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ABSTRACT

Motivation: Within medical research there is an increasing trend

toward deriving multiple types of data from the same individual. The

most effective prognostic prediction methods should use all available

data, as this maximizes the amount of information used. In this article,

we consider a variety of learning strategies to boost prediction per-

formance based on the use of all available data.

Implementation: We consider data integration via the use of multiple

kernel learning supervised learning methods. We propose a scheme in

which feature selection by statistical score is performed separately per

data type and by pathway membership. We further consider the intro-

duction of a confidence measure for the class assignment, both to

remove some ambiguously labeled datapoints from the training data

and to implement a cautious classifier that only makes predictions

when the associated confidence is high.

Results: We use the METABRIC dataset for breast cancer, with pre-

diction of survival at 2000 days from diagnosis. Predictive accuracy is

improved by using kernels that exclusively use those genes, as fea-

tures, which are known members of particular pathways. We show

that yet further improvements can be made by using a range of add-

itional kernels based on clinical covariates such as Estrogen Receptor

(ER) status. Using this range of measures to improve prediction per-

formance, we show that the test accuracy on new instances is nearly

80%, though predictions are only made on 69.2% of the patient cohort.
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1 INTRODUCTION

Within the biomedical sciences it is increasingly common to derive

multiple types of data from the same individual. A good example

is the Cancer Genome Atlas (cancergenome.nih.gov) in which

gene expression (EXP) array, microRNA array, methylation

and copy number variation (CNV) data are derived from the

majority of tumor samples. By using multiple types of data

derived from a given sample, we can understand linkages between

attributes within each type of data. Also, by maximizing the in-

formation content, models that use all the available data are in-

trinsically more powerful than models that use only one data type.

For these reasons there has been an increasing interest in data

integration methods, both for unsupervised (Agius et al., 2009;

Huopaniemi et al., 2010; Rogers et al., 2010; Savage et al., 2010;

Yuan et al., 2011) and supervised learning (Bach et al., 2004;

Gönen and Alpaydin, 2011; Lanckriet et al., 2004; Rakotoma-

monjy et al., 2008), and their use with genomic datasets.

For supervised learning with multiple types of input data, the

decision function will need to successfully integrate the different

components of the input data. One way of doing so is to create a

committee of decision functions, each handling a separate com-

ponent of the data, and feed these decisions into an integrative

decision function for the final outcome decision. Of course, dif-

ferent types of data will have different degrees of informativeness

and consequently we need to be able to weight the contribution of

different members of the committee accordingly. One way of

doing so is to associate a confidence measure with the vote of

individual committee members and use these probabilistic meas-

ures to define their relative contribution to the final decision. In

this article, though, we follow the more direct route of encoding

each type of data into objects called kernels and using a weighted

combination of these in the final decision function, an approach

called multiple kernel learning (MKL) (see Fig. 1). Kernels encode

the similarity between data objects (Shawe-Taylor and Cristianini,

2004; Campbell and Ying, 2011). In this article, learning is per-

formed using composite kernels, which are a linear combination of

a large set of base kernels, encoding particular types of data.
In Section 2.2, we also consider probabilistic MKL. By

restricting prediction to high confidence instances only we can

further improve predictive accuracy. In Section 3.2, we apply
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Fig. 1. With multiple kernel learning, different types of data are encoded

into data objects called base kernels. For the METABRIC breast cancer

dataset, EXP, CNV, ER status and clinical data are handled by separate

base kernels
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these methods to the METABRIC data for breast cancer (Curtis

et al., 2012) with an application to prediction of mortality risk.

Of course, there have been a number of other studies predicting

breast cancer outcome using clinical data (e.g. Wishart et al.,

2010) or EXP data (e.g. Buyse et al., 2006) alone but few that

combine and weight the significance of these different prognostic

indicators.

There are alternative methods for supervised learning using

multiple types of data, and we will pursue a comparison of our

method against these alternatives in Section 3.2.3. We consider

methods proposed by Chen and Zhang (2013), Chen et al. (2009),

Lê Cao et al. (2010) and Witten and Tibshirani (2009).

Furthermore, in a recent competition by Sage Bionetworks (the

DREAM Breast Cancer Prognosis challenge), EXP, CNV and

clinical data from the METABRIC dataset were made available

for evaluating the performance of different approaches for

predicting breast cancer survival. The model that gave the best

results (Chen et al., 2013) was an ensemble of different methods,

including Cox regression based on the Akaike Information

Criterion, a Generalized Boosting Model and k-nearest

neighbors. This model included prior knowledge based on the

selection of groups of genes. In Bilal et al. (2013) the authors

analyzed several models submitted to this competition, including

Random Forest, Lasso-based regression models, Elastic Nets and

boosting and ensemble models, and thus we compare with these.

1.1 Multiple kernel learning

Kernel-based learning machines (Scholkopf and Smola, 2002;

Shawe-Taylor and Cristianini, 2004), such as Support Vector

machines (SVMs), are a well-studied class of methods for classi-

fication problems. For binary classification with two well-

separated classes of data (Fig. 2), the learning task amounts to

finding a directed hyperplane, that is, an oriented hyperplane such

that datapoints on one side will be labeled yi ¼ þ1 and those on

the other side as yi ¼ �1. The directed hyperplane found by an

SVM is intuitive. It is that hyperplane, which is maximally dis-

tant from the two classes of labeled points located on each side.

The closest such points on both sides have most influence on

the position of this separating hyperplane and are the support

vectors. The distance between these support vectors and the

separating hyperplane is the margin. The separating hyperplane

is given as w � xþ b ¼ 0 where b is the bias and w, the weights

(� denotes the scalar product). With datapoints xi ði ¼ 1, . . . , mÞ

having corresponding labels yi ¼ �1, the decision function is

therefore fðxiÞ ¼ signðw � xi þ bÞ. Therefore, datapoints are cor-

rectly classified if yiðw � xi þ bÞ40 8i. The decision function fðxÞ

is invariant under a positive rescaling of the argument inside the

sign-function. This leads to an ambiguity in defining the margin.

Hence we implicitly fix a scale for (w, b) by setting w � xþ b ¼ 1

for the closest points on one side and w � xþ b ¼ �1 for the

closest on the other side. Let x1 and x2 be two support vectors

on both sides (Fig. 2). If w � x1 þ b ¼ 1 and w � x2 þ b ¼ �1, we

deduce that w � ðx1 � x2Þ ¼ 2. For the separating hyperplane

w � xþ b ¼ 0, the normal vector is w= wk k2 (where wk k2 is

the square root of w � w). Thus the margin is half the projection

of the vector x1 � x2 onto the normal vector w= wk k2 that

gives ðx1 � x2Þ � w= wk k2 ¼ 2= wk k2. Therefore, the margin is

� ¼ 1= wk k2. Maximizing the margin is therefore equivalent to

minimizing:

1

2
wk k22 ð1Þ

subject to the constraints:

yi w � xi þ bð Þ � 1 8i ð2Þ

As a constrained optimization problem, the above formulation

can be reduced to minimization of a Lagrange function, consist-

ing of the sum of the objective function and the m constraints

multiplied by their respective Lagrange multipliers, �i (that satisfy
�i � 0). This is the primal formulation of an SVM:

Lðw, bÞ ¼
1

2
ðw � wÞ �

Xm
i¼1

�i yiðw � xi þ bÞ � 1ð Þ ð3Þ

At the minimum, we can take the derivatives of Lðw, bÞ with

respect to b and w and set these to zero. This gives the conditionsPm
i¼1 �iyi ¼ 0 and w ¼

Pm
i¼1 �iyixi. Substituting w back into

Lðw, bÞ we get the dual formulation:

Wð�Þ ¼
Xm
i¼1

�i �
1

2

Xm
i, j¼1

�i�jyiyj xi � xj
� �

ð4Þ

which must be maximized with respect to the �i subject to the

constraints:

�i � 0
Xm
i¼1

�iyi ¼ 0 ð5Þ

The advantage of the learning task in (4, 5) is that it is con-

strained quadratic programming from optimization theory, and

hence it is a concave problem with a unique solution.
Having found those �?i , which optimize (4), the predicted label

for a new datapoint z is given by the sign of

gðzÞ ¼
Xm
i¼1

�?i yi xi � zð Þ þ b ð6Þ

where b is the bias:

b ¼�
1

2
max
fijyi¼�1g

Xm
j¼1

�?j yjðxi � xjÞ

 !"

þ min
fijyi¼þ1g

Xm
j¼1

�?j yjðxi � xjÞ

 !# ð7Þ

Many datasets are not linearly separable. An appealing prop-

erty of kernel-based methods, such as SVMs, is that we can map

Fig. 2. The argument inside the decision function of a classifier is

w � xþ b. The separating hyperplane corresponding to w � xþ b ¼ 0 is

shown as a line in this 2D plot. This hyperplane separates the two classes

of data with points on one side labeled yi ¼ þ1 ðw � xþ b � 0Þ and points

on the other side labeled yi ¼ �1 ðw � xþ b50Þ
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input data into a higher dimensional space, called feature space,

where the datapoints are linearly separable. With a mapping

xi ! �ðxiÞ to feature space, from (4) we see that datapoints

are represented by a mapped dot product in this higher dimen-

sional space i.e. by Kij ¼ �ðxiÞ ��ðxjÞ. Kij is called the kernel

matrix, and we can construct kernels for discrete and continu-

ously valued data and other data objects such as graphs and text

strings. A particular choice of kernel amounts to an implicit

choice of mapping function though, in practice, we do not

need to know the form of this mapping function.
We can therefore construct classifiers with a decision function

dependent on a variety of different types of input data. With

different types of data encoded in different kernels, this approach

is called MKL (reviewed in Campbell and Ying, 2011; Gönen

and Alpaydin, 2011). A common approach to MKL is to con-

struct a composite kernel as a linear combination of base kernels:

Kij ¼
Xp
‘¼1

�ð‘ÞKð‘Þij ð8Þ

where Kð‘Þij is the base kernel derived from each type of data ‘ and
there are assumed p such types of data. The kernel coefficients,

�ð‘Þ, are subject to the constraints:

�ð‘Þ � 0
Xp
‘¼1

�ð‘Þ ¼ 1 ð9Þ

and so the objective function to optimize in �i and �
ð‘Þ is given by

Wð�, �ð‘ÞÞ ¼
Xm
i¼1

�i �
1

2

Xm
i, j¼1

�i�jyiyj
Xp
‘¼1

�ð‘ÞKð‘Þij

" #
ð10Þ

which we optimize via

min
�ð‘Þ

max
�

Wð�, �ð‘ÞÞ ð11Þ

subject to the constraints (5) and (9). This is a linear program-

ming problem in �ð‘Þ and a quadratic programming problem in �i
and could thus be approached as a quadratically constrained

linear programming problem (Bach et al., 2004), for example.
The kernel coefficients �ð‘Þ weight the significance of particular

kernels and are therefore a measure of the relative importance of

different types of data in the final decision function. The different

types of data that are input to this decision function will likely

have different intrinsic scales. Thus, to account for this variabil-

ity across datasets, all base kernels are normalized to unit trace

norm in the experiments discussed later in the text.

2 METHODS

After MKL is complete, the kernel coefficients, �ð‘Þ, indicate the relevance

of different types of data. Thus, if �ð‘Þ is zero then data type ‘ is not

relevant or the information it contains may be implicit in another type of

data. Thus MKL can indicate that acquisition of certain types of data

may not be necessary. For a dataset such as METABRIC (Curtis et al.,

2012), the component types of data can have a large number of features

and the large majority of these features are likely to be irrelevant to

prediction of mortality risk. If irrelevant data substantially outweighs

relevant data then we must consider feature selection strategies. In the

context of multiple types of data, this feature selection would need to be

performed differently per type of data.

2.1 Feature selection

In this article, we start by considering feature selection in the context of

MKL. We will use a large number of kernels, with variable numbers of

features per kernel. Thus the algorithm finds which kernels, and hence

which features per data type, are most relevant for the given classification

problem. The feature set per kernel can be chosen through statistical scor-

ing (e.g. by ranking those features most statistically aligned with the class

labels) or by biological insight (e.g. by selection of a set of genes known to

belong to a specific pathway). To implement this approach we would need

to select an MKL method that typically gives a sparse combination of

kernel coefficients �ð‘Þ. We have selected the SimpleMKL method of

Rakotomamonjy et al. (2008) because of its observed sparse solution in

our previous studies (Damoulas et al., 2008; Ying et al., 2009a, b) and has

proven efficiency when the number of kernels is high (Kloft et al., 2011).

SimpleMKL performs an optimization over both the parameters of the

SVM (�i) and the kernel coeffients (�ð‘Þ) via an iterative gradient descent

method. This approach is efficient for high dimensional datasets, as

memory consumption remains stable during minimization, in contrast

to other implementations based on quadratically constrained quadratic

programming (Bach et al., 2004) or semi-infinite linear programming

(Lanckriet et al., 2004). Importantly, this particular MKL implementa-

tion uses a two-norm regularization leading to a sparse solution in the

kernel coefficients.

During construction of the base kernels, K
ð‘Þ
ij , features were grouped

into sets. The features in a specific set can be grouped by statistical sig-

nificance. We used the MATLAB bioinformatics toolbox rankfeature

function for this purpose. When grouping features by statistical score,

we found best results could be achieved using the t-test measure, using the

class labels of the training set. Once the features in each set are ranked by

statistical significance, an individual base kernel was constructed for each

set of the first 2, 3 and up to N features.

To give further flexibility in terms of the kernel function, for each

individual set of features, we used several different types of kernel

matrix. We used a linear kernel, as some of the data types had many

features (e.g. the EXP and copy number variability data) and so we are

considering a sparse set of datapoints in a high dimensional space. Thus it

is reasonable to assume datapoints from each class belong to linearly

separable sets and therefore a linear kernel is sufficient. We further

used polynomial base kernels with 2 and 3 degrees of freedom and

non-linear Gaussian kernels. Given our remarks about the separability

of the data, we found the method gave a value of zero for the kernel

coefficients for the Gaussian kernels. Thus the decision functions were

only dependent on linear and polynomial kernels in our experiments in

Section 3.2.

As a means for incorporating further biological information, we

derived additional base kernels each with a feature set based solely on

genes known to be members of a specific pathway. The pathway infor-

mation was derived from KEGG (Kyoto Encyclopedia of Genes and

Genomes. http://www.genome.jp/kegg/). We discuss these in more

detail in Section 3.3.

The algorithm therefore has significant flexibility over the set of base

kernels used in constructing the most appropriate decision function. Once

the algorithm reached an optimum for the objective function, the large

majority of the kernel coefficients �ð‘Þ had a value of 0.0 in subsequent

experiments and thus the corresponding kernels do not contribute to the

decision function. Non-zero coefficients indicate the informative kernels.

In the experimental Section 3.2, we consider the performance of the clas-

sifier based solely on single data types and multiple data types in addition

to performance with and without feature selection.

2.2 Introduction of a confidence measure

For many medical prediction problems, it would be useful to have a

confidence measure associated with a predicted label. For classification
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problems using MKL, several dedicated schemes have been proposed that

associate a probabilistic confidence measure with the class label.

Damoulas et al. (2008) proposed two schemes based on variants of the

Relevance Vector Machine, and Gönen (2012) proposed a variational

Bayes approach. The construction of Gaussian process models that use

multiple types of input data has also been considered (Archambeau and

Bach, 2011). Some of these schemes have had only limited success. Thus,

in Damoulas et al. (2008), we found that the use of probabilistic assump-

tions led to a test accuracy less than that achievable by non-probabilistic

classifiers.

Given the limited performance of some proposed probabilistic MKL

schemes, we decided to use a simple extension of current non-probabil-

istic methods, to introduce a confidence measure. Specifically, most MKL

methods have an intrinsic measure of confidence. Thus in (6) we intro-

duce the margin distance gðzÞ: the larger the absolute value of gðzÞ the

greater the degree of confidence in the predicted label. To interpret gðzÞ as

a probability measure, we fit a posterior probability measure. For binary

classification, we use the sigmoid pðy ¼ þ1jgÞ ¼ 1þ expðAgþ BÞ½ �
�1.

With binary labels yi 2 f�1, 1g, we define ti ¼ 0:5ðyi þ 1Þ 2 f0, 1g. The

parameters A and B are then found by minimizing the negative log like-

lihood of the training data via the cross entropy error function:

min
A,B
�
X
i

ti logðpiÞ þ ð1� tiÞ logð1� piÞ

" #

where pi is the sigmoid probability function evaluated at gðxiÞ (Platt,

1999). To minimize this function, we used the Levenberg–Marquardt

algorithm.

In our experiments in Section 3.2, we used this probability measure in

two ways. First, as commented, we investigate whether a gain in test

accuracy can be achieved by restricting prediction to a smaller cohort

of patients for which high confidence predictions can be made, declining

prediction on the remainder. Second, these datasets have input noise due

to variability in experimental measurements and the heterogeneity within

tumor samples. In addition, there is label noise, as patients first present at

various stages of disease progression. Given this consideration, we also

used the probabilistic measure on the training examples to remove train-

ing examples with ambiguous labels. Thus, for example, in an experiment

outlined later in the text, we remove all training examples with an asso-

ciated probability measure for the label below 0.8.

3 EXPERIMENTAL RESULTS

3.1 The dataset

In this study, we consider prediction of mortality risk using

breast cancer data from the METABRIC project. The

METABRIC data consists of clinical data, such as survival

period and data derived from EXP and CNV. This dataset is

derived from a collection of 2000 clinically annotated primary

breast cancer specimens with EXP and CNV data derived from

each sample, as described in Curtis et al. (2012). The expression

data have 48803 probes or features (based on an Illumina HT

12v3 platform) with data normalized as described in Curtis et al.,

2012. The copy number data were extracted using the Affymetrix

SNP 6.0 platform, normalized and matched in 19 607 gene re-

gions (Curtis et al., 2012). Some further clinical measurements

were available in addition to clinical outcomes. In our study, we

have used the following: the disease and treatment group [(i)

lymph node negative without chemotherapy, (ii) Estrogen

Receptor (ER) positive, lymph node positive, no chemotherapy

but hormone therapy, (iii) ER negative, lymph node positive and

chemotherapy and (iv) others], grade of disease, stage,

histological type (Invasive Ductal Carcinoma IDC, Invasive

Lobular Carcinoma ILC, IDCþILC, IDC tubular, IDC muci-

nous, other, other invasive and benign), ErbB2 Receptor (HER2)

status, age, tumor size, Nottingham Prognostic Index, tumor

cellularity and PAM50 (PAM50 Breast Cancer Intrinsic

Classifier) subtype by expression clustering. As outcome variable

we considered a simplified survival analysis, consisting of predic-

tion of survival versus non-survival at 2000 days. In subsequent

experiments, we used a dataset of 387 survival cases and 252 non-

survivors at 2000 days (a subset of the METABRIC data, as

some patients were followed-up for52000 days with no record

of mortality and would not qualify, for example).

3.2 The results

3.2.1 Using EXP and CNV data only In our first round of
experiments, we therefore considered the set of extensions of

MKL learning outlined in Sections 2.1 and 2.2, using EXP and

CNV data only. With reference to Figure 3, we first estimated the

test accuracy using the expression array data only with no feature

selection (EXP). Next we performed the same experiment on the

CNV data, again with no feature selection. In this case, we use a

standard SVM for training and test purposes. With this dataset,

we determined the error bars in Figure 3 using 5-fold cross-

validation with a prior random reshuffling of the sample order.

With EXP we get a test accuracy of 63:9� 0:8% and for CNV

60:8� 1:1%. If we perform MKL with these two datasets, we

improve the test accuracy (getting 65:3� 0:9%) because we are

using more information. Next we enabled feature selection with

MKL (labeled t-test in Fig. 3). On the training data only, we used

the t-test to rank features in both datasets according to alignment

with the class labels. We constructed kernels using the top 2

through to the top 15 features for both datasets. There was no

observed improvement in performance with this strategy, with a

test accuracy of 64:5� 2:0%. Owing to computational cost, we

did not enlarge the set of base kernels beyond the top 15 features

per dataset.

Fig. 3. This figure shows results for experimentation with EXP and CNV

data. The y-axis is the test accuracy expressed as a fraction and the x-axis

indicates the experiment considered. The figure compares the results of

using an SVM on each of the two datasets separately (EXP and CNV),

multiple kernel learning (MKL), feature selection by statistical score

(t-test, in combination with other measures), the use of pathway-based

kernels (Pathways) and the use of a probabilistic score associated with the

classifier, to remove ambiguously labeled training points (�out) and/or

restrict prediction to high confidence (þprob), as discussed in the text
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Next we introduced a set of base kernels each of which exclu-

sively used those genes belonging to known pathways from the

KEGG database (these are marked Pathways in the figure).

Feature selection by statistical score alone did not offer improved

performance consistently, nor did using these kernels together

with pathway kernels. However, feature selection by pathway

membership alone appeared to give a consistent improvement

with the added advantage of biological interpretability: we illus-

trate this gain in Figure 4. Our next variation was to introduce

the probabilistic measure on the output labels. In this case, we

started by only giving predictions with the most confident cases,

that is, the P-value must be �0.95 (probabilistic measure, PROB

in figures). This did improve test accuracy to 70:4� 3:5%, the

large spread being because of the smaller size of the predicted set.

Though some gain in test accuracy is achieved, it was at the cost

of loss of prediction on part of the patient cohort. Removal of

training examples with posterior probabilities50.8 (OUTLIER

in the figures) gave 67:2� 3:5%, while the combination of the

two strategies gave 71:1� 4:1%.

3.2.2 Using additional kernels based on clinical

information Breast cancer is known to have clinically defined
subtypes. One broad distinction is between estrogen-receptor

positive (ERþ) and negative (ER�) cases. The prognosis for

ERþ disease is much better than ER� disease and within the

category of ER� disease there is further differentiation between

ERBB2þ (or HER2þ) and the triple-negative subtype (that has

ER� , ERBB2�). Again the clinical outcomes for these latter

subtypes are distinct. Consequently, incorporation of such clin-

ical information is likely to boost test accuracy. In this section,

we consider the additional incorporation of ER-status informa-

tion alone and then the use of all the clinical information men-

tioned in Section 3.1, encoded into additional base kernels. In

certain cases, such as ER status, the information is binary valued.

In this case, we used Boolean variables to encode the kernel.

If this additional clinical data contained 42 label values, then

we used a set of Boolean variables to encode the label class

and hence construct the kernel.

From Figure 5 we see that the incorporation of further clinical

information significantly improves performance. Using EXP

array and CNV data only (EXPþCNV) gave the weakest test

performance even if we used MKL and pathway-based kernels.

A significant gain was made if we supplemented these kernels

with kernels based on ER-status (EXPþCNVþER). The best

performance was achieved if we supplemented the latter kernels

with kernels for all clinical covariate data (EXPþCNVþclinic).

This included ER-status and excluded the survival indicator, of

course. Using pathway-based kernels, removal of ambiguous

training examples and using a cautious classifier, we get a test

accuracy of 79:8� 1:9%. Using normalized kernel coefficients,

we found that the highest weight kernel was a pathway kernel

associated with immune response (KEGG:hsa04672). The

second highest weighted kernel was tumor size and clinical

data are generally highly ranked. The ninth most informative

was the Nottingham Prognostic index, a combined measure of

tumor size, lymph node involvement and grade. Age was 11th

rank, histological type 14th, tumor group 34th and PAM50 was

40th.
In Figure 5, the best overall test accuracy was achieved using

all available data from EXP array and copy number variability

through to clinical measures and ER-status. MKL was used to

learn and weight the significance of these different types of data.

Furthermore, pathway information was used implicitly by using

pathway data-based kernels for both the EXP array and the

CNV array data: that is, the respective kernels are constructed

using only those genes or CNV regions with known membership

of a given pathway. To improve accuracy, we further used a

probabilistic measure associated with the class label. Firstly, we

used the training set to construct this label and then removed

those training points with an ambiguous label (in this case the

probability of membership of the principal class was50.8). With

the predictions, we used this probabilistic measure to remove

predictions with an associated ambiguity for the class assignment

Fig. 5. This figure shows the results of a comparison between test accura-

cies with three different combinations: EXP array and CNV data only

(EXPþCNV), the latter kernels supplemented by kernels based on ER-

status (EXPþCNVþER) and the latter kernels supplemented with ker-

nels for all the clinical covariate data (EXPþCNVþclinic). The clinical

data includes ER-status. The y-axis gives the test set accuracy for survival

to 2000 days. The best combination is to use all the clinical data, EXP

and CNV data encoded into pathway-based kernels, together with re-

moval of ambiguously labeled training datapoints �outlier and the use

of a cautious classifier þprob via a probabilistic confidence measure

Fig. 4. In this figure, we compare the use of pathway-based kernels only

(Pathway) with addition of kernels based on a statistical scoring on the

training data (Pathway and t-test) and the use of purely statistical kernels

(t-test). The y-axis gives the test accuracy as a fraction. The use of kernels

based on statistical ranking (t-test) seems to degrade test accuracy, and it

is best to use kernels based solely on pathway information

842

J.A.Seoane et al.

F
, 
, 
,
, 
, 
p
greater than or equal to 
, 
due to
,
less than 
F
, 
which
is
, 
S
,
, 
, 
, 
,
more than 
,
gene expression
multiple kernel learning
, 
, 
,
, 
is
 (NPI)
, 
, 
, 
, 
, 
gene expression
Multiple kernel learning
, 
-
gene expression
, 
,
, 
less than 
, 


(the probability of membership of the given class was 50.95).

Consequently, the predictor only made predictions on a cohort

of 430 samples from 621 with a cut-off on the probability of

P¼ 0.95. In Figure 6, we illustrate variation in test accuracy

and the fraction of patients for which predictions are made,

when using a cut-off on the confidence measure and removing

ambiguously labeled datapoints.

3.2.3 Comparison with other approaches To validate the per-
formance of our approach, we compared it with previous data

integration methods, which have been suggested as state-of-the-

art. With a variety of prospective methods, we selected represen-

tative algorithms from several different approaches. In the case

of ensemble models, we chose a bagging method that has been

widely used in genomic analysis, based on Random Forest

(Breiman, 2001) and using the R package randomForest

(RandomForest in Fig. 7). For a boosting model, we chose a

Generalized Boost Regression Model (GBM in the figure), an

extension of Friedman’s Gradient Boosting Machine (Friedman,

2001), which is implemented in the R package gbm. As a further

comparator, we chose an ensemble implementation based on

blending classification and regression models, via a greedy step-

wise approach, and proposed by Caruana et al. (2004), available

in GitHub (https://github.com/zachmayer/caretEnsemble) and

modified to work with multiple data sources (Ensemble in the

figure). This particular model emulated the winning ensemble

model used in the Breast Cancer Prognosis Challenge (Chen

et al., 2013), which combined a boosting regression model

(GBM), a regularization model (Elastic-Net Generalized Linear

Model, using the R package glmnet) and k-nearest neighbors

(using the R-package Caret implementation). We further

included a mixture of experts model (Lê Cao et al., 2010, mixture

experts in the Figure). This latter implementation only permits

integration of two datasets: we chose EXP and clinical data, for

best competitive performance. We also compared our model with

the supervised sparse Canonical Correlation Analysis (CCA) im-

plementation described in Witten and Tibshirani (2009)

(sparseCCA). Finally, to compare with a baseline MKL without

optimization of the kernel coefficients, we included MKL with

uniform kernel weights (Uniform Weights FSMKL). The

approach outlined in this article is labeled FSMKL (for MKL

learning with feature selection), and is given as 74:2%� 1:8,
without the improvement derived from cautious classification,
for comparison (see Fig. 6).

We compared our method with these alternatives using the
same sets of data, the exception being mixture of experts where
only EXP and clinical data were used. For each method, we ran

tests on validation data, if parameter values had to be set, and all
methods were evaluated using 5-fold cross-validation. As illu-

strated in Figure 7, the MKL approach proposed in this article
outperformed the test accuracies for the stated alternative meth-
ods. Surprisingly, the third best result was obtained by using the

same MKL implementation, but with uniform kernel coeffi-
cients. This suggests that the relative weighting of the different
types of data is less important than including a wide variety of

different types of data, including pathway information. Although
some of these alternative methods allow for gene prioritization,

or can indicate which type of data has most influence on sound
prediction, our approach permits identification of the most im-
portant pathways, and the most important genes in each path-

way, while also obtaining a higher test accuracy compared with
these alternative approaches.

3.3 Interpretation of the pathway-based kernels

Because we are using pathway-based kernels, the relative value of
their respective kernel coefficients, �ð‘Þ, will indicate their relative
influence on survival. In all, up to 146 pathway-based kernels

were used by the various methods considered in this article (i.e.
they had �ð‘Þ 6¼ 0). Of these, 98 have been cited in the literature as

having an influence on survival outcome for at least one type of
cancer, with the majority related to survival outcome in breast
cancer. The Table in the associated Supplementary Material lists

all these pathways together with associated PUBMED links. In
this section, we therefore discuss these pathways and similarities

between our analysis and the cluster model and pathways dis-
cussed by Curtis et al. (2012).
Using unsupervised learning, Curtis et al. identified 10 puta-

tive clusters or disease subtypes and discussed pathway enrich-
ment within these clusters. The two clusters with worst survival
outcome were labeled Int2 and Int5. For their pathway analysis,

Curtis et al. used the Ingenuity pathway analysis software, which

Fig. 6. As the cut-off P-value is changed (x-axis), determining the lowest

tolerated confidence level, the prediction accuracy alters: this is given by

the left-hand axis and the solid curve. As the P-value is increased the

accuracy can increase but the fraction of the data on which predictions

are made decreases (dashed curve), reducing to 69.2% of the patient

cohort at a cut-off of P¼ 0.95

Fig. 7. This figure gives the test accuracies for the method outlined in this

article (FSMKL), against other data integration techniques that are

described in the accompanying text (5-fold cross validation was used).

All comparisons are with (EXPþCNVþclinical) data, except the mixture

of experts model, which only uses (EXPþclinical)
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includes other pathways in addition to KEGG pathways. For

this reason, a direct comparison is not possible, but we can con-

sider if pathways present in our analysis are also covered in the

pathway analysis of Curtis et al. Using all the clinical data,

the EXP and CNV data types, and with survival as outcome,

our MKL method used 81 pathway-based kernels, of which 27

are enriched in the Int2 cluster and 21 in the Int5 cluster. If we

restrict to EXP, CNV and ER-status only for input data, our

MKL method used 83 pathways, of which 28 are present in the

Int2 cluster and 23 in the Int5. In the Supplementary Material,

we give a complete list of the pathways used, associated scores

and scores of Curtis et al. (these scores are not comparable).
With our MKL analysis, one of the highest significance path-

ways is RNA transport, which has been previously reported as a

key pathway in the recurrence of non–small-cell lung cancer (Lu

et al., 2012). Other significant pathways were cell adhesion mol-

ecules, endocytosis, the insulin signaling pathway and the mTOR

signaling pathway. The arachidonic acid metabolism pathway

(Iwamoto et al., 2011; Nassar et al., 2007) and N-glycan biosyn-

thesis (Dennis et al., 1999) both feature and have reported asso-

ciations with breast cancer development, as does SOCS

[Suppression of cytokine signalling pathway (Sasi et al., 2010)],

which is a negative regulator of the JAK-STAT signalling path-

way and it is associated with improved clinical outcome in breast

cancer. As also reported by Curtis et al., 2012, the Systemic

Lupus Erythematosus pathway featured and, with an association

to ER-status, also has an association with survival-status.

4 DISCUSSION

We now discuss some broad conclusions that can be drawn from

this study, various ways in which classifier test accuracy can be

further improved and other contexts in which we could apply the

method outlined.
Two key conclusions coming from our study are the import-

ance of incorporating prior knowledge and performing feature

selection. Prior knowledge was represented by pathway informa-

tion. Where appropriate, data were grouped into clusters repre-

senting their particular pathway membership. Using feature

selection within each such cluster, we use the most representative

features within each pathway. Because of the sparse nature of

this particular MKL implementation, we can select a set of path-

ways that are most relevant to survival prediction.
As expected, classifiers that can use all the available data are

more powerful that those that use only one type of data. MKL

methods also have the advantage that they weight the contribu-

tion of individual data types, and thus indicate their relative

significance. Our study highlighted the importance of using all

available clinical data alongside expression array and CNV data.

In addition, expression and CNV data were best incorporated

into the classifier by using pathway-based kernels. Further im-

provements came from using a cautious classifier that only makes

predictions on a restricted class of high confidence cases and by

removal of ambiguously labeled samples from the training data.

These last improvements highlight the importance of using a

confidence measure associated with the label assignment and

motivate further work on devising robust probabilistic classifiers

for use with MKL.

Using these various measures, predictive performance moved

from �64% for prediction with EXP array data alone, to almost

80%, with the qualification that prediction is made on 69.2% of

individuals. However, it is reasonable to expect that this test

accuracy can be improved beyond 80% through the use of add-

itional types of data and further refinement of the method.

MicroRNA array data, methylation data and condensed infor-

mation from images of tumor biopsies are complimentary types

of data, which could provide additional base kernels, in addition

to string kernels (Campbell and Ying, 2011; Shawe-Taylor and

Cristianini, 2004), incorporating sequence data. Furthermore,

expression by certain individual genes [e.g. p27 (Alkarain et al.,

2004)] or small sets of genes [e.g. associated with TP53, (Jamshidi

et al., 2013)] has documented correlation with survival status,

and these genes could be given extra weight by assigning them

individual base kernels.

For the methodology, there are some further directions that

could be considered. Rather than using KEGG pathway data,

we could investigate other approaches to feature selection, such

as filtering features based on Gene Ontology labels. The kernel

coefficients would then indicate which Gene Ontology labels

are most relevant to predicting survival outcome. If one of

the two classes is viewed as more clinically important than the

other, then we could use an asymmetric soft margin (Veropoulos

et al., 1999) during SVM training: this improves test accuracy

on one class, at the expense of accuracy on the other.

The SimpleMKL method used in this article has associated

publically available software (http://asi.insa-rouen.fr/enseig

nants/arakoto/code/mklindex.html); it is an effective and repre-

sentative MKL algorithm and it gives a sparse representation

over the set of base kernels. However, a large number of MKL

methods have been proposed (Gönen and Alpaydin, 2011) and

some methods with a less sparse solution may give higher accur-

acy (Kloft et al., 2011). In short, additional data, further refine-

ment of the method and the use of a cautious classifier could lead

to a test performance nearer 90%. This performance, though,

would be achieved at the cost of a wide range of genomic and

clinical measurements and does not result in prediction with all

patients.
Nomograms and simple clinical measures such as ER-status

are reliable indicators of disease progression for breast cancer.

A predictive method, such as that described, would need to be

competitive against these. However, it is in other contexts that

similar studies could be effective. Thus, for prostate cancer, there

is a well-recognized problem distinguishing aggressive from low-

risk cancer. In the US, �20% of men will be diagnosed with

prostate cancer, whereas only 3% would die from the disease

(Altekruse et al., 2010). With limited ability to predict risk,

many tumors are unnecessarily labeled as high risk and treated

aggressively. It would be interesting to see if the test accuracies

stated in this article can be achieved with prostate cancer and

other cancers. This would require similar large datasets with a

broad range of genomic and clinical measurements. To get

good predictive performance, the dataset would need to contain

a sufficient number of aggressive disease examples and not

just represent the spectrum of disease observed in the general

population—which is numerically weighted toward low-risk

disease.
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