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Abstract: The high conservation of nucleotides of the T-loop, including their chemical identity, are
hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural char-
acteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically
with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique
functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified
nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered
organism, attesting for an independent but convergent evolution of the post-transcriptional modifica-
tion processes. The driving force behind this is the preservation of a native conformation of the tRNA
elbow that underlies the various interactions of tRNA molecules with different cellular components.
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1. Introduction

Transfer RNAs play a central role in deciphering the genetic code during the complex
multistep translation process. To fulfil this main cellular function, each isoacceptor species
has to be sufficiently distinct to serve as substrate for a large array of specific proteins
and enzymes such as modification enzymes and cognate aminoacyl-tRNA synthetase
(identity problem), while it also has to be sufficiently identical to serve in a uniform way
for interactions with other partners such as elongation/initiation factors and with elements
of the ribosome during the various steps of the translation process (conformity problem).
To this end, these small RNA molecules have to fold into a uniform 3D-conformation, the
so-called L-shaped architecture (reviewed in [1,2]). Conservation of certain nucleotides
at key positions combined with chemical alterations of selected nucleotides catalyzed by
specific enzymes during the post-transcriptional maturation processes contribute to solve
both the identity and conformity problems of the tRNA repertoire within a given cell.
These also allow to regulate tRNA plasticity according to the physiological conditions
of the cell (especially the growth temperature) and fine-tune their interactions with the
various cellular components of the translation machinery (reviewed in [3,4]). Notice, a few
metazoan mitochondrial tRNAs lack the D-or T-arm and contain less modified nucleotides
as the cytoplasmic counterparts. However, based on computer simulations, the overall
L-shaped conformation of these “truncated” tRNAs appears to be maintained through
combinatorial networks of alternative tertiary interactions (for details see [5,6]). These
atypical tRNAs will not be considered in this review.

Here, we examine the structural parameters that allow fully mature cytoplasmic
tRNAs from different origins (Bacteria, Eukarya, and Archaea) to adopt a universal L-shaped
three-dimensional structure. Particularly important is the remarkable conservation of
nucleotides (modified or not) at each of the 7 positions of the T-loop. A few nucleotides of
the T-loop also specifically interact with a few conserved bases of the D-loop. The resulting
L-shaped tRNA tertiary structure is further stabilized by additional tertiary base pairs
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between conserved nucleotides of the D-loop and of the V-loop. While conservation of
nucleotides at given positions of the present-day tRNAs results from long coevolution
of tRNA population with all elements of translation machinery [7,8], the enzymes that
produce identical modified nucleotides are often distinct from one organism to another.
This is particularly true when considering organisms belonging to different Domains of Life,
attesting for convergent type of enzyme evolution for maintaining a universal functional
tertiary tRNA fold.

2. The Intricate T-D-Loop Anatomy

Figure 1A displays the nearly universal secondary structure of mature tRNA sequences
in which the conserved and semiconserved nucleotides present in both the T-loop and
the D-loop are highlighted. In the T-loop, those nucleotides which are usually post-
transcriptionally modified are indicated in red (Figure 1A,B and Figure 2). Their presence
is dependent on both the type of isoacceptor tRNA and the group of organisms considered
(Bacteria, Eukarya, and Archaea) (Figure 1C). In the D-loop, only 2′-O-ribose methylated G
at position 18 (Gm) is mentioned among others not discussed here. The case of initiator
tRNA of Eukarya is special because an A instead of the universally conserved U is found at
position 54 of T-loop [9,10].
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domics [10]. The 2′-O-methylation of m1I57 into m1Im57 is putative (see text). 

 
Figure 2. Chemical structure of the modified nucleotides found in the T-loop and G18. 

Figure 1. Presence of modified nucleotides in the tRNA elbow structure. (A) Two-dimensional
representation of tRNA emphasizing conserved residues involved in D-and T-loop interaction. In
red are the residues subject to enzymatic modifications. The little blue box on the right corresponds
to the one in Figure 3 (see text for explanation). R stands for purine, Y for pyrimidine, and N for
any of the four canonical nucleotides. (B) Residues at G18 and in the T-loop and their observed
modifications are shown in red. (C) Distribution of modified residues of the T-loop among organisms
of the three Domains of Life. Acronyms for modified nucleotides are those used in Modomics [10].
The 2′-O-methylation of m1I57 into m1Im57 is putative (see text).

X-ray diffraction data of several tRNAs reveal the presence of a trans Watson–Crick/Ho
ogsteen pair between the uridine-54 and the adenosine-58 (both in anti-conformation) [11–13].
In the case of eukaryotic tRNAi

Met, a longer purine–purine Hoogsteen pair (A54-A58) is
found [14]. This conserved U54 (A54)-A58 base-pair stacks with the conserved G53-C61
base-pair at the end of the helical T-arm. This forces the conserved pyrimidine-60 (notified
as Y) and nucleotide-59 (notified as N for any type of base, but mostly A or U) to flip out
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of the remaining 3-member mini-T-loop composed of (i) the conserved U55, which stacks
with U54 and interacts with G18 of the D-loop, (ii) C56, which pairs with G19, and (iii)
purine-57 (notified as R; mostly G in Bacteria and Eukarya but A in Archaea). The residue R57
is sandwiched between A58-U54 and G19-C56. Thus, the series of nucleotides C61, A58,
G18, R57, and C56-G19 are forming a continuous stack (see right part of Figures 1A and 3).
The flipped dinucleotide, located between the T- and the D-domain is further stabilized out
of the rest of T-loop by an H-bond between the 5′-phosphate of pyrimidine 60 and N4 of
C61. This explains the strict conservation of the G53-C61 base pair at the end of the T-stem.
In this intricate network of interacting nucleotides, key contacts are the U54-A58 Hoogsteen
pair (highlighted in red in Figure 3) and the base pairs formed between the conserved
U55 and C56 of the T-loop and the conserved G18 and G19 of the D-loop (highlighted in
black in Figure 3). The region where the D-loop and the T-loop interact is designated as the
tRNA elbow [15]. The final functional L-shaped conformation is further stabilized by a few
additional tertiary base pairs between other conserved or semiconserved nucleotides of the
D-loop and V-loop, such as the conserved so-called Levitt base-pair R15-Y48 [15,16] and
the conserved triple interacting bases R21-A14-U8 [2,17]. Microstructural heterogeneities
in the hinge part of the 3D-core results mostly from the variable number of additional
bases present in the D-loop (often dihydrouridine) and V-loop of the different isoacceptor
tRNAs (indicated by small blue triangles in Figure 1A). This variability in the hinge region
allows some tRNA flexibility but does not alter much the global canonical L-shaped tRNA
architecture that is mostly dominated by the T-D-loop kissing-type of complex (elbow).
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tion is in red, while G18 and G19 are in black. 
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ribose puckering of the modified nucleotides and reinforces the hydrophobicity of the 
base. This increases base stacking with the neighboring bases G53 and Ψ55. Methyl 
groups also increase steric hindrance, block hydrogen bonds at Watson–Crick positions, 
and increase resistance against hydrolysis by nucleases. In thermophilic Bacteria and Ar-
chaea (growing at temperatures above 60 °C), the uridine-54 is almost invariably hyper-
modified into thiolated derivatives (m5s2U or m1s4Ψ) [20,21]. Remarkably, hypermodified 
m5s2U and m1s4Ψ at position 54 are isosteric, which implies that in both cases, the bulky 
highly polarizable thio group reinforces the 3′-endo ribose puckering of the nucleotide. 
This considerably enhances the stacking interaction with the nearest-neighboring nucleo-
tides G53 and Ψ55 [22] and allows base pairing in an identical way with the trans-
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Methylation of the 2′-hydroxyl of the ribose favors the 3′-endo-conformation and 
changes the hydration sphere around the oxygen of the ribose [23]. Further, 2′-O-ribose 
methylation of cytidine at position 56 (Cm) was found in tRNAs of the crenarchaeon Py-
robaculum aerophilum [24] and also of N1-methyl-inosine at position 57 (m1Im) in tRNAs of 

Figure 3. Scheme recapitulating the organization of the elbow within the general 3D organization of
tRNA. (A) Rectangles correspond to nucleotides involved in stacking or base-pairing with another
nucleotide of the T- and D-loop. Residues involved in the trans Watson–Crick/Hoogsteen interaction
are in red boxes, other residues of the T-loop are in blue boxes, while those of the D-loop are in yellow
boxes, except G18 and G19 in black boxes. The possible modifications of each residue are indicated
in red. (B) Schematic representation of the 3D architecture of tRNA molecule. (C) The 3D structure of
tRNA elbow as found in the crystal structure at 1.93 Å resolution of yeast tRNAPhe harboring m5U54,
Ψ55, and m1A58 [13]. The trans Watson–Crick/Hoogsteen interaction is in red, while G18 and G19
are in black.

3. Modified Nucleotides within the T-Loop and G18 Stabilize the Elbow of tRNA

The chemical structures of the various modified nucleotides found in the T-loop are
depicted in Figure 2. Isomerization of U55 into the universally conserved Ψ55 favors
the 3′-endo sugar pucker as in the A-form of RNA and enhances the stacking interaction
with the trans Watson–Crick/Hoogsteen pair U54-A58 and the nearest-neighbor purine
57 [18]. The additional H-bound at N1 of Ψ55 involves the 5′-adjacent phosphate via a
coordinated water molecule [19]. Likewise, methylation of the C5 atom of U54 into m5U
and isomerization of U54 into Ψ54 followed by the N1-methylation of Ψ54 similarly favors
the 3′-endo ribose puckering of the modified nucleotides and reinforces the hydrophobicity
of the base. This increases base stacking with the neighboring bases G53 and Ψ55. Methyl
groups also increase steric hindrance, block hydrogen bonds at Watson–Crick positions, and
increase resistance against hydrolysis by nucleases. In thermophilic Bacteria and Archaea
(growing at temperatures above 60 ◦C), the uridine-54 is almost invariably hypermodified
into thiolated derivatives (m5s2U or m1s4Ψ) [20,21]. Remarkably, hypermodified m5s2U
and m1s4Ψ at position 54 are isosteric, which implies that in both cases, the bulky highly
polarizable thio group reinforces the 3′-endo ribose puckering of the nucleotide. This
considerably enhances the stacking interaction with the nearest-neighboring nucleotides
G53 and Ψ55 [22] and allows base pairing in an identical way with the trans-Hoogsteen
nucleotide 58.

Methylation of the 2′-hydroxyl of the ribose favors the 3′-endo-conformation and
changes the hydration sphere around the oxygen of the ribose [23]. Further, 2′-O-ribose
methylation of cytidine at position 56 (Cm) was found in tRNAs of the crenarchaeon
Pyrobaculum aerophilum [24] and also of N1-methyl-inosine at position 57 (m1Im) in tRNAs of
Pyrobaculum islandicum and of Pyrodictium occultum. However, in this latter case information
comes from analysis of bulk tRNA with no evidence for the presence of m1Im at position
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57 exclusively [25]. 2′-O-ribose methylation of m5U at position 54 (m5Um) exists in certain
tRNAs of Eukarya [26]. Residue Gm18 in the D-loop is found in tRNAs of all Domains
of Life but are more frequently found in thermophilic Bacteria and hyperthermophilic
Archaea [20]. This methylation is diagonally opposite to the 2′-O-methylation of C56 (Cm)
that base pairs with the conserved neighboring G19.

Methylation of the N1 atom of adenosine 58 blocks a Watson–Crick position and favors
the formation of an intraloop Watson–Crick/Hoogsteen pairing with m5U54 or Ψ/m1Ψ54.
The electropositive character of this methylated adenosine also promotes ionic interac-
tion with the negatively neighboring charged phosphates of the backbone. In Bacteria
and Eukarya, the conserved purine 57 is more often G57 than A57, while in thermophilic
and hyperthermophilic Archaea, a neutral N1-methylinosine (m1I) is often found instead.
Such deaminated adenosine can establish H-bonds as a guanosine. Nucleotide in posi-
tion 57 (G57 or derivatives of A57) is sandwiched between the base pairs G18-U55 and
G19-C56 of the tRNA elbow (Figure 3). Notice, the presence of m1A58 and/or m1I57
depends much on the archaeon considered and the type of tRNA analyzed (especially
the nature of nucleotide-59, see below). For example, most tRNAs from halophilic Ar-
chaea such as Haloferax volcanii display m1I57 and unmodified A58 [27,28], while tRNAs of
thermophilic and hyperthermophilic Archaea often display m1A58 and/or m1I57 [29] and
references therein.

In sum, the highly conserved nucleotide modifications of the T-loop and of G18 of the
D-loop mainly serve to enhance the intrinsic stability of the tRNA elbow and also to enhance
the affinity between the T- and D-loop, especially in the thermophilic organisms [30].

4. The Enzymatic Toolbox for Nucleotide Modifications at Positions 18 (D-Loop) and
54–58 (T-Loop) of tRNA

The elbow region of tRNAs of Bacteria and Eukarya contains characteristic conserved
noncanonical nucleotides at positions 18, 54, 55, and 58, while in Archaea, additional
conserved modifications also occur at positions 56 and 57 (Figures 1 and 2). They are all
catalyzed by specific enzymes during the tRNA maturation process (Figures 4 and 5).

4.1. G18 Modification in the D-Loop

In tRNA species of most Gram-negative Bacteria the highly conserved guanosine-18 is
converted to a 2′-O-methylated derivative (Gm). Gm18 is absent in Gram-positive Bacteria
with a few exceptions such as the thermophilic Geobacillus sp (reviewed in [31]). This
modification is accomplished by the dimeric S-adenosyl-L-methionine (SAM)-dependent
methyltransferase (MTase) TrmH belonging to the SPOUT superfamily [32] (COG0566–
Cluster of Orthologous Genes, see [33]). Two types of TrmH enzymes exist with different
tRNA recognition specificities: one methylating all tRNA types, like TrmH of Thermus
thermophilus, and the other one methylating only a specific subset of tRNAs like TrmH of
Escherichia coli and Aquifex aeolicus [34–36], reviewed in [37].

In yeast, Gm18 formation is catalyzed by the dimeric TRM3 MTase also belonging to
the SPOUT superfamily (COG0566). Yeast TRM3 exhibits a very long N-terminal extension
of unknown function [38]. The human homologous enzyme is TARBP1 [39].

In Archaea, while Gm18 has been experimentally identified in tRNA of different ther-
mophilic organisms [29], no stand-alone homolog of TrmH/TRM3 has yet been identified.
Instead, an alternative pathway involving a C/D box guide has been suggested, as in
the case of 2′-O-ribose methylation of C56 of the T-loop (see below) and also for other
nucleotides in the anticodon loop and position 50 of the T-arm [40,41]. Methylation will
then occur via a nucleoprotein complex involving the ad hoc C/D box guide RNA, two
protein cofactors Nop5 and L7Ae, and a SAM-dependent fibrillarin-like MTase (FlpA,
belonging to COG1889).
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Figure 4. Enzymatic systems involved in post-transcriptional modifications of selected nucleotides
of the D-and T-loop of tRNAs of various organisms. Acronyms of enzymes are boxed with various
backgrounds according to the type of modification together with the COG (Cluster of Orthologous
Genes) number. The Greek symbols indicate the oligomerization state of the functional enzymes.
Only in a few cases, the enzyme corresponding to a given modification remains unknown (indicated
by?). The 2′-O-methylation of m1I57 into m1Im57 is putative (see text). Acronyms for modification
enzymes are those used in Modomics [10], except for those in human [39]. gRNA stands for guide
RNA. A, B, and E refer, respectively, to Archaea, Bacteria, and Eukarya.

4.2. Modification of A58 and A57

N1-methyladenosine (m1A) is often present at position 58 of tRNAs of organisms
belonging to all three Domains of Life. Its formation, role, and structural implications has
been the subject of various reviews [42–46].

In Bacteria, like T. thermophilus, for which m1A58 is present in all sequenced tRNAs,
the enzyme catalyzing this N1-adenine methylation is the homotetrameric TrmI [47,48].
This SAM-dependent enzyme belongs to the Rossman fold-like (RFM/class I) family of
MTases (COG2519) and is site-specific for the N1-position of A58 [47]. The T-loop in
combination with the aminoacyl-stem and the variable region are required for efficient
methyl transfer [49].

In Eukarya, like yeast and human, a site-specific A58 TrmI-like ortholog exists but
displays a different protein architecture. Here, the enzyme is a heterotetramer composed of
two different kinds of subunits: a catalytic SAM-binding protein (TRM6/TRMT6 belonging
to RFM/class I) and an evolutionary related RNA binding protein (TRM61/TRMT61A),
both belonging to COG2519. As for bacterial TrmI, eukaryal N1-adenine MTase is site-
specific for A58 and requires the T-loop in combination with the aminoacyl-stem [50–53],
reviewed in [54].

In hyperthermophilic Archaea, like Pyrococcus furiosus or Pyrococcus abyssi, the TrmI
ortholog works as a homotetramer. However, at variance with the bacterial enzyme, it
involves intersubunit disulfide bridges that reinforce the tetrameric oligomerization [55,56].
This archaeal TrmI can work in vitro on a minisubstrate composed of only the T-branch [50].
Remarkably, it methylates the N1-atom of both neighboring adenosines 58 and 57 of the
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T-loop, with a preference for position A57. This region specificity depends on the presence
of an adenosine at position 59 of tRNA. In absence of A59, archaeal TrmI behaves as an
A57-specific MTase [57]. A model based on fluorescence measurements of 2-aminopurine
placed at positions 57 or 58, showed that methylation is sequential, forming m1A57 before
m1A58 [58]. In archaeal tRNAs, m1A57 never accumulates, i.e., the 6-amino group of
adenine is always very efficiently deaminated by a new type of hydrolytic deaminase (still
to be identified) leading to formation of 1-methylinosine (m1I57) [59,60]. The nucleotide
57 is sandwiched between G19-C56 and G18-U55 (see above). The still unknown m1A-
dependent deaminase removes the positive electrostatic charge of the N1-atom of m1A
(Figure 2), leading to the neutral m1I residue. Although it is difficult to evaluate the
molecular effects of the latter modification, it is conceivable that m1I stabilizes stacking
interactions better than m1A. On the contrary, the presence of a positively charged m1A58
has been demonstrated to be critical for the folding of the T-loop and proper functioning
of certain tRNAs (discussed in [61,62]). In the majority of other bacterial and eukaryal
tRNAs, nucleotide 57 is usually G or unmodified A. As for N6-methyladenosine (m6A)
in mRNA, m1A in human tRNAs has been found to be occasionally demethylated by a
specific enzyme [63], reviewed in [64].

4.3. Modification of C56

The presence of 2′-O-methylcytidine (Cm) at position 56 is a hallmark of archaeal
tRNAs. It has never been found in any tRNA of Bacteria nor of Eukarya. As for the formation
of Gm18 (see above), two different evolutionary unrelated enzymatic mechanisms exist
to catalyze this ribose methylation. In most Archaea, Cm56 formation is achieved by the
stand-alone SAM-dependent Trm56 belonging to COG1303 [65]. Little is known about
tRNA recognition by this enzyme. Nevertheless it seems that besides the C56, the enzyme
recognizes more than just the T-stem-loop, at least in vitro and with unmodified tRNA tran-
scripts as substrates [65,66]. This dimeric MTase belongs to the same SPOUT superfamily
as the G18-MTase (TrmH/TRM3/TARBP1) but belongs to a different COG [37,67]. In other
Archaea, such as the hyperthermophilic Pyrobaculum aerophilum, Cm56 formation is achieved
by a nucleoprotein complex composed of a fibrillarin-like MTase (FlpA, COG1889), two
protein cofactors (Nop5 and L7Ae) and a specific small C/D guide RNA that allows the
FlpA enzyme to find its target nucleotide [65], reviewed in [24]. This enzymatic pathway
is the same as the one catalyzing formation of Gm18, except that distinct guide RNAs are
used. Interestingly, a simplified heterodimer composed of P. abyssi FlpA and Nop5 can
perform SAM-dependent 2′-O-methylation of RNA in vitro independently of L7Ae and
C/D guide RNA. This stand-alone activity of dimeric FlpA-Nop5 may reflect the ancestral
activity of the enzyme, before its recruitment into larger complexes [68].

4.4. Modification of U55

Pseudouridine (Ψ) at position 55 is the most universally conserved modified nu-
cleotide in tRNA of all three phylogenetic Domains of Life. Nevertheless, as for several
other modified nucleotides discussed in this work, different enzymatic strategies are used
to catalyze this simple isomerization reaction in different organisms.

In Bacteria and Eukarya, stand-alone Ψ55-synthase TruB (in E. coli) and its ortholog
PUS4/TRUB1 (in Saccharomyces cerevisiae/human) catalyze this modification [69–71]. These
monomeric enzymes belong to COG0130, which also includes the close homolog Cbf5 (see
below). Bacterial TruB in complex with its RNA substrate is probably the best characterized
system involving a modification enzyme [72–75]. This bacterial TruB enzyme, as well as its
eukaryal orthologs PUS4/TRUB1 require no cofactors and accept as substrate a simple 17
base oligonucleotide analog to the T-arm and containing the sequence 53-GUUYRANYC-
61 [70,76]. This explains why these enzymes efficiently work on unmodified precursor
tRNAs (including synthetic molecules) and on many cellular RNAs (other than tRNAs)
in vitro and in vivo, as long as the target position in the RNA substrate remains accessible
to the enzyme. Besides its catalytic function, bacterial TruB also acts as RNA chaperone [77].
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In Eukarya and Archaea, but not in Bacteria, two additional enzymes are implicated
in Ψ55 formation. The first usually functions in a ribonucleoprotein complex that utilizes
a well-structured box H/ACA guide RNA to target the sequence to be modified, two
or three protein cofactors (Nop10, Gar1, and Nhp2 in Eukarya and Nop10, Gar1, and
L7Ae in Archaea) and the enzyme Cbf5 belonging to the same COG0130 as PUS4/TRUB1.
In Eukarya, such H/ACA guided enzymatic system is used essentially for site-specific
catalysis of Ψ formation in various cellular RNA targets, mostly rRNA, and not tRNA
(reviewed in [78–80]). In Archaea, Cbf5 can function as a stand-alone Ψ-synthase for tRNA
Ψ55 formation, at least in vitro [81–84]. This guide-independent tRNA specific activity of
archaeal Cbf5 is enhanced in vitro by the proteins Nop10 and Gar1, probably by stabilizing
the active conformation of Cbf5 [82,85–87]. It is worth mentioning that the Haloferax volcanii
cbf5 deletion strain still contains tRNA carrying Ψ55, attesting that Cbf5 is not the main
physiological Ψ55 synthase, at least in this archaeon [88]. This is another example of the
probable ancestral activity retained in the present-day Cbf5 enzyme that was recruited into
larger complexes later during evolution.

In Archaea, the genuine enzyme catalyzing Ψ55 formation in tRNA is the stand-
alone Pus10 belonging to COG1258, phylogenetically unrelated to TruB/PUS4/TRUB1
(COG0130) [81,83]. This monomeric Ψ-synthase needs no protein cofactors and is present
in a large variety of Archaea (mostly in Euryarchaeota and a few Crenarchaeota). It is also
present in a few Eukarya (including human) but not in Bacteria [89,90]. In archaeal tRNAs
the main target is U55, but depending on the archaeon considered, Pus10 behaves as a
region-specific enzyme catalyzing Ψ formation at both positions 55 and 54 (see below).

In human, the situation is more complicated due to the coexistence of nuclear/cytoplas
mic Ψ55-specific TRUB1 and of mitochondrial TRUB2 (not discussed here). While recombi-
nant human PUS10 can generate Ψ55 in human cytoplasmic tRNAs in vitro [91], its main
cellular function is to promote pseudouridylation of U54 in only a small subset of the total
cytoplasmic tRNA population (see below), the formation of Ψ55 in the majority of the other
human tRNAs being achieved in the nucleus by TRUB1.

4.5. Modification of U54

Methylation of the C5-atom of uridine at position 54 (m5U, also referred as ribothymi-
dine rT), is the second most commonly found modified nucleotide in tRNAs of Bacteria
and Eukarya. In Archaea, it is only found in a small subset of organisms belonging to
Thermococcales and the sister lineage Nanoarchaeota.

In E. coli, m5U54 formation is catalyzed by the monomeric SAM-dependent TrmA
enzyme of the RFM superfamily belonging to GOG2265 [92]. Its presence, but not its
enzymatic activity is essential for E. coli viability [93,94]. This is probably explained by
the chaperone activity of TrmA during tRNA maturation [95]. In yeast, the orthologous
enzyme is TRM2 and in human TRMT2A [96,97].

In Bacteria, the use of SAM as a methyl donor by the TrmA enzyme is common for
m5U54 formation in β-γ-and ε-Proteobacteria, while in Firmicutes, α-and δ-Proteobacteria
as well as in Cyanobacteria and Deinococci, the enzyme responsible for the methylation
of U54 is the flavoprotein TrmFO. This enzyme uses N5, N10-methylenetetrahydrofolate
(CH2 = THF) in a more complex mechanism than the rather simple methyl transfer from
SAM. Here, a methylene group is transferred first and a subsequent reduction step involv-
ing the flavin adenine dinucleotide hydroquinone (FADH-) is required to form the final
methylated derivative [98,99], reviewed in [100]. The monomeric folate/FAD-dependent
TrmFO enzyme belongs to COG1206. In Mollicutes, a group derived from Firmicutes and
displaying extensive genome erosion (retrograde evolution), several SAM-dependent m5U
MTases present in their common ancestor have been lost and replaced by folate-dependent
paralogs [101,102]. These are clear examples of independent and mutually exclusive evo-
lution of analogous enzymes catalyzing the formation of the same modification (m5U54)
using totally unrelated mechanisms in different bacterial lineages.
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In the hyperthermophilic Archaea of the phyla Thermococci (such as P. abyssi and P.
furiosus) and Nanoarchaeota (as Nanoarchaeum equitans), m5U54 formation is catalyzed by
TrmU54, a SAM-dependent MTase belonging to COG2265. Although this monomeric
protein belongs to the same COG as TrmA/TRM2/TRMT2A, the protein sequence of
archaeal TrmU54, as well as eukaryal TRM2, are more similar to the bacterial paralog RlmD
(formerly, RumA/RumT) catalyzing m5U1939 formation in 23S rRNA [103]. One main
difference is the presence of an iron–sulfur cluster in the archaeal TrmU54 [104]. In both
cases, these two enzymes, TrmU54 and TRM2, arose from an ancestral horizontal transfer
(endosymbiosis in the case of TRM2) followed by a shift of function from rRNA to tRNA
modification [103,105].

All these MTases are site-specific and methylate exclusively the C5-atom of U54. As for
TruB/PUS4 above, the minimal RNA structure for substrate recognition by TrmA, TRM2,
and TrmU54 is a 5-base-pair stem, eventually prolonged with the amino acid arm, and a
seven-membered loop as in a canonical T-loop of tRNA [50,66,70,75,106–108]. The same
applies to tRNA recognition by bacterial TrmFO [109].

Depending on the organism, residue m5U54 can be further modified by either 2′-O-
methylation or thiolation. In rabbit and human, 2′-O-methylated derivative of m5U54
(m5Um) was reported for tRNALys3 [26,110]. The corresponding MTase remains to be
identified. In both thermophilic Bacteria and Archaea, m5U54 is further modified in m5s2U54
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by a thiolation enzymatic machinery involving several proteins (TtuA, TtuB, TtuC, and
cysteine desulfurases IscS or SufS in Bacteria, not yet known in Archaea) [111], reviewed
in [112]. In T. thermophilus, the level of thiolation enzyme and, consequently, the degree
of tRNA m5U thiolation increases with increasing cultivation temperatures [113]. The
major determinants for 2-thiolation of m5U54 is the presence of the conserved C56 and
m1A58 of the T-loop. Tertiary interactions between the T- and D-loops and nonconserved
nucleotides in the T-loop are not important for the reaction [114]. The importance of m1A58
for m5s2U54 formation is supported by the fact that a ∆ trmI strain of T. thermophilus loses
its ability to grow at higher temperature range [47,113], reviewed in [20]. Moreover, the
presence of m7G46 in the V-loop allows a better efficient thiolation reaction attesting for a
clear interplay between the different modifications in tRNA [115].

In Archaea, other than Thermococci and Nanoarchaeota, and a few Eukarya, U54 is
modified to Ψ. This isomerization reaction is catalyzed by the Ψ-synthase Pus10/PUS10
already mentioned above for catalyzing Ψ55 formation. However, depending on the
archaeon, Pus10 can be either site-specific for U54 or region-specific for both U55 and
U54. When tested in vitro, recombinant Pus10 of Methanocaldococcus jannaschii catalyzes
formation of both Ψ55 and Ψ54 with the same efficiency, whereas recombinant Pus10
of P. furiosus is inefficient for catalyzing Ψ54 formation under the same experimental
conditions [83]. When tested in vivo, recombinant M. jannaschii Pus10 also efficiently forms
both Ψ55 and Ψ54 in tRNAs of a double (truB-trmA)-mutant E. coli strain. In contrast,
recombinant P. furiosus Pus10 only forms Ψ55 in the same tRNAs of the E. coli double-
mutant strain [116]. Such versatility of archaeal Pus10 is consistent with the fact that
in naturally occurring tRNAs of P. furiosus an m5U54 is present, while in M. jannaschii,
tRNAs m1Ψ54 is found. Thus, the restricted specificity of P. furiosus Pus10 for U55 avoids
a competition with methylation of U54 by TrmA [83]. Recombinant human PUS10 can
also catalyze Ψ55 and Ψ54 formation in vitro [117], attesting for adaptation of the enzyme
specificity according to the cellular need [116]. Maximal Ψ54 synthase activity is observed
for tRNA substrates with the sequence 53-GUUCAm1AAUC-61 along with a stable acceptor
stem. As for the archaeal Pus10, the crystal structure of human PUS10 shows the presence
of a conserved Ψ-synthase catalytic domain fused to a characteristic THUMP domain [118].
THUMP is an RNA-binding module that is also present in a few other tRNA modification
enzymes such as thiouridine synthases and MTases [119–124].

In Archaea (mostly Euryarchaeota but also in a few Crenarchaeota), Ψ54 can be further
methylated into m1Ψ54 by a SAM-dependent MTase (TrmY) belonging to
COG1901 [125,126]. The structure of this dimeric enzyme shows that it belongs to the
SPOUT superfamily [127]. In Vitro experiments with purified recombinant region-specific
M. jannaschii Pus10 and TrmY demonstrates that TrmY (as Pus10 above) can produce m1Ψ
in a 17-base fragment of a tRNA transcript corresponding to the T-arm of which U55
(possibly Ψ55) cannot be mutated [125]. In thermophilic Archaea, residue m1Ψ54 can be
further thiolated to m1s4Ψ54 most probably by the same thiolation enzymatic machinery
reported above for m5s2U54 formation in thermophilic Bacteria (involving proteins TtuA,
TtuB, TtuC, and cysteine desulfurases not yet identified in Archaea). For example, in tRNAs
of Ignicoccus hospitalis, a member of the Crenarchaeota, m1s4Ψ54, is found, whereas in tRNAs
of Nanoarchaeum equitans, closely related to the Thermococcales, m5s2U54 is present [21].
These two Archaea are growing physically attached as obligate partners exchanging various
metabolites under hyperthermophilic conditions [128]. Remarkably, the methyl and thio
groups in m1s4Ψ and m5s2U are presented in the same spatial manner for the stabilization
of the 3′ endo-anti conformation of nucleotide 54, showing that these Archaea use different
but structurally equivalent modifications to stabilize their T-loops. This illustrates how
different solutions have been adopted during evolution to fulfil the same function.

Finally, in the case of the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius,
s2U has been found at position 54 of several tRNAs. In the particular case of tRNAVal, a
methylthio U-derivative was also found, but its chemical structure remains elusive [29].
Examination of the S. acidocaldarius genome reveals the presence of genes coding for TtuA
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and TtuB responsible for thiolation of U54 but no gene coding for TrmA (catalyzing m5U54),
Pus10 (catalyzing Ψ54 in addition of Ψ55), and TrmY (catalyzing m1Ψ54) was found. One
possibility is that ribose methylation of U54 occurs in only a few tRNA species, such as the
initiator tRNA [129]. Indeed, 2′-O-methylated nucleotides are found at several positions of
various S. acidocaldarius tRNAs and are known to be formed by the guide RNA-dependent
FlpA machinery [130,131]. However, no guide RNA specific for U54 methylation has been
reported up to now. Therefore, in absence of a clear-cut evidence for Um54 existence
and of convincing information about the corresponding methylation system, this problem
remains unsolved.

5. Temporal Order of Nucleotide Modifications and Their Interdependencies

After transcription, each tRNA primary transcript (pre-tRNA) is engaged in a complex
multistep maturation during which 5′-leader and 3′-trailer are removed, introns are spliced,
5′-G (in the case of tRNAHis) and CCA-end are added (if not encoded in the genome), and
a bunch of nucleotides become modified. In Eukarya, this process starts in the nucleus and
terminates in the cytoplasm. Along this complex sequential maturation, both the structural
conformation and the sequence of the pre-tRNAs are progressively transformed in fully
mature and functional tRNA molecules with the canonical L-shaped structure.

During this process, enzymatic modifications introduced by a machinery utilizing
guide RNAs that base pair with the pre-tRNA substrate and by enzymes requiring limited
small substructures are expected to occur first, while enzymes requiring an intact tRNA
architecture are expected to act later. Hence, the earliest expected modifications are Gm18
and Cm56 (in Archaea), which both depend on guide RNA, and Ψ55, Ψ54, m5U, m1Ψ54,
which all depend on stand-alone enzymes working on minimal T-arm substructures. These
are precisely the modifications that were experimentally shown to be the first ones to appear
during pre-tRNA processing using either in vivo or in vitro assays [50,132–134]. Recently,
experiments aiming at monitoring the time-resolved introduction of modifications in yeast
tRNAPhe in vitro not only confirm these observations but also demonstrate the existence of
a robust modification circuit (interdependency) starting with the introduction of Ψ55, then
m5U54, and finally m1A58 [135]. Since the presence of N1-methyl group on A58 is required
for efficient enzymatic transfer of sulfur on the C2-atom of m5U54 [113], the biogenesis
of m5s2U54 by TtuA/TtuB/TtuC at elevated temperature in thermophilic Bacteria and
possibly of m1s4Ψ in hyperthermophilic Archaea should occur later during tRNA matura-
tion. These observations are in complete agreement with the theory of interdependency
between the various enzymatic modification systems acting on nucleotides in the tRNA
elbow, in which Ψ55-synthase TruB/PUS4/TRUB1 (and probably Pus10) appears to be the
conductor, besides acting itself as a chaperone protein [136–139]. Interdependency between
different nucleotide modifications and their modification pathways has been found to be
particularly important for modifications in the anticodon-stem loop [60,140,141].

6. tRNA T-Loop Modification Enzymes Can Modify Other T-Loop Containing RNAs

Conserved base-pairings between the T-and D-loop are intrinsic properties of the
tRNA itself: they are present in synthetic tRNA transcripts lacking any modified nu-
cleotide, yet in slightly more relaxed conformation [142,143]. Genuine T-loop archi-
tecture also exists in local regions of the ribosomal RNAs [144], at the 3′ end of the
plant viral TYMV RNA [145] and in bacterial tmRNA [146]. In these two last examples,
TrmA/TRM2/TRMT2A was shown to catalyze m5U formation at the position equivalent to
U54 [147,148]. The main role of post-transcriptional modifications of the various conserved
nucleotides of the T-loop is therefore to fine-tune the dynamics (rigidity/flexibility) of the
self-formation of this important part of the tRNA molecule and to facilitate its interaction
with the D-loop. As illustrated in Figure 3, the various conserved modified nucleotides
(Gm18, m5(s2)U/m1s4Ψ54, Ψ55, Cm56, and m1I57/m1A58) are very close together in the
L-shaped conformation of tRNA.
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7. Conclusions and Future Prospects: Unraveling the Evolutionary Origin of tRNA
Modification Machinery

The importance of a few invariant and semi-invariant nucleotides for self-forming
3D-conformation of the T-loop of tRNAs is now well documented. This unique structural
domain is characterized by a trans Watson–Crick/Hoogsteen pair between U54 and A58,
which, in turn, allows U54, U55, the bulged pyrimidine 60, and nucleotide 59 to further
interact specifically with nucleotides of the D-loop (Figure 3) [149,150]. Since transcription
proceeds in the 5′ to 3′ direction, this T-loop/D-loop interaction cannot take place before
almost the full sequence of the tRNA gene is transcribed. In addition, among the many
modified nucleotides found in fully matured tRNA molecules, Gm18, Ψ55, m5U54/m1Ψ,
m1I57/m1A58, and Cm56 are likely the first to occur in the maturation pathway, the most
universally conserved Ψ55 being probably the very earliest one. These combinatorial
networks of base pairings and nucleotide modifications, together with other tertiary in-
teractions and base modifications within the entire core of the tRNA molecule, permit
each individual fully matured isoacceptor tRNA species to adopt a stable still flexible
L-shaped conformation [151]. In this final functional conformation, the distance between
the anticodon and the CCA-3′-terminus at the opposite is around 80 Å. This property is
essential for each aminoacyl-tRNA to accommodate in the decoding center of the small
ribosomal subunit and then in the peptidyl-transferase center of the large subunit.

Because of the highly conserved characters of the modified nucleotides found in the
T-loop and around G18-G19 among tRNAs of organisms belonging to the three Domains
of Life, the simplest ones like Ψ, Cm, m5U, and m1A might have been present in the
prebiotic soup [152–154]. The corresponding modification enzymes might have appeared
later, yet very early in evolution, at least at the root of the common ancestral lineages of
Bacteria/Archaea [155,156]. If the present-day enzymes would have been vertically inherited
from these earliest forms, their sequences should retain substantial similarities among
orthologous enzymes present in majority if not all organisms of the Tree of Life. On
the contrary, and this is the main message of the present review, almost all the enzymes
involved in the modification of nucleotides at positions 18, 54, 55, 56, and 57/58 differ much
from one group of organisms to another, U54 being the most diversely modified one. These
nonhomologous enzymes (also named “analogous enzymes” [157]) belong to different
COGs, use sometimes different cofactors (such as SAM or CH2 = THF) and mechanisms
(standalone or guided-RNA machineries), and recognize different portions of the tRNA
molecule. They can be site-, region-, or even dual-specific (for tRNA and other types of
RNA). Evidently, emergence and evolution of a given enzymatic activity is more complex
than just by gene duplication and neofunctionalization followed by eventual elimination
of the ancestral gene. Indeed, a gene present in a given organism can be lost and replaced
by a nonorthologous paralog coding for a protein with similar or identical function (see,
e.g., [102]). In addition, any time along the cellular evolution, a new enzymatic activity, or a
new enzymatic mechanism can be inherited from a lateral gene transfer from an organism
living in endosymbiosis or in symbiosis within the same environment. Lateral gene transfer
between Bacteria and Archaea or between Prokaryotae and Eukarya are frequent [158,159]. In
all cases, the driving force is to optimize an ad hoc function required by the novel needs of
the cell and according to the evolving cellular physiology and/or of growth conditions.
In the particular case of tRNA modification, the need is to constantly adapt and preserve
the stability of the overall architecture and consequently the functionality of the tRNA
molecules according to the growing conditions as well as the physiological changes that
occur all along the complex evolution process.

To conclude, this review shows the complexity of tRNA modification enzymes evolu-
tion, which makes genome annotation a difficult task [160,161] and prompts to start studies
on the emergence and evolution of enzymes catalyzing the formation of a given modified
nucleotide at a given conserved position of the tRNA molecule.
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