of high-dimensional clustering of all bone

marrow cells from each sample. This clustering demonstrated consis-

tent distributions of normal cell frequencies across each

immunophenotypic cluster in healthy donors. Changes in these fre-

quency distributions (across immunophenotypic stages of develop-

ment) could then be analyzed by comparing the cell frequency

distributions of the MDS and healthy donor samples. These analyses

demonstrated that every patient with MDS in this cohort exhibited an

alteration in how cell frequencies were distributed across these

immunophenotypic populations. This effect could be observed when

clustering was performed on the basis of the SPADE analysis

(Figure 5) or on the basis of a multidimensional binning approach

(Figures S7 and S9). These frequency differences were greatest in

patients with the highest risk disease, and could potentially be used to

classify clinical risk or disease subtype as has previously been reported

for blast cell populations in patients with MDS (Maynadie et al., 2002)

(Will et al., 2012).

Importantly, the utility of this holistic clustering appeared to

derive from the relationship of all of the cells to one another, and

appears to be independent of any one cell surface marker, such as

CD34 (Figure 5). This approach is fundamentally different than most

common approaches for the use of flow cytometry in the diagnosis of

MDS, in which the marker expression or frequency of specific small

cell subsets such as B cell progenitors or myeloblasts is utilized for

diagnosis (Della Porta et al., 2012; Maynadie et al., 2002; Westers

et al., 2012). In this regard, a major potential advantage of high-

dimensional cytometry analysis (and clustering of the resulting data)

was that every cell from each patient sample could be placed into a

single cluster and is represented only once in the analysis. This made

the clustering less sensitive to any one individual marker and

increased the informational utility of cells that did not bind particular

F IGURE 5 Clustering of cell frequency across SPADE nodes in MDS and control samples groups control samples and MDS samples into
groups of similar clinical risk. SPADE analysis of total events from each MDS and control sample was performed, and the frequency of cell events
within each cluster was extracted from the resulting SPADE trees. The cell frequency by node was then entered into a biaxial clustering analysis
(similar to gene expression array analysis). A portion of the cell frequency heat map is shown, each row represents the relative cell frequency in
the indicated SPADE node for each sample (columns). Red indicates higher cell fractions and green lower cell fractions. The dendrogram at the
top of the figure demonstrates how the different MDS and control samples grouped together. Each sample is colored by its clinical risk as
indicated. The analysis was performed once with CD34 used for generation of the SPADE tree and then again with CD34 ignored during SPADE
tree generation. In both analyses, patients with higher clinical risk cluster further from the normal samples. Note that samples MDS3, MDS13, and
MDS21 come from serial biopsies of the same patient (each several months apart) and demonstrate consistent properties [Color figure can be
viewed at wileyonlinelibrary.com]
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markers (because even cells negative for most or all markers clustered

into distinct groups). This also allowed the analysis to be performed in

an unsupervised manner, as the formation of clusters does not require

human interpretation of the data and (if performed on a sufficiently

large scale) abnormal samples could potentially be identified on an

automated basis by comparing a given test sample's frequency distri-

bution to that of many other known MDS and normal samples. Addi-

tionally, the use of an unbiased, high-dimensional approach allowed

identification of an immunophenotypically aberrant myeloid cell popu-

lation with a phenotype similar to MDSCs identified by other

researchers in patients with MDS (Kittang et al., 2016; Wei et al.,

2009). The observation that these cells appear to develop along an

aberrant differentiation trajectory (Figure 6 and Figure S11) is poten-

tially consistent with other models of MDSC ontogeny (Pyzer et al.,

2017) and was not an a priori expectation of the analysis.

4.3 | Role of high-dimensional cytometry in MDS

While recent flow cytometry analysis approaches are sensitive and

moderately specific for MDS (Della Porta et al., 2012), the results

presented here suggest that the use of high-dimensional cytometry

approaches could potentially enhance both the sensitivity and speci-

ficity of cytometry in MDS diagnosis. Consistent with earlier

reports,(Will et al., 2012) our work suggests that a focus on HSPC cell

marker aberrancy (enabled by the simultaneous measurement of

CD34, CD38, and lineage markers) combined with the use of internal

cell controls can sensitively detect MDS. Additionally, we demonstrate

that use of high parameter clustering analyses can enable a global

modeling of differentiation, which is likely to also be predictive of

MDS subtype and outcome as had been suggested by earlier studies

(Maynadie et al., 2002). Our findings strongly suggest that high

parameter cytometry combined with global analysis approaches could

enhance the diagnostic utility of cytometry in MDS. However, the

results presented here remain preliminary and validation of this

approach for MDS diagnosis and characterization will require much

larger patient cohorts with age-matched healthy donors and patients

with ICUS, as were previously used to characterize other flow

cytometric diagnostic approaches (Della Porta et al., 2012). We

believe that this preliminary report strongly suggests that such studies

are warranted. The data presented here lay a foundation and a strong

rationale for design of larger studies that could develop mass cyto-

metry or high dimensional fluorescent flow cytometry as a tool for

such analyses in MDS.
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