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Abstract The gut is an important target organ for stress

caused by severe insults such as sepsis, trauma, burn,

shock, bleeding and infection. Severe insult to the gut is

considered to have an important role in promoting infec-

tious complications and multiple organ dysfunction syn-

drome. These are sequelae of interactions between

deteriorated intestinal epithelium, the immune system and

commensal bacteria. The gut is the ‘‘motor’’ of multiple

organ failure, and now it is recognized that gut dysfunction

is a causative factor in disease progression. The gut flora

and environment are significantly altered in critically ill

patients, and the number of obligate anaerobes is associated

with prognosis. Synbiotic therapy is a combination of

probiotics and prebiotics. Probiotic, prebiotic and synbiotic

treatment has been shown to be a promising therapy to

maintain and repair the gut microbiota and gut environ-

ment. In the critically ill, such as major abdominal surgery,

trauma and ICU patients, synbiotic therapy has been shown

to significantly reduce septic complications. Further basic

and clinical research would clarify the underlying mecha-

nisms of the therapeutic effect of probiotic/synbiotic

treatment and define the appropriate conditions for use.
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Introduction

The gut is an important target organ for various kinds

of stress caused by severe insult such as sepsis, trauma,

burn, shock, bleeding and infection [1]. Severe insult to the

gut is considered to have an important role in promoting

infectious complications and multiple organ dysfunction

syndrome. These infectious complications and organ dys-

functions are related to factors including deteriorated

intestinal epithelium, the immune system and commensal

bacteria [2]. The gut is the ‘‘motor’’ of multiple organ

failure, and now, gut dysfunction is recognized as a caus-

ative factor in the progression of diseases. However, nei-

ther the guidelines of the nutrition field nor those for the

Surviving Sepsis Campaign have yet described a standard

digestive tract treatment. Characterization of the intestinal

microbiota and how alterations in the composition of the

intestinal microbiota may be related to various clinical

complications in critically ill patients is needed to provide

a basis for such therapeutic recommendations [3, 4]. This

review article summarizes some of the clinical findings on

the characterization of the intestinal microbiota and the

clinical outcomes of the application of probiotic and syn-

biotic therapy in intensive care unit (ICU) patients.
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Gut Microbiota and Gut Immunity

The gut is the largest immune organ of the human body.

The gut defense function involves three main components:

intestinal flora, intestinal epithelium and the immune sys-

tem in the gut [5]. The intestinal microbiota is widely

acknowledged to play an important role in human health

[6, 7]. Commensal gut flora has important and specific

functions in metabolism, nutrition and protection against

pathogens. The equilibrium between species of indigenous

bacteria provides stability of the microbial population and

maintenance of health within an individual under normal

conditions. Distortions in the composition of this bacterial

community or impaired homeostasis are often associated

with pathological conditions. Previous animal studies have

also shown a very low incidence of bacterial translocation

when obligate anaerobes are maintained in the gut, sug-

gesting that obligate anaerobic bacteria are the principal

inhibitors of bacterial overgrowth and translocation of

Escherichia coli and other potentially pathogenic bacteria

[8]. This phenomenon is called ‘‘colonization resistance’’

[9]. The decreased obligate total anaerobic bacteria count

could lead to decreased intestinal resistance to pathogens in

critically ill patients.

The immune system in the gut (the gut-associated

lymphoid tissue, GALT) is integral to the protection of the

host because of its ability to distinguish between harmless

antigens (food, commensal bacteria) and potential patho-

gens or harmful substances, as well as its influence and link

with the systemic arm of the immune system [10, 11].

Maintaining the balance of gut flora is an important activity

of the immune system and vice versa. Recent studies have

shown that the human intestinal microflora contains at least

100 times as many genes of bacteria as the human genome

and that humans can be ‘‘superorganisms,’’ whereby

metabolism involves an amalgamation of microbial and

human activities [12]. In this mutualistic relationship, there

is immunological tolerance of many bacteria. In return, the

commensal flora promotes colonization resistance against

invasive pathogenic microbes. The importance of com-

mensal gut flora to the immune system is exemplified by

the recently developed germ-free mouse model. These

mice not only have smaller Peyer’s patches and lamina

propria but also a decrease of T cell and many other

immune functions [13]. The role of the microbiota in the

immune system has recently become better understood. I-

vanov et al. [14] revealed that segmented filamentous

bacteria induce Th17 cells. Atarashi et al. [15] revealed

that Clostridium induces regulatory T cells. Dysbiosis of

these bacteria may affect autoimmune diseases in animal

studies [16]. Thus, the gut microbiota would help to shape

the balance of immune regulatory (Treg) and proinflam-

matory (Th17) cells and modulate the immune status for

the adaptive immune system [17]. These reports indicate

that commensal gut bacteria have an important role in

maintaining homeostasis. The delicate balance of com-

mensal gut flora can be disrupted by invasive microor-

ganisms that elicit a strong innate immune response

resulting in an inflammatory reaction that leads to

destruction of the intestinal barrier [18]. Impairment of the

GALT can lead to increased susceptibility to infection,

auto-immunity, allergy and excessive inflammation.

Short-chain fatty acids (SCFAs) consist of acetic, pro-

pionic and n-butyric acids with 2–4 carbon atoms [19].

Anaerobic metabolism of peptides and proteins by the

microflora produces SCFAs that all have important func-

tions in host physiology. SCFAs production by intestinal

bacteria is regulated by many different host-related, envi-

ronmental, dietary, and microbiological factors, such as

substrate availability, bacterial species and composition of

the microbiota [20]. SCFAs are utilized mainly by intes-

tinal epithelial cells as energy substrates, and some are

absorbed into the portal flow to the liver and utilized as

systemic energy sources. They also affect the motility of

the intestinal tract and increase intestinal blood flow.

Especially, butyrate plays an important role in gene

expression and possesses anti-inflammatory activity (e.g.,

inhibition of NF-jB, IL-12, and TNF-a) and increases in

IL-10 [21]. SCFAs bind to the G-protein-coupled-receptor

43 (GPR43). Maslowski et al. [22] reported that GPR43-

deficient mice showed exacerbated inflammation in models

of colitis, arthritis and asthma. The stimulation of GPR43

by SCFAs therefore affects inflammatory response.

Gastrointestinal pH also has a significant impact on

bacterial flora, absorption of vitamins and electrolytes and

the activity of digestive enzymes [23]. In the stomach, the

pH ranges from 1 to 3.5 during fasting, whereas ingestion

of food, milk, or antacids may briefly increase pH to

approximately 7. In the small intestine, pH increases to

5.5–6.5. This alkalization is probably due to secretion of

bicarbonate and bile acids. The pH in the ascending colon

is relatively low at around 5.6. This decrease from the

ileum is mostly due to bacterial fermentation of non-

digestible carbohydrates to SCFAs, which are weak acids.

This change is caused by bicarbonate secreted into the

colon in exchange with the uptake of SCFAs.

Characterization of Gut Microbiota and Prognosis

in Severe Systemic Inflammatory Response Syndrome

Patients: A Possible Prognostic Indicator

for Complications?

Systemic inflammatory response syndrome (SIRS) is

defined as the presence of two or more of the following

conditions: abnormal body temperature, heart rate,

24 Dig Dis Sci (2013) 58:23–32
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respiratory rate and white blood cells counts [24]. SIRS is

not a specific disease, but a syndrome that develops various

kinds of critical illness. Some of the possible mechanisms

have been developed from the viewpoint of gut pathobi-

ology. First, bacterial translocation due to the loss of gut

barrier function can cause systemic effects from bacteria

and related toxins. Second, intestinal lymphatic mediators

can cause excessive activation of neutrophils, endothelial

injury and organ damage [25]. Third, gut immunity plays

an important role in causing the imbalance between sys-

temic inflammation and anti-inflammation [26].

Under conditions of critical illness, it is difficult to

maintain normal gut flora. This is due not only to disease

stresses such as trauma and burn but also to various inva-

sive treatments, such as histamine H2 receptor blockers for

bleeding prevention, catecholamines for blood pressure

control, broad-spectrum antibiotics for target bacteria and

mechanical respirators. Shimizu et al. [27] quantitatively

evaluated the gut microflora and environmental changes in

patients with severe SIRS. As shown in Table 1, severe

SIRS patients had 100–10,000 times fewer total anaerobes,

including ‘‘beneficial’’ Bifidobacterium and Lactobacillus,

and 100 times more ‘‘pathogenic’’ Staphylococcus bacteria

compared with healthy volunteers. These data demon-

strated the disturbed balance of gut flora in critically ill

patients. Total organic acids, acetic acid and butyric acid

were significantly decreased in the SIRS patients when

compared with healthy volunteers (Table 2). Butyrate, in

particular, was almost diminished in the gut in critically ill

conditions. Fecal pH was markedly increased in patients

with severe SIRS in comparison with healthy volunteers

(P \ 0.05). These results showed the deterioration of the

gut environment in the progression of SIRS.

Of the many kinds of bacteria in the gut, the dominant

factors for mortality were the numbers of total obligate

anaerobes and total facultative anaerobes. In addition to the

increase in pathogenic bacteria, the alteration of normal gut

flora could be of great importance for the development of

septic complications and mortality (Fig. 1). These results

suggest that not only antibiotics but also probiotics that

target normal gut flora would be an appropriate treatment

[28]. Notably, in some clinical studies, the gut flora was

maintained and improved by the administration of

Table 1 Fecal flora in patients with severe systemic inflammatory

response syndrome (SIRS)

Fecal flora SIRS patients Normal

Total obligate anaerobes 8.3 ± 2.3* 10.5 ± 0.5

Bacteroidaceae 7.3 ± 3.0* 10.1 ± 0.4

Bifidobacterium 4.8 ± 3.3* 9.6 ± 0.7

Clostridium 2.1 ± 1.0 2.1 ± 0.7

Veillonella 3.1 ± 1.8* 7.0 ± 1.2

Total facultative anaerobes 7.8 ± 1.4 7.5 ± 0.4

Lactobacillus 2.7 ± 1.5* 5.0 ± 1.0

Enterobacteriaceae 4.1 ± 2.7* 7.4 ± 0.8

Enterococcus 6.4 ± 2.5 7.0 ± 0.9

Staphylococcus 5.3 ± 1.7* 2.7 ± 0.8

Pseudomonas 2.8 ± 1.4* ND

Candida 2.5 ± 1.0 2.0 ± 0.5

ND not detected, SD standard deviation

Log10counts/g feces. Data is given as mean ± SD

* P \ 0.05 versus normal;

Table 2 Fecal organic acid concentrations and pH in patients with

severe systemic inflammatory response syndrome (SIRS)

Organic acids SIRS patients Normal

Total organic acid 30.3 ± 20.3* 88.4 ± 21.2

Succinic acid 2.0 ± 2.5 0.9 ± 1.2

Lactic acid 3.8 ± 5.5 0.5 ± 0.3

Formic acid 1.7 ± 2.9 0.4 ± 0.3

Acetic acid 18.7 ± 15.9* 50.8 ± 13.1

Propionic acid 2.5 ± 4.6* 18.7 ± 6.8

Isobutyric acid 0.1 ± 0.5 1.1 ± 0.3

Butyric acid 0.9 ± 2.3* 16.6 ± 6.7

Isovaleric acid 0.5 ± 1.9 1.4 ± 0.7

Valeric acid 0.1 ± 0.7 0.6 ± 0.4

pH 7.4 ± 0.6* 6.6 ± 0.3

SD standard deviation

Organic acid (l mol/g feces). Data as mean ± SD

* P \ 0.05 versus normal

Fig. 1 Mortality partitioned by total obligate anaerobes, total facul-

tative anaerobes, and age using CART. Mortality is partitioned by the

number of total obligate anaerobes 9.4 (log10CFU/g). In addition,

mortality is partitioned 88 and 17 % by the number of total facultative

anaerobes 8.0 (log10CFU/g). CART classification and regression trees,

CFU colony-forming unit

Dig Dis Sci (2013) 58:23–32 25

123



probiotics and synbiotics [29, 30]. These clinical changes

were observed by anaerobic culture, RT-PCR and genome

sequence methods [31, 32]. Gram-stained fecal bacteria

can also be used as a quick bedside diagnostic marker for

severe SIRS patients [33].

Effects of Probiotic/Synbiotic Therapies in Severe

Disease

Definition of Probiotics, Prebiotics, and Synbiotics

Probiotics are defined by the FAO/WHO as live microor-

ganisms, which when administered in adequate amounts,

confer a health benefit on the host and are widely used as a

live microbial food supplement that can improve the intes-

tinal microbial balance [34]. Probiotics, most commonly

Lactobacillus and Bifidobacterium, have been shown to

exert preventive effects in various diseases, such as acute

diarrhea, antibiotic-induced diarrhea, necrotizing enteroco-

litis and campylobacter-induced enteritis [35]. Prebiotics are

currently defined as a non-digestible food ingredient that

beneficially affects the host by selectively stimulating the

growth and/or activity of one or a limited number of bacteria

in the colon [36]. Galactooligosaccharides are one category

of prebiotics, and contain growth-promoting factors for

Bifidobacterium [37]. Synbiotics are generally considered as

a combination of probiotics and prebiotics.

The mechanisms of probiotics have not yet been clari-

fied, but one of the important factors is microorganism-host

crosstalk such as microorganism-associated molecular

patterns (MAMPs) of probiotics and pattern recognition

receptors (PRRs) of the gastrointestinal mucosa [38].

MAMPs consist of flagellin, secreted proteins, lipopoly-

saccharide, lipoteichoic acid, peptidoglycan and other

factors. The most well-known PRRs are Toll-like receptors

(TLRs). For example, flagellins of the probiotic E. coli

Nissle 1917 were shown to induce beta-defensin via TLR5

[39]. Peptidoglycan from microbiota translocates to the

circulation and enhances the killing capacity of neutrophils

via the Nod-like receptor molecule Nod1 [40]. These

interactions may increase protection from infection by

activation of immunity. In animal studies, probiotics pos-

sess potent anti-infectious activity against lethal STEC

O157:H7 infection [41], MRSA [42], rotavirus, influenza

and other infectious organisms [35].

Effect of Synbiotic Therapy Based on Gut Microbiota

Alternation in Severe SIRS Patients

There have been few reports that showed the effects of

synbiotics based upon the alteration of gut flora and envi-

ronment in critically ill patients. Severe SIRS patients, who

received Bifidobacterium breve strain Yakult and Lacto-

bacillus casei strain Shirota as probiotics and galactooli-

gosaccharides as prebiotics, had significantly greater levels

of beneficial Bifidobacterium and Lactobacillus and SCFAs

and lower incidence of infectious complications such as

enteritis, pneumonia and bacteremia than those who

received no synbiotics [29]. Synbiotics maintained the gut

flora and environment and decreased the incidence of

septic complications in patients with severe SIRS. The

hypothesized mechanism of synbiotics is that their

administration increases the levels of beneficial bacteria

such as Bifidobacterium and Lactobacillus. The increased

level of total anaerobes induces increased production of

SCFAs in the gut. These environmental changes can help to

maintain the gut flora. The beneficial alterations in gut flora

and environment by synbiotics administration may enhance

systemic immune function and decrease the incidence of

septic complications such as enteritis, pneumonia and

bacteremia in patients with severe SIRS (Fig. 2).

Clinical Efficacy of Probiotics/Synbiotics Therapy

for Severe Conditions/Disease

Abdominal Surgery

With regard to major abdominal surgery, several random-

ized controlled studies (Table 3) have been performed on

patients receiving liver transplantation, hepatectomy for

biliary cancer and pancreatoduodenectomy. Rayes et al.

[43] compared the incidence of postoperative infections

Severe stress

Beneficial
Bifidobacterium
Lactobacillus

Short chain fatty acids

PH

Total anaerobes

Synbiotics

Enteritis, Pneumonia, Bacteremia, Septic MODS 

Fig. 2 In patients under severe stress, ‘‘beneficial’’ bacteria decrease

while ‘‘pathogenic’’ bacteria increase in the gut. The significant

decrease in total anaerobes can cause the decreased production of

short chain fatty acids, which in turn leads to the pH increase in the

gut. These environmental changes can further induce the deterioration

of the gut flora and a vicious circle leading to progression of systemic

inflammatory response syndrome or infectious complications. MODS
multiple organ dysfunction syndrome

26 Dig Dis Sci (2013) 58:23–32
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after 95 liver transplantations among three groups who were

administered different enteral nutrition formulae: (a) stan-

dard formula plus selective bowel decontamination (SBD),

(b) fiber-containing formula plus living Lactobacillus plan-

tarum 299, and (c) fiber-containing formula plus heat-killed

L. plantarum 299. The patients who received living lacto-

bacillus plus fiber developed significantly fewer bacterial

infections (13 %) than did the patients with SBD (48 %).

Sugawara et al. [30] reported that in 101 patients with biliary

cancer, the patients who received both preoperative and

postoperative synbiotics with B. breve strain Yakult, L. casei

strain Shirota and oligosaccharides for 2 weeks before and

after surgery, had significantly fewer postoperative infec-

tions (12 %) compared with the patients who received only

postoperative synbiotics (30 %). During the preoperative

period, the numbers of Bifidobacterium and total organic

concentrations measured in feces and NK activity increased

significantly in the group receiving preoperative synbiotics

in comparison with the group receiving postoperative syn-

biotics. These results showed that preoperative administra-

tion of probiotics and synbiotics would upregulate immune

function and lead to a decrease in infectious complications.

Trauma

In trauma, Kotzampassi et al. [44] reported that in 65

multiple trauma patients, the incidence of infectious com-

plications in the synbiotics group decreased significantly

more than those in the group without synbiotics (49 vs.

77 %). Inflammatory markers such as TNF-a and IL-6 also

decreased in the synbiotics group. Spindeler-Vesel et al.

[45] reported that in 113 trauma patients, the incidence of

pneumonia in the synbiotics group decreased more than

that in the group without synbiotics (16 vs. 40 %). The

lactulose/mannitol intestinal permeability test showed sig-

nificant decreases in the synbiotics group. Giamarellos-

Bourboulis et al. [46] reported that in 72 multiple trauma

patients, the incidence of ventilator-associated pneumonia

(VAP) was not significantly different, but Acinetobacter

baumannii was less identified as a bacterial cause of VAP

in the synbiotics group than in the group without synbiot-

ics. These results indicated that the administration of pro-

biotics and synbiotics after trauma would stabilize the gut

flora and attenuate inflammatory response and intestinal

permeability, leading to prevention of pathogen coloniza-

tion and infectious complications.

Ventilator-Associated Pneumonia

Knight et al. [47] reported that in 259 ventilator-assisted

patients, the incidence of VAP in the synbiotics group was not

significantly different from that in the non-synbiotics groups

(9 vs.13 %). Forestier et al. [48] reported that in 208 ICU

patients, the incidence of VAP in the probiotics group did not

differ significantly from that of the control group (2.9 vs.

7.5 %). In the above two studies, there were no significant

differences in oropharyngeal or gastric colonization. Con-

trarily, Morrow et al. [49] reported that in 138 ICU patients,

the incidence of VAP with Lactobacillus rhamnosus GG

decreased significantly more than those with no L. rhamnosus

GG (19.1 vs. 40.0 %). In this study, probiotic administration

significantly reduced oropharyngeal and gastric colonization.

These changes indicated that the treatment could have effects

on oropharyngeal or gastric colonization, and could correlate

with the development of VAP. Changes in gut microbiota due

to probiotics/synbiotics may have effects on immunity not

only in the GALT but also in systemic organs.

Acute Pancreatitis

Oláh et al. [50] reported that the incidence of infectious

complications with Lactobacillus plantarum decreased

more than those without L. plantarum (4.5 vs. 30.4 %). In

contrast, Besselink et al. [51] reported that mortality rates

with six kinds of bacteria were significantly higher than

those without these bacteria in the PROPATRIA study (16

vs. 6 %). The incidence of bowel ischemia was signifi-

cantly higher in the probiotics group. However, in this

study, the incidence of infectious complications showed no

significant differences, and there was no bacteremia from

the administered bacteria. In addition, this study has been

criticized from multiple perspectives; the information was

too optimistic, given that the research product had not been

previously tested on humans, and the procedures for

reporting serious adverse events did not conform to exist-

ing best practice. The Dutch Health Care Inspectorate, the

Central Commission on Research Involving Human Par-

ticipants, and the Food and Consumer Product Safety

Authority all concluded that the study’s design, approval,

and conduct had ‘‘major shortcomings’’ [52–54]. These

studies suggest that the effect and safety of probiotics differ

with the type of disease and the type and amount of

administered bacteria. Further studies are needed to

determine an appropriate therapy for acute pancreatitis.

In some cases such as sepsis, where the patient has

suffered from severe stress even before admission, the

number of obligate anaerobes associated with mortality

would differ before the initiation of intestinal therapy. For

example, elective surgery patients may undergo intestinal

therapy before stress, whereas trauma or burn patients may

have intestinal therapy administered after stress. The mic-

robiota before intestinal therapy would be different with

each disease because the periods of stress are different

before intestinal therapy. However, most studies and meta-

analyses mixed these disease situations together. There-

fore, the results of intestinal therapy in critically ill patients
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should be considered with particular caution from the

viewpoint of gut microbiota.

Several beneficial live microorganisms such as Lacto-

bacillus, E. coli strain Nissle 1917 and Bifidobacterium have

been reported. Although the mechanisms and systemic

effects would be different with strains from the perspective

of MAMPS and PRRs, the difference in effects among these

strains has not been thoroughly delineated. Thus, further

research is needed to clarify the mechanisms of each strain

for appropriate use as probiotics in various diseases.

Antibiotics or Synbiotics for Critically Ill Patients?

Currently available digestive tract treatment strategies can

be largely categorized into two types, namely, selective

digestive decontamination (SDD) treatment and synbiotic

treatment as mentioned earlier.

The effectiveness of SDD has been investigated in

various clinical trials. Stoutenbeek et al. [55] first reported

the effect of SDD in 1984 for 122 multiple trauma patients

to reduce the total infection rate. In a randomized con-

trolled study of 401 multiple-trauma patients, the use of

polymyxin E, tobramycin and amphotericin B in the throat

and gut throughout ICU treatment significantly reduced the

incidence of infection, although the effect on mortality was

not significant due to the underpowered study design.

For ICU patients, de Jonge et al. [56] compared the use of

polymyxin E, tobramycin and amphotericin B with the control

group with regard to the mortality rate and acquisition of

resistant bacteria in a study of 934 ICU patients. In this study,

SDD resulted in decreased mortality and lower detected levels

of aerobic gram-negative bacilli. This finding was consistent

with that by de Smet et al. [57] in a multicenter randomized

cross-over trial involving 5,939 patients whereby both SDD

and selective oropharyngeal decontamination (SOD) in ICU

patients was shown to be effective in reducing mortality and

gram-negative bacteria in comparison with the control. Fur-

thermore, in critically ill burn patients, SDD was associated

with significantly lower mortality rate and reduced pneumonia

rate in comparison with placebo [58]. In a recent review, SDD

reduced the incidence of VAP [59], gram-negative blood-

stream infection [60], multiple organ dysfunction syndrome

[61] and mortality in critically ill patients.

In contrast, negative aspects of SDD have also been

reported. In settings with high levels of endemic, multi-

drug-resistant gram-negative bacteria or methicillin-resis-

tant S. aureus, SDD was associated with increased

selection of such pathogens [62–64]. In the investigation by

Leone et al. [65] in 720 patients with multiple injuries, in

the SDD group, methicillin-resistant S. epidermidis was

detected with significantly higher frequency in comparison

with the control. Bonten et al. [66] investigated 27

prospective randomized studies and six meta-analyses to

reach the conclusion that the effectiveness of SDD has not

been established and should not be recommended as a

digestive tract treatment. Similarly, in the recent version of

the Surviving Sepsis Campaign guidelines published in

2008, the opinions of the guidelines group was evenly split

on the issue of SDD, with equal numbers weakly in favor

of and against recommending the use of SDD. The com-

mittee therefore chose not to make a recommendation for

the use of SDD specifically in severe sepsis [4].

In summary, results from both individual clinical studies

and meta-analyses remain inconclusive with regard to the

effectiveness of SDD as a digestive tract treatment. Despite

its effectiveness in reducing pathogens, SDD also dramati-

cally decreases obligate anaerobes in the gut, which can lead

to severe imbalance of the intestinal microbiota. According

to our own experience, SDD resulted in dramatic collapse of

the microbiota and lethal bacteremia developed from the

resulting enteritis [67]. In contrast to SDD, treatment using

synbiotics appears to contribute to maintaining and repairing

the environment and functions of the gut. Synbiotics is not

only effective in reducing enteritis but also overall infectious

complications and can be a promising treatment for critically

ill patients. Additionally, synbiotic treatment exerts its effect

in a physiological manner in the digestive tract. As for the

safety of probiotics, although rare, there are a few adverse

effects such as bacteremia, endocarditis and other compli-

cations [68, 69]. The pathogenic potential would be different

with species or host conditions such as severe acute pan-

creatitis [54, 70]. Future clinical trials are expected to clarify

whether appropriate intestinal therapies such as synbiotics

and SDD can be used as standard digestive tract treatments in

critically ill patients.

Gut Motility and the Limitations of Intestinal

Therapy

Gut motility in critically ill patients is often disturbed by

many factors, such as ischemia, analgesic drugs, adrenergic

agents, fluid management and pre-existing illnesses such as

diabetes [71]. This motor stasis leads to intolerance to enteral

feeding, increased mucosal permeability for endoluminal

mediators and bacteria and the development of SIRS.

Montejo et al. [72] reported that enteral nutrition-related

gastrointestinal complications in critically ill patients were

present in 251 (62.8 %) of 400 patients and that enteral

nutrition was withdrawn in 15.2 % of these patients. The

complications included high gastric residuals (39 %), con-

stipation (15.7 %), diarrhea (14.7 %), abdominal distention

and vomiting and regurgitation. Patients with gastrointesti-

nal complications had significantly higher mortality. In the

ICU, it is well known that gut motility can easily decrease in
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abdominal surgery, head injury, spinal cord injury, burn and

pancreatitis patients. In our retrospective study, mortality

due to septic multiple organ dysfunction syndrome in

patients with feeding intolerance (64 %) was significantly

higher than that in patients without feeding intolerance

(20 %), indicating that the patients with severe SIRS and

gastrointestinal dysmotility have altered gut flora that would

lead to an ‘‘undrained abscess.’’ These data indicated that

intestinal dysmotility as a complication could be an indica-

tive poor prognostic factor in patients with severe SIRS [73].

There are many prokinetic drugs reported, such as neostig-

mine, erythromycin, metoclopramide and Dai-kenchu-to, a

famous Japanese herbal medicine [74, 75]. These prominent

drugs are not always effective on our severe critically ill

patients. This could be due to there being too much stress for

the bowel to move, such that neither these drugs nor synbi-

otics can reach their destination to exert any effect.

Conclusions

The important role of the digestive tract has been well

recognized as a therapeutic target in critically ill patients.

However, to define an appropriate therapy, the relationship

between the alteration of the gut microbiota and the spe-

cific clinical complications should be further clarified. Also

a prognostic tool based on the alteration pattern of the gut

microbiota should be developed and standardized to

achieve timely treatment. In our current experience, pro-

biotic/synbiotic treatment has been shown to be a promis-

ing therapy to maintain and repair the gut microbiota and

gut environment and to significantly reduce septic com-

plications in patients with severe SIRS. Finally, despite the

promising clinical results with the use of these therapies,

the mechanisms of action in the gastrointestinal tract

remain undefined. Further clinical research that includes

investigations of the microbiota and the underlying mech-

anisms of immune responses involved in the therapeutic

effect should help to clarify the effectiveness of such

therapies and define the appropriate conditions for use.
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