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Aquaporins (AQPs) are membrane channels widely distributed in human tissues. AQPs

are essential for water and energy homeostasis being involved in a broad range of

pathophysiological processes such as edema, brain injury, glaucoma, nephrogenic

diabetes insipidus, salivary and lacrimal gland dysfunction, cancer, obesity and related

metabolic complications. Compelling evidence indicates that AQPs are targets for

therapeutic intervention with potential broad application. Nevertheless, efficient AQP

modulators have been difficult to find due to either lack of selectivity and stability,

or associated toxicity that hamper in vivo studies. MicroRNAs (miRNAs) are naturally

occurring small non-coding RNAs that regulate post-transcriptional gene expression

and are involved in several diseases. Recent identification of miRNAs as endogenous

modulators of AQP expression provides an alternative approach to target these proteins

and opens new perspectives for therapeutic applications. This mini-review compiles the

current knowledge of miRNA interaction with AQPs highlighting miRNA potential for

regulation of AQP-based disorders.

Keywords: aquaporin, miRNA, gene expression regulation, post-transcriptional modulation, membrane proteins,

permeability, disease

INTRODUCTION

Aquaporins (AQPs) are membrane channels that facilitate diffusion of water and small molecules
(e.g., glycerol) through cell membranes driven by osmotic or solute gradients. The 13 isoforms
(AQP0-12) expressed in mammals are crucial for water homeostasis and energy balance, which
in turn influence survival and adaptation of living organisms. AQPs participate in many
physiological processes such as renal water absorption, brain water homeostasis, skin hydration,
intestinal permeability, cell proliferation, migration and angiogenesis, and oxidative stress response
(Verkman, 2012; Pelagalli et al., 2016; Rodrigues et al., 2016). This suggests that their role may go
far beyond the simple facilitation of membrane permeability. Indeed, over the years the importance
of AQPs in health and disease has gained the attention of several research groups around the
world; there is now compelling evidence that aquaporins are drug targets with potential broad
application (Soveral et al., 2016). Modulators of AQPs expression or function with high selectivity
and low side-toxicity are anticipated to have high value for the treatment of AQP-related disorders
such as edema, brain injury, glaucoma, nephrogenic diabetes insipidus, salivary and lacrimal
gland dysfunction, cancer and obesity, among others (Verkman et al., 2014; Soveral et al., 2016).
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Although several potential AQP modulators have been
reported and patented for use in diagnostic and therapeutics
(Beitz et al., 2015; Soveral and Casini, 2017), their lack of
selectivity and toxic side effects has hampered application in
clinical trials. In addition, the protein structural conformation
with channel pore access restrictions renders the molecule
difficult to target and has slowed the progress of AQP drug
discovery (Verkman et al., 2014; Madeira et al., 2016).

The recent recognition of AQP targeting by microRNAs
(miRNAs) has opened new avenues for drug development. Here,
we summarize updated information on the role of miRNAs in
AQP-selective regulation and discuss their usefulness to tailor
specific AQP-based therapeutics.

OVERVIEW OF miRNA BIOGENESIS AND
FUNCTION

miRNAs are small, single-stranded non-coding RNAs with
important functions in the post-transcriptional control of gene
expression (Ha and Kim, 2014; Christopher et al., 2016; Vishnoi
and Rani, 2017). In humans, miRNA biogenesis follows a
multi-step process depicted in Figure 1. miRNAs are firstly
transcribed in the nucleus by RNA polymerase II (Pol II) as
long primary transcripts (pri-miRNAs), exhibiting a double-
stranded hairpin loop structure (Ha and Kim, 2014). This stem
loop is then cropped by nuclear RNase III Drosha to release a
small hairpin-shaped RNA of ∼65 nucleotides in length (pre-
miRNA). Next, the pre-miRNA is exported to the cytoplasm
through a nuclear pore complex comprising protein exportin
5 and further processed by RNase III endonuclease DICER
near the terminal loop, liberating a small ∼22 nucleotides in
length RNA duplex. This duplex is then loaded into the miRNA-
induced silencing complex (miRISC), unwounded, and the
mature miRNA transferred to Argonaute (AGO) proteins within
the complex. Following its assembly in the miRISC, the miRNA
will target one or multiple mRNAs, leading to translational
repression or, in particular cases, to mRNA degradation (Pereira
et al., 2013; Ha and Kim, 2014; Vishnoi and Rani, 2017). Of note,
miRNAs may also act as transcriptional or splicing regulators,
within the nucleus (Hwang et al., 2007), and be involved in
genetic exchange with adjacent cells, through exosomes (Valadi
et al., 2007). Approximately 60% of protein-coding genes are
influenced by miRNAs (Friedman et al., 2009) that play crucial
roles in several biological processes, including control of cell
cycle and differentiation, proliferation and metabolism. As such,
miRNA deregulation is being increasingly associated with several
human pathologies.

miRNAs might embody prospective therapeutic targets. We
have recently shown that miR-21 is systematically increased
in animal models and in human patients with steatohepatitis,
thus contributing for disease pathogenesis. In contrast, miR-21
abrogation significantly improved steatosis, inflammation and
fibrosis, as well as overall lipid and cholesterol metabolism
(Rodrigues et al., 2017). Other studies have similarly shown
that miRNA functional manipulation in vivo can impact on
metabolic phenotypes and even reverse the course of insulin

resistance and diabetes (Sethupathy, 2016). These results suggest
that miRNA-based therapies may become a viable strategy
for treating a broad range of disorders such as cancer and
cardiovascular disease, among others (van Rooij and Kauppinen,
2014; Adams et al., 2017). Further, in oncology the aim is
to downregulate or block the function of oncogenic miRNAs
and/or upregulate expression of tumor suppressor miRNAs, for
which different miRNA-targeting strategies have been proposed
(as reviewed in Ling et al., 2013; Li and Rana, 2014; Robb
et al., 2017). Replacement of tumor suppressor miRNAs typically
involves the introduction of synthetic miRNAmimics or miRNA
expression vectors. In this regard, a synthetic miRNA mimic
based on the sequence of the miR-15/16 family is being evaluated
in a clinical trial to treat patients with malignant pleural
mesothelioma and advanced non-small cell lung cancer (van
Zandwijk et al., 2017). As for inhibition of oncogenic miRNAs
overexpressed in cancer, the top approaches being investigated
include expression vectors (miRNA sponges), small-molecule
inhibitors and antisense oligonucleotides (ASOs or antagomiRs)
(Robb et al., 2017). Miravirsen (Santaris Pharma A/S) is a typical
example of the later, inhibiting miR-122 function in the liver that
is essential for the replication of the hepatitis C virus (HCV). A
Phase II clinical trial showed that miravirsen is able to reduce
HCV RNA levels in patients (Janssen et al., 2013).

In parallel with therapeutic targeting, circulating miRNA
patterns are associated with metabolic, neurodegenerative and
infectious pathologies (Keller et al., 2015; Mirra et al., 2015,
2018; Verma et al., 2016), making miRNAs attractive disease
biomarkers and allowing the prospective implementation of
personalized therapies (Mirra et al., 2018). Nonetheless, the use
ofmiRNAs as either therapeutic targets or disease biomarkers still
requires extensive optimization and validation.

AQUAPORIN TARGETING BY miRNAS

The discovery of miRNAs as endogenous modulators of AQPs
offers a potential therapeutic approach for the regulation AQP-
related disorders. Below, we address the current knowledge
of miRNA interaction with AQP isoforms and the potential
advantage for AQP-related pathologies (Table 1).

AQPs are specialized water and/or glycerol channels expressed
in various tissues including the kidney, lung, gastrointestinal
tract, brain, adipose tissue and liver (Verkman, 2012) and are
implicated in water imbalance disorders, such as edema.

AQP1 and AQP4 are associated with cerebral edema
(Griesdale and Honey, 2004; Zador et al., 2007), and their
modulation may improve the outcome of cerebral disorders
such as cytotoxic and vasogenic edema, stroke and traumatic
brain injury (Papadopoulos and Verkman, 2007; Zador et al.,
2007). Interestingly, miRNA deregulation has also been reported
in cerebral ischemia (Koutsis et al., 2013; Ouyang et al., 2013;
Di et al., 2014), a condition that can induce cerebral edema
(Marmarou, 2007). miR-320a was reported to inhibit AQP1
and AQP4 gene expression both in vitro and in vivo in a
cerebral ischemia rat model (Sepramaniam et al., 2010), whereas
anti-miR-320a upregulated AQP1 and AQP4 expression with
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FIGURE 1 | miRNA biogenesis and mode of action. miRNA biogenesis embodies a multistep process catalyzed by specific RNA polymerases. miRNAs are initially

transcribed as a long, capped and polyadenylated pri-miRNA, cropped by the Drosha complex into a hairpin pre-miRNA. Following translocation to the cytoplasm by

Exportin-5, the pre-miRNA is further processed by the Dicer complex, generating a ∼22-nucleotide mature miRNA–miRNA duplex. The guide strand is then selected

by the Argonaute protein and integrated into an RNA-induced silencing complex (RISC) to form the miRNA–RISC. This will act on target mRNAs, including aquaporin

(AQP) mRNAs, by binding to the 3′-UTR and leading to translational inhibition or mRNA degradation (see text for more details).

consequent reduction of infarct volume (Sepramaniam et al.,
2010). The inhibitory effect of miR-320a onAQP4 expression was
also confirmed in astrocyte primary cultures from brain tissue
of epileptic rats (Song et al., 2015), a condition that may induce
cytotoxic cerebral edema. In addition, in a rat model of spinal
cord edema, downregulation of AQP1 at the blood–spinal cord
barrier bymiR-320a showed to positively affect spinal cord edema
after ischemia reperfusion injury (Li et al., 2016). These findings
suggest that miR-320a can be used as modulator of AQP1 and
AQP4 in cerebral and spinal cord edema.

Further studies identified miR-130a as a transcriptional
repressor of AQP4 M1 isoform in human astrocytes
(Sepramaniam et al., 2012). This transcript shows higher
expression and function in the human brain under ischemic
conditions compared to AQP4 M23 (Hirt et al., 2009).
Modulation of miR-130a and subsequent influence on AQP4
M1 gene and protein expression may be used to reduce cerebral
infarct and promote ischemic recovery (Sepramaniam et al.,
2012). Additionally, AQP4 down-regulation by miR-145 (Zheng
et al., 2017a), miR-130b (Zheng et al., 2017b) and miR-29b
(Wang et al., 2015) revealed the protecting role of these miRNAs
against ischemic stroke. A recent study demonstrated that AQP4
silencing in rat astrocyte primary cultures was associated with
an increase of miR-224 and miR-19a expression, and this could
be a molecular mechanism responsible for decreased astrocyte
connectivity and water mobility in the brain (Jullienne et al.,
2018).

AQP1 is also expressed in the lung alveolar epithelia and
plays an important role in lung fluid transport and alveolar
fluid clearance (King et al., 1996). Increased alveolar capillary
membrane permeability, apoptosis of alveolar epithelial cells,

inflammation and edema are characteristics of acute lung
injury. In a mouse model of lipopolysaccharide-induced acute
lung injury, miR-126-5p was down-regulated while AQP1
and epithelial sodium channel (ENaC) protein expression was
reduced in alveolar type II cells (Tang et al., 2016). AQP1
and ENaC reduction was attenuated when miR-126-5p was
overexpressed, suggesting that miR-126-5p may ameliorate
dysfunction of alveolar fluid clearance by maintaining the
activity of both AQP1 and ENaC. An opposite effect was
promoted by miR-144-3p in acute lung injury mice and in a
lung epithelial carcinoma cell line, where AQP1 mRNA and
protein expression were both decreased when miR-144-3p was
overexpressed, reducing lung epithelial cell apoptosis (Li et al.,
2018).

AQP1 plays an important role in cell migration, angiogenesis,
wound healing and tumor growth (Saadoun et al., 2002a;
Tomita et al., 2017). It is highly expressed in cancer tissues
and often associated with worse prognosis (Papadopoulos and
Saadoun, 2015). miR-320 was shown to negatively regulate
AQP1 expression and to reduce cell proliferation, migration, and
invasion of breast cancer cells (Luo et al., 2018). The role of AQP1
in angiogenesis, fibrosis and portal hypertension in cirrhoticmice
has been investigated in AQP1 knockout mice, which showed
reduced angiogenesis and fibrosis. The osmotically sensitivemiR-
666 and miR-708 are decreased in cirrhosis and were found
to regulate AQP1 expression, suggesting its modulation as a
therapeutic strategy in chronic liver disease (Huebert et al.,
2011).

AQP2 is expressed in kidney collecting duct epithelial cells
where the high transepithelial water permeability accounts for
fluid retention and urine concentration. Water reabsorption via
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TABLE 1 | Interaction of different miRNAs with AQPs in several pathophysiological conditions.

Gene miRNA Tissue Disease/condition References

AQP1 29a Colon IBS Chao et al., 2017

126-5p Lung Acute lung injury Tang et al., 2016

144-3p Lung Acute lung injury Li et al., 2018

320a Brain Cerebral ischemia Sepramaniam et al., 2010

Spinal cord Spinal cord edema Li et al., 2016

320 Breast Breast cancer Luo et al., 2018

666 Liver Cirrhosis Huebert et al., 2011

708 Liver Cirrhosis Huebert et al., 2011

AQP2 32 Kidney Water reabsorption Kim et al., 2015

137 Kidney Water reabsorption Kim et al., 2015; Ranieri et al., 2018

AQP3 1 Epidermis Wound healing Banerjee and Sen, 2015

29a Colon IBS Chao et al., 2017

124 Liver HCC Chen et al., 2018

185-5p Epidermis SCC Ratovitski, 2013

874 Stomach GC Jiang et al., 2014

Intestine Intestinal ischemic injury Zhi et al., 2014

Pancreas PDAC Huang et al., 2017

AQP4 19a Brain Astrocyte connectivity Jullienne et al., 2018

29b Brain Cerebral ischemia Wang et al., 2015

130a Brain Cerebral ischemia Sepramaniam et al., 2012

Brain AD Zhang et al., 2017

130b Brain Cerebral ischemia Zheng et al., 2017b

145 Brain Cerebral ischemia Zheng et al., 2017a

203 Lung Asthma Jardim et al., 2012

224 Brain Astrocyte connectivity Jullienne et al., 2018

320a Brain Cerebral ischemia Sepramaniam et al., 2010

Brain Epilepsy Song et al., 2015

Brain Glioma Xiong et al., 2018

AQP5 21 Gallbladder Gallbladder carcinoma Sekine et al., 2013

96 Lung Sepsis Zhang et al., 2014; Rump and Adamzik, 2018

330 Lung Sepsis Zhang et al., 2014; Rump and Adamzik, 2018

AQP8 16 Colon Ulcerative colitis Min et al., 2013

29a Colon IBS Chao et al., 2017

195 Colon Ulcerative colitis Min et al., 2013

330 Colon Ulcerative colitis Min et al., 2013

424 Colon Ulcerative colitis Min et al., 2013

612 Colon Ulcerative colitis Min et al., 2013

AQP9 22 Liver Diabetes Karolina et al., 2014

23a Liver Diabetes Karolina et al., 2014

AD, Alzheimer’s disease; HCC, hepatocellular carcinoma; IBS, irritable bowel syndrome; GC, gastric cancer; PDAC, pancreatic ductal adenocarcinoma; SCC, squamous cell carcinoma.

AQP2 is controlled by vasopressin, which triggers AQP2
trafficking to the apical plasma membrane (short-term
regulation) or increases transcription of AQP2 gene (long-
term regulation) (Nielsen et al., 2000). Two AQP2-targeting
miRNAs, miR-32 and miR-137, were reported to decrease AQP2
expression in kidney collecting duct cells independently of
vasopressin regulation (Kim et al., 2015). AQP2 targeting by
miR-137 has recently been correlated with impaired response
to vasopressin and reduction of urine concentration via the
calcium-sensing receptor (CaSR). Once activated by high

external calcium, CaSR promotes the synthesis of miRNA-137
and increases AQP2 ubiquitination and proteasomal degradation
resulting in reduced AQP2 mRNA translation (Ranieri et al.,
2018).

AQP3 is expressed in epidermal keratinocytes acting as a
skin-hydration protein due to its ability to increase glycerol
cellular content (Hara and Verkman, 2003). However, AQP3
is aberrantly expressed in different tumors (Papadopoulos and
Saadoun, 2015) and its suppression has been proposed as a
potential tool to reduce epidermal cell migration, proliferation
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and tumorigenicity (Hara-Chikuma and Verkman, 2008). AQP3-
targeting by miRNAs resulted in decreased cell differentiation
in different cancers, such as in squamous cell carcinoma by
miR-185-5p (Ratovitski, 2013), gastric adenocarcinoma (Jiang
et al., 2014) and pancreatic ductal adenocarcinoma (Huang et al.,
2017) by miR-874, and hepatocellular carcinoma by miR-124
(Chen et al., 2018). In addition, miR-1 was proposed to indirectly
target AQP3 impairing keratinocyte migration (Banerjee and
Sen, 2015).

AQP3 has also an established role in transepithelial water
transport in the colon, along with AQP1 and AQP8 (Laforenza,
2012; Zhao et al., 2016). Altered water secretion or absorption
in the colon is linked to gut disorders such as irritable bowel
syndrome (IBS), where increased intestinal permeability due to
disruption of intestinal tight junctions contributes to diarrhea
and abdominal pain. It has been reported that AQP3 silencing
leads to impairment of intestinal barrier integrity possibly by
increasing paracellular permeability via an opening of the tight
junction complex (Zhang et al., 2011) where miR-874 is involved
through AQP3 targeting (Zhi et al., 2014; Su et al., 2016). Analysis
of intestinal tissue samples from patients with IBS revealed that
miR-29 reduces the expression of critical signaling molecules
involved in the regulation of intestinal permeability (Zhou et al.,
2015). The finding that AQP1, AQP3 and AQP8 are down-
regulated by miR-29a in rat colon tissues, and increased by
anti-miR-29a (Chao et al., 2017) unveils a potential tool to
restore intestinal permeability via miR-29 blockage and AQP
up-regulation.

AQP4 is mainly expressed in the brain with a polarized
distribution in the perivascular endfeet of astrocytes. There
is strong evidence that AQP4 mislocalization contributes to
the excessive accumulation of amyloid-β in brain found in
Alzheimer’s disease (AD) (Yang et al., 2012). In a recent
study, miR-130a restored AQP4 polarity by repressing the
transcriptional activity of AQP4 M1 decreasing the AQP4
M1/M23 ratio (Zhang et al., 2017), thus protecting against AD. In
addition to normal astrocytes, AQP4 is also expressed in human
astrocytomas where the level of expression correlates with tumor
aggressiveness (Saadoun et al., 2002b; Verkman et al., 2014). In
glioma cells, miR-320a overexpression down-regulates AQP4 and
diminishes cell invasion and migration, suggesting it could be
used as a therapeutic target to suppress the aggressive capacity of
this tumor (Xiong et al., 2018). Interestingly, AQP4 was found
to be up-regulated in bronchial epithelial cells from asthmatic
donors, following down-regulation of miR-203, together with
pro-inflammatory genes (Jardim et al., 2012). The role of AQP4
in asthma is not clear, but since the progression of asthma usually
includes edema, a contribution to fluid clearance cannot be ruled
out.

AQP5 is a selective water channel important for saliva
production and airway fluid clearance (Song and Verkman,
2001; Delporte et al., 2016). In the lung of rats after LPS-
induced sepsis, decreased AQP5 gene and protein expression
correlates with up-regulation of miR-96 and miR-330 and
establishment of pulmonary edema (Zhang et al., 2014). AQP5
is also involved in cell proliferation, migration and invasion
(Papadopoulos and Saadoun, 2015; Direito et al., 2016). AQP5

up-regulation in different cancer tissues together with markers of
cancer progression suggests its involvement in cancer signaling
pathways and highlights its potential as promising target for
cancer therapy (Direito et al., 2016, 2017). AQP5 expression in
gallbladder carcinoma was regulated by miR-21 and correlated
with early-stage tumor progression with favorable prognosis
(Sekine et al., 2013), suggesting novel potential drug targets for
this malignancy.

AQP8 is expressed in the epithelial cells of the intestine
(Laforenza, 2012). In colon samples of ulcerative colitis patients,
AQP8 mRNA and protein were found three-fold decreased. A
search for candidate target miRNAs revealed miR-16, miR-195,
miR-424, miR-612, and miR-330 as putative down-regulators of
AQP8 expression (Min et al., 2013).

AQP7 and AQP9 transport glycerol in addition to water
(aquaglyceroporins) and are involved in fat metabolism in the
adipose and liver tissues (Hibuse et al., 2006; Madeira et al.,
2015). In fasting conditions, when triglyceride lipolysis occurs,
AQP7 facilitates glycerol efflux from adipose tissue into the
circulation, which is taken up in the liver via AQP9 to be
used for gluconeogenesis (Rodriguez et al., 2011). AQP7 and
AQP9 coordinated function is crucial for energy homeostasis
and deregulation has been implicated in obesity and diabetes
(Rodriguez et al., 2014; da Silva and Soveral, 2017). Selective
modulation of AQP7 and AQP9 may constitute a promising
approach for controlling obesity and metabolic-related disorders
(da Silva et al., 2018). Among the candidate miRNA regulators of
adipogenesis and gluconeogenesis, miR-22 and miR-23a showed
to reduce AQP9 expression in liver cells, suggesting a potential
application for glycaemia control in diabetic patients (Karolina
et al., 2014).

FINAL REMARKS

The wide distribution of the various AQP-isoforms in
mammalian tissues and their implication in a broad range
of pathophysiological conditions makes AQPs exciting drug
targets for novel therapies. Yet, with the exception of a few
small molecules, no modulators of AQPs are available for in
vivo use (Soveral and Casini, 2017). The recent discovery of
miRNAs as endogenous regulators of AQP expression highlights
an alternative and indirect approach to selectively target AQPs
through modulation of signal transduction pathways. Moreover,
since miRNA-targeting oligonucleotides can be chemically
modified to enhance their pharmacokinetic/pharmacodynamic
properties, targeting of mRNA expression by miRNAs typically
leads to faster and longer-lasting responses comparing with
protein inhibition by conventional targeted therapy. Further, the
ability of miRNAs to target different genes simultaneously, as it
is the case for miR-320a that targets both AQP1 and AQP4, or
mi29a interacting with both AQP1 and AQP3, makes another
compelling point toward the development of novel AQP-
targeting therapies through modulation of miRNA function.
However, there are still major challenges related with miRNA
application, including in vitro validation of in silico predicted
miRNAs, achievement of efficient up- or down-regulation,
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assessment of the therapeutic effect in the most appropriate cell
model and evaluation of potential off-target effects that could
impair their use. Indeed, due to very small sizes, the chance
that an anti-miRNA will interact with an endogenous mRNA
is rather high. In addition, a hairpin RNA structure generates
different miRNAs from each strand, which may bind to different
mRNAs and exhibit opposite functions. Nevertheless, the
possibility of using miRNAs alone or in combined therapy with
other chemical or biological drugs to modulate specific AQP
proteins involved in disease provides new clues for AQP-based
therapeutics.
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