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Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance.
Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are medi-
ated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications.
Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of
eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cy-
clobutylmethoxy)-5=-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanide m-chlorophenylhydrazone
(CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were
blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for
fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5=-deoxyadenosine. Changes to
cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dom-
inated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton
carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifica-
tions to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabo-
lome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in
the analysis of drug modes of action and can complement other technologies already in use.

There is a pressing need for new classes of antibiotics as resis-
tance to those in use becomes ever more widespread (1).
Prior to the broad implementation of natural-product antibi-

otics, efforts had focused on the identification of small molecules
that inhibit microbial metabolism. The sulfonamides, for exam-
ple, target folate biosynthesis. The success of natural-product an-
tibiotics (that hit targets such as DNA, RNA, cell wall, and protein
synthesis [2]) served to limit exploration of the small-molecule
space suitable for antibiotics. The hope for rational target-based
discovery drove a burst of activity, leading to an era of screening
chemicals for inhibitory activity against protein targets. However,
this approach uncovered compounds too far from pharmacolog-
ical utility to succeed in development (3). Because of this, as well as
diminishing economic returns in antibiotic discovery, the antibi-
otic discovery pipeline has diminished (4).

The history of antimicrobial development led to a quest for
useful drug targets that ended prematurely, and large areas of
microbial metabolism have yet to be targeted using small-mole-
cule chemicals. In the meantime, phenotypic screening, in which
chemical libraries are screened for activity against whole microor-
ganisms, is successfully identifying new antimicrobials. Novel tar-
gets suitable for drug development are appearing as a result of
these studies (5–7). An advantage of phenotypic screening over
the target-based screens that became popular in the 1980s to 2000s
is that effective compounds are already endowed with key phar-
macological attributes, such as selectivity for the microbe of inter-
est, microbial membrane permeability, and chemical stability (or,
conversely, the ability of prodrug to be metabolized to active com-
pound), when identified. The phenotypic screening approach,
however, fails to reveal the targets of these new compounds. This,
in turn, can slow the process of lead optimization for lack of clarity
in understanding how to improve on-target pharmacology.

There have been efforts to develop high-throughput screens to
elucidate drug targets, including metabolic suppression and res-

cue (8), chemical probe synergism (9), and cytological profiling
(10), but these methods have yet to be widely adopted and applied.

Metabolomics aims to identify all small-molecule metabolites
in a given system, and the current technologies make use of nu-
clear magnetic resonance (NMR) analyses for highly abundant
metabolites (11, 12) or high-resolution mass spectrometry cou-
pled to sophisticated chromatography for more global analyses
(13).

Metabolomic techniques are increasing in popularity in the
hunt for biomarkers of disease (14, 15) and biomarkers of toxicity
(16) and in drug mode-of-action studies (13, 17, 18). Ultimately,
metabolomics takes direct, in situ, observations of drug inhibition
of enzymes, through measurements of the metabolic substrates
and products of these enzymes. In some instances, drugs act with-
out inhibiting specific metabolic enzymes, but signatures related
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to inhibited macromolecules or other pathways may be acquired.
In other cases, drugs are modified within the organism and mass
spectrometry-based metabolomic approaches enable determina-
tion of drug metabolism as well (13, 19).

One study using metabolomics to analyze the mode of action
(MOA) of drugs used eflornithine, an ornithine decarboxylase
inhibitor, and highlighted the simplicity of using metabolomics to
detect an increase in the substrate of the inhibited enzyme (in this
case ornithine) and a decrease in the product (putrescine), allow-
ing the single enzyme drug target to be pinpointed with precision
(13). Mass spectrometry-based metabolomics has also been used
to a limited extent to determine the modes of action of individual
antibacterial compounds in bacteria (20–23), but its use in higher-
throughput assays has not been determined.

The aim of this study was to determine whether metabolomics
can be used systematically to determine the mode of action of
antibiotics.

MATERIALS AND METHODS
Escherichia coli strain W3110 �tolC::Tn10 was used for all compound
testing. HEK 293T (human embryonic kidney cell strain 293T) was used
to test AZ7.

In vitro susceptibility test methods. For E. coli, compounds were
dissolved to 6.4 mg/ml in dimethyl sulfoxide (DMSO). Compounds were
then serially diluted in 100 �l cation-adjusted Mueller-Hinton broth
(MHB) in a 96-well plate, and 100 �l cell suspension (7.5 � 105 CFU/ml)
was added, along with additives if required. These cultures were left in a
static incubator for 24 h. The optical density at 590 nm (OD590) was read
without shaking. Ceftazidime was used as a control. The MIC was then
calculated.

For human embryonic kidney cells, Dulbecco’s modified Eagle’s me-
dium with 10% fetal calf serum (DMEM-FCS) was aspirated from a 10-ml
culture of confluent HEK 293T cells, and 2 ml of 0.25% trypsin-EDTA
solution was added. Cells were incubated for 5 min before the cell suspen-
sion was collected in 8 ml of DMEM-FCS. Cells were centrifuged at 1,200
rpm and resuspended in 10 ml DMEM-FCS. Cells were counted, and a
suspension was prepared at 3 � 105 cells/ml. One hundred microliters of
this suspension was added to each well of a 96-well plate, and cells were
incubated for 3 h. Drug stocks were prepared at 128 �g/ml and serially
diluted in a 96-well plate. One hundred microliters of each dilution was
added to the corresponding well in the cell culture plate, and this plate was
incubated for 16 h. Twenty microliters of a 12.5-mg/ml concentration of
resazurin in phosphate-buffered saline (PBS) was added to each well of the
96-well plate, and plates were incubated for a further 24 h. The fluores-
cence of the resazurin was measured on an Optima Fluostar plate reader.

Metabolite extraction from E. coli. A 10-ml overnight culture of E.
coli was inoculated into 40 ml of cation-adjusted MHB (no preincuba-
tion) or a 2-ml overnight culture of E. coli was inoculated into 48 ml of
cation-adjusted MHB (with preincubation) and the mixture was incu-
bated with shaking at 37°C. For assays without a preincubation step, the
extractions were started at this point; for assays with a preincubation step,
the cells were incubated for 2 h before extractions were started. Drugs
were added at 4� MIC, and samples were taken at 0, 2, and 4 h after drug
addition. Samples were cooled to 5°C in a dry-ice– ethanol bath to rapidly
quench metabolism before they were transferred to ice. Ten milliliters of
cells was pelleted at 3,000 relative centrifugal force (RCF), washed in 10 ml
cold 0.85% NaCl, and then resuspended in 1 ml 0.85% NaCl. The OD590

of this cell suspension was taken and adjusted to 1. One milliliter of cells
was pelleted and resuspended in 200 �l chloroform-methanol-water (1:
3:1, by volume) (plus theophylline, 5-fluorouridine, N-methylglucamine,
canavanine, and piperazine, all at 1 �M as internal standards). Samples
were subjected to four freeze-thaw cycles in the dry-ice– ethanol bath with
regular vortexing before a final centrifugation at 16,000 RCF. The super-
natant was taken and kept at �80°C under argon.

Metabolite extraction from human embryonic kidney cells. Me-
dium was aspirated from a 10-ml culture of confluent HEK 293T cells, and
2 ml of 0.25% trypsin-EDTA solution was added. Cells were incubated for
5 min before the cell suspension was collected in 8 ml of DMEM-FCS.
Cells were centrifuged at 1,200 rpm and resuspended in 10 ml DMEM-
FCS. Two milliliters of this cell suspension was added to 18 ml DMEM-
FCS. Three milliliters of this cell suspension was seeded into each of six
wells (34.8-mm well diameter). These wells were incubated for 48 h at
37°C, 5% CO2. AZ7 or DMSO solutions were prepared in 10 ml DMEM-
FCS at 4� 90% inhibitory concentration (IC90) (AZ7) or an equal volume
of DMSO. Culture medium was aspirated from the cultured cells, and 3
ml of drug-DMSO solution was added. This mixture was incubated for 4
h. Samples were cooled to 5°C in a dry-ice– ethanol bath before they were
transferred to ice and pelleted at 3,000 RCF, transferred to a 1-ml Eppen-
dorf tube, and washed in 1 ml 0.85% NaCl. Cells were pelleted again, the
supernatant was removed, and cells were resuspended in 200 �l chloro-
form-methanol-water (1:3:1, by volume) (plus theophylline, 5-fluorouri-
dine, N-methylglucamine, canavanine, and piperazine, all at 1 �M as
internal standards). Samples were shaken for 1 h at 4°C before a final
centrifugation at 16,000 RCF. The supernatant was taken and kept at
�80°C under argon.

Lipid extraction from E. coli. Overnight cultures of E. coli were inoc-
ulated into cation-adjusted MHB and incubated with shaking at 37°C. A
preincubation step of 2 h preceded drug addition. CHIR-090 or DMSO
was added at 4� MIC, and samples were taken at 0, 2, and 4 h after drug
addition. Samples were cooled to 5°C in a dry-ice– ethanol bath before
they were transferred to ice. Ten milliliters of cells was pelleted at 3,000
RCF, washed in 10 ml cold 0.85% NaCl, and then resuspended in 1 ml
0.85% NaCl. The OD590 of this cell suspension was taken and adjusted to
1. One milliliter of cells was pelleted and moved in a minimal volume of
NaCl to a glass vial to which 400 �l 2:1 chloroform-methanol by volume
was added using a glass pipette. Samples were shaken for 10 min at room
temperature, and 125 �l NaCl was added. Samples were vortexed and then
left at room temperature for 20 min. The bottom layer was removed and
placed in a glass vial to be stored under argon gas at 4°C.

Data acquisition. A 10-�l aliquot of each sample was run in a ran-
domized order on a ZIC-pHILIC (polymeric hydrophilic interaction
chromatography) column (SeQuant) or a ZIC-HILIC (hydrophilic inter-
action chromatography) column (SeQuant) coupled to an Orbitrap mass
spectrometer (Thermo Scientific) or an Orbitrap Q Exactive mass spec-
trometer (Thermo Scientific) according to previously published methods
(13). Lipid analysis was done using a C30 column (3 �m, 3 by 150 mm)
(Thermo Dionex) coupled to an Orbitrap Velos instrument using data-
dependent fragmentation on the three most intense ions.

Fragmentation of pHILIC column-separated metabolites was per-
formed in a data-dependent manner on the Q Exactive (Thermo Scien-
tific) mass spectrometer, with the five most intense ions picked in a 4 m/z
exclusion window and at a collision energy of 65. All other conditions
were the same as previously reported (13).

Metabolomics data analysis. Data analysis was performed using the
MzMatch (24) and IDEOM (25) software packages for untargeted analy-
sis. The Thermo Scientific Xcalibur software package was used for tar-
geted peak picking and fragmentation analysis.

According to the metabolomics standards initiative (MSI), metabolite
identifications (MSI level 1) are given when more than one feature
matches an authentic standard (i.e., mass and retention time) and anno-
tations are made when matching to a metabolite is made by mass only
(MSI level 2) (26). A mixture of 240 standards, covering a range of meta-
bolic pathways, was run with each sample batch to allow metabolite “iden-
tifications” to be made (MSI level 1). For metabolites without an authentic
standard metabolite, “annotations” (MSI level 2) were made. Identifica-
tions and annotations were made using the IDEOM software package.

Lipid analyses were conducted using LipidSearch software (Thermo
Scientific).
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RESULTS AND DISCUSSION

Assays that are able to determine the mode of action of new anti-
biotics are needed to accompany renewed interest in phenotypic
screening of chemical libraries for antimicrobial activity. Where
chemicals hit enzymes involved in metabolic pathways, perturba-
tion to those pathways can be detected using metabolomics tech-
nology. Here we set out to determine the ability of metabolomics
to report on modes of action of antibiotics in a systematic manner.

Eight compounds were tested with the Gram-negative organ-
ism Escherichia coli in our assay (Fig. 1). Six of these compounds
had previously established tentative modes of action covering a
range of targets, not all of which were metabolic (Table 1). One
compound [5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-
4-pyrimidinecarboxamide (AZ7)] had a completely unknown tar-
get. Researchers involved in data collection and analysis (I. M.
Vincent and M. P. Barrett) were blind to the identity of the active
compounds until after data analysis had been completed. The
metabolomics method was compared to a radiolabel incorpora-
tion assay (27) that also aims to determine the mode of action of
antibiotics. Using this method, the target of AZ1 was found to be
broadly related to DNA metabolism and the target of triclosan was
found to be broadly related to fatty acid metabolism, but the tar-
gets of the other compounds were mixed or no inhibition of the
selected metabolic domains was seen (Table 1).

MICs and kill kinetics. The MICs of the compounds for wild-
type E. coli strain ARC523 and a TolC� derivative, ARC524, lack-
ing the key TolC efflux pump were calculated (Table 1).

The TolC knockout strain was chosen for metabolomics exper-
iments, as the wild-type strain was not inhibited by some of the
compounds at our maximum dose of 64 �g/ml, whereas the TolC
knockout strain often had lower MICs (this was considered to be
likely due to drug efflux in the wild-type strain [28, 29]).

Kill kinetics were performed at 4� MIC at a high cell density
(in order to provide enough material for metabolomics) and pro-

FIG 1 All test compounds had an effect on TolC� E. coli within 4 h. The
numbers of CFU at 4� MIC over a 4-h time course are shown. Numbers in
boxes indicate the log10 increase after 4 h compared to the 0-h time point. The
untreated cells showed a log10 increase of 2.3 after 4 h.

TABLE 1 Test compounds covering a range of metabolic areasa

Compound Target
Radioactive
assay result

MIC for ARC523
wild type (�g/ml)

MIC for ARC524
TolC� (�g/ml)

1-[3-Fluoro-4-(5-methyl-2,4-dioxo-
pyrimidin-1-yl)phenyl]-3-[2-
(trifluoromethyl)phenyl] urea (AZ1)

Thymidylate kinaseb DNA �64 0.0625–0.125

2-(Cyclobutylmethoxy)-5=-deoxyadenosine DNA ligasec Mixed �64 2–8
Triclosan Fatty acid metabolismd Fatty acid 0.25 0.0039
Fosmidomycin Deoxyxylulose 5-phosphate

reductoisomerasee

No inhibition 2 2

CHIR-090 UDP-3-O-acyl-N-acetylglucosamine
deacetylase (LpxC)f

Mixed 0.125 0.0078

CCCP Oxidative phosphorylation Mixed 32 0.5–1
5-Chloro-2-(methylsulfonyl)-N-(1,3-

thiazol-2-yl)-4-pyrimidinecarboxamide
(AZ7)

Unknown Mixed �64 16

Ceftazidime Penicillin binding proteinsg Cell wall 0.25–0.5 0.25–0.5
a MICs of AZ compounds in wild-type E. coli ARC523 and the TolC mutant, strain ARC524. n � 3. Where different values were found among the replicates, a range is shown.
b From reference 32.
c From reference 45 and M. Cavero-Tomas, M. Gowravaram, H. Huynh, H. Ni, and S. Stokes, PCT international patent application WO 2006040558 A1 20060420 (2006).
d From reference 46.
e From reference 47.
f From reference 35.
g From reference 2.
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duced a growth defect after drug treatment compared to the result
with untreated cells for all tested compounds (Fig. 1).

Other than those treated with 2-(cyclobutylmethoxy)-5=-de-
oxyadenosine, none of the compound-treated strains showed
growth recovery after 4 h of treatment. We therefore used a 4-h
protocol for our metabolomics protocol, with time points at 0, 2,
and 4 h after treatment at 4� MIC, bearing in mind that a shorter
time course would also be required for 2-(cyclobutylmethoxy)-5=-
deoxyadenosine. For the primary analyses, pHILIC was used,
creating the best separation of metabolites of central carbon me-
tabolism, followed by Q Exactive mass spectrometry with frag-
mentation on a pooled sample. Hydrophilic interaction liquid
chromatography (HILIC) and reversed-phase chromatography
were used in secondary analyses where required, specifically to
monitor polyamine metabolism or lipid metabolism, respectively.
A standard mix with 240 standards was run with each batch of
samples to provide level 1 metabolite identifications according to
the metabolomics standards initiative (i.e., a match of retention
time and mass to an authentic standard [26]). Between 70 and 77
of these metabolites were detected in our E. coli extracts by
pHILIC and 67 by HILIC (variations between batches may be due
to machine sensitivity variations, genuine differences in the levels
of metabolites detected, or variability in the cell number produc-
ing unacceptable replicate variation). The remaining metabolites
were annotated as level 2 annotations (a match of mass to an
internal database [25] which includes all known E. coli metabo-
lites).

Metabolomics. The number of metabolic features detected
was between 850 and 2,655 base peaks and between 499 and 1,295
metabolite features for which a putative annotation could be given

(see Data Sets S1 to S6 in the supplemental material), depending
on the batch of samples run.

Substantial variation in the metabolome was evident over 4 h,
even in the untreated control (Fig. 2), indicating the dynamic
nature of metabolism under the growth conditions used. The ex-
periment was initiated from a stationary-phase overnight culture
either at a high inoculum without a preincubation step (Fig. 2a) or
with a lower inoculum with a 2-h preincubation (Fig. 2b). There
was less variation when the culture was preincubated with a lower
inoculum (Fig. 2). This difference is likely due to the transition
from stationary-phase planktonic growth to the exponential
growth phase in the samples without preincubation, whereas the
samples that were preincubated are in exponential growth phase
over the entire time course.

The variation in the untreated, preincubated metabolome was
most apparent in lipid metabolism, but there were also increases
in the levels of some peptides, thymidine (C10H14N2O5, level 1
identification), and NAD� (C21H27N7O14P2, level 2 annotation)
(Table 2).

It was necessary to consider the inherent variation in the
metabolome when analyzing the drug-induced changes, and this
background variation was removed from all drug treatments.

To analyze the drug-induced changes to the metabolome,
IDEOM (25), an Excel-based metabolite identification package,
was used to sort metabolites by fold change and P value. Anno-
tated metabolites (and their isomers) were mapped to KEGG
pathways using Pathos, an open-source software available at http:
//motif.gla.ac.uk/Pathos (30). The shape of each peak associated
with a feature appearing to change in abundance as a consequence
of treatment was checked, and those with nonreproducible peaks

FIG 2 There is variation in the E. coli metabolome in the absence of drug. (A) No preincubation; (B) with a preincubation stage of 2 h. The scale is red to blue,
with the darkest red being a �5-fold increase and the darkest blue being a �5-fold decrease in metabolite intensity. Yellow coloring represents no change to the
metabolite intensity. Blue coloring in the time zero (T0) samples means that this metabolite was detected only after 2 and 4 h (T2 and T4). At least three biological
replicates were run for each time point.
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or poor peak shapes (incomplete, shoulder peaks, multiple joined
peaks, etc. [31]) were ruled out. Metabolites that were connected
in pathways and behaved in similar ways over the time course were
considered to be more likely identifications.

Modes of action. (i) AZ1. The target enzyme for AZ1 was read-
ily revealed using our metabolomics platform. AZ1 is an inhibitor
of thymidylate kinase (32), and after treatment at 4� MIC, large
increases in dTMP-related metabolites were seen alongside large
decreases in dTDP-related metabolites (Fig. 3; see Fig. S1a and
Data Set S1 in the supplemental material). There were also
changes in the levels of annotated metabolites up and downstream
of the target (dUMP, dUDP, and dCTP upstream of the target all
increase, while dTTP, which is downstream of the target, de-
creases), but wider changes to the metabolome were not apparent.

Thymidylate kinase is a target for drug discovery in a number of
infectious diseases, including diseases caused by parasites, bacte-
ria, and viruses (33). Our metabolomics platform may prove to be
of use in whole-cell screening of potential thymidylate kinase in-
hibitors for use in these organisms.

(ii) Fosmidomycin. Fosmidomycin clearly inhibited the DXR
pathway in our blind analysis, due to large changes in 1-deoxy-D-
xylulose 5-phosphate (DXP, annotated), 2C-methyl-D-erythritol
2,4-cyclodiphosphate (ME-CDP, annotated) (Fig. 4a; see Fig. S1b
in the supplemental material), and metabolites related to DXP
and ME-CDP (see Data Set S2 in the supplemental material).
However, the individual target enzyme (deoxyxylulose reductase)
was not precisely pinpointed, as some metabolites of the iso-
prenoid biosynthesis pathway were not detected (this may be due

TABLE 2 Metabolite changes in untreated TolC� E. coli over 4 ha

Formula EcoCyc? No. of Isomers Possible pathway(s)

Fold change P value by t test

T0 T2 T4 T2 T4

C8H18N2O2 Y 1 0 1 2.03 3.09 0.0212 1.03E-05
C10H14N4O3 Y 1 0 1 1.62 1.63 0.0007 0.0001
C26H52NO7P N 12 0 1 0.69 0.44 0.1014 0.0002
C6H5N5O Y 1 0 1 1.62 2.22 0.0499 0.0002
C5H4O3 N 4 0 1 7.63 8.61 0.0012 0.0007
C4H3NO3 N 1 0 1 1.41 2.46 0.0722 0.0009
C18H34O2 N 57 Fatty acid biosynthesis, biosynthesis of unsaturated

fatty acids
1 0.73 0.56 0.2830 0.0004

C18H30O4 N 20 Fatty acids and conjugates 1 0.40 0.15 0.0068 0.0003
C19H34O4 N 3 Fatty acids and conjugates 1 0.63 0.34 0.1063 0.0007
C19H36O2 N 27 Fatty acids and conjugates 1 0.55 0.48 0.0106 0.0009
C16H14O6 N 33 Flavonoid biosynthesis 1 3.14 4.16 0.0816 0.0008
C18H12O5 N 2 Flavonoids 1 5.68 8.28 0.0034 1.34E-06
C35H66NO8P N 8 Glycerophosphoethanolamines 1 0.39 0.18 0.0006 0.0001
C23H44NO7P N 2 Glycerophosphoethanolamines 1 0.54 0.27 0.0053 0.0001
C33H64NO8P N 7 Glycerophosphoethanolamines 1 0.49 0.25 0.0067 0.0003
C35H68NO8P N 16 Glycerophosphoethanolamines 1 0.46 0.23 0.0032 0.0005
C37H70NO8P N 20 Glycerophosphoethanolamines 1 0.29 0.10 0.0024 0.0010
C41H77O10P N 14 Glycerophosphoglycerols 1 1.57 2.38 0.0058 0.0001
C40H73O10P N 15 Glycerophosphoglycerols 1 0.33 0.07 0.0262 0.0001
C42H77O10P N 18 Glycerophosphoglycerols 1 0.49 0.15 0.0086 0.0002
C39H75O10P N 14 Glycerophosphoglycerols 1 1.35 2.21 0.1241 0.0007
C27H49O12P N 1 Glycerophosphoinositols 1 0.59 0.16 0.1406 0.0005
C40H78NO10P N 12 Glycerophosphoserines 1 0.79 0.46 0.0263 0.0002
C35H62O4 N 1 Hopanoids 1 0.36 0.15 0.0030 0.0009
C18H30N4O6 N 1 Hydrophobic peptide 1 7.26 9.92 0.0379 0.0004
C18H31N5O6 N 5 Hydrophobic peptide 1 2.03 3.61 0.0191 0.0007
C17H28N4O8 N 2 Hydrophobic peptide 1 1.64 1.60 0.0002 0.0008
C16H24 N 1 Isoprenoids 1 0.29 0.35 0.0005 0.0004
C18H32O3 N 40 Linoleic acid metabolism 1 0.67 0.39 0.0314 1.43E-05
C18H32O3 N 40 Linoleic acid metabolism 1 0.53 0.30 0.0387 0.0008
C5H12N2O N 1 Lysine degradation 1 0.55 0.21 0.2320 0.0008
C18H30O3 N 38 Octadecanoids 1 0.50 0.21 0.0910 3.19E-05
C21H27N7O14P2 Y 1 Oxidative phosphorylation, glutamate metabolism,

nicotinate and nicotinamide metabolism
1 2.02 2.00 0.0059 0.0008

C10H14N2O5 Y 1 Pyrimidine metabolism 1 2.48 2.32 0.0854 0.0001
C19H39NO3 Y 3 Sphingolipid metabolism 1 2.79 2.78 0.0001 0.0001
C27H48O9 N 1 Sterols 1 0.62 0.34 0.0748 0.0005
C10H17NO6 Y 2 Superpathway of linamarin and lotaustralin

biosynthesis, linamarin biosynthesis, linamarin
degradation

1 2.81 4.21 0.0032 0.0002

C6H10N3O4P N 1 Thiamine metabolism 1 1.87 2.32 0.0012 0.0002
a Changes that are significant at a P of �0.001 after 4 h are shown. T0, T2, and T4, 0-, 2-, and 4-h time points. Formulae that match the EcoCyc database are indicated (Y, yes; N,
no). Note that extensive data on lipids and peptides are missing from EcoCyc. C18H30N4O6 is included twice as it appears at two different retention times.
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either to their concentrations being lower than the detection limit
or suboptimal ionization). A targeted metabolomics approach has
previously been used to analyze fosmidomycin action in Plasmo-
dium falciparum, in which a second potential target of the drug,
IspD (the next enzyme in the pathway), was seen (34). No evi-
dence of a second target was seen in our assay, although the lack of
coverage of the pathway means that inhibition of IspD would not
have been detected.

(iii) CHIR-090. After treatment with CHIR-090, an inhibitor
of LpxC in lipid A biosynthesis (35), there were increases of several
lipids annotated through IDEOM and decreases in others (see
Data Set S2 in the supplemental material). Since the chromatog-
raphy method used for the primary analysis was not able to ade-
quately separate lipids, a secondary analysis was performed using
a C30 column. This method provided better lipid separation and
annotation, and analysis through LipidSearch revealed a large in-
crease in lysophosphatidylethanolamine (LPE) and lysophos-

phatidylglycerol species (LPG) (Fig. 4b; see Data Set S7 in the
supplemental material). The reaction preceding LpxC in lipid A
biosynthesis is a reversible acyl transfer from acyl-ACP to UDP-
N-acetylglucosamine (36). This enzyme has been shown to have
an equilibrium constant that favors the reverse direction, i.e., the
formation of acyl-ACP, and therefore the metabolic backup of the
LxpC substrate could result in the production of more acyl-ACP,
which may alter the flux of other lipid metabolites (37). The exact
target of CHIR-090 was not identified using metabolomics, but
the area of metabolism affected (lipid metabolism) was pin-
pointed, which provides additional information to the radioactiv-
ity assay.

(iv) Drug modification. Modifications of AZ1 and CHIR-090
were not seen, but a metabolite consistent with the loss of an

FIG 3 The mode of action of AZ1 was detectable by metabolomics. ND; not
detected; TMK; thymidylate kinase. Black bars, no-drug control; white bars,
treated with AZ1.The y axis shows metabolite intensity, and the x axis shows
hours after drug addition. Error bars show standard deviations of the mean.
ND, not detected.

FIG 4 The modes of action of fosmidomycin (a) and CHIR-090 (b) were
detectable by metabolomics. ND, not detected; DXR, DXP reductoisomerase;
MEP, methylerythritol phosphate; ME, methylerythritol; ME2P, methyleryth-
ritol cyclodiphosphate. Black bars, no-drug control; white bars, drug treated.
The y axis shows metabolite intensity, and the x axis shows hours after drug
addition. Error bars show standard deviations of the mean.
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oxygen from fosmidomycin was seen in the fosmidomycin-
treated samples (Fig. 5a; see Data Set S2 in the supplemental ma-
terial). This deoxyfosmidomycin metabolite increased in the cell
sample in a time-dependent manner but not in the absence of cells
(Fig. 5b). Loss of oxygen could represent reduction of the hydrox-
amate group from fosmidomycin. Reduction of hydroxamate
drugs in vivo has been reported previously (38), although future
work is needed to ascertain the structure of this fosmidomycin
metabolite and whether it possesses inhibitory activity.

(v) Ceftazidime. Ceftazidime is a third-generation cephalo-
sporin which works by inhibiting the cross-linking of peptidogly-
can in the bacterial cell wall. Intact and cross-linked peptidoglycan
molecules are too large to be detected using a metabolomics plat-
form. Changes to the levels of metabolites earlier in cell wall bio-
synthesis were identified with a dose of 4� MIC (Fig. 6a), but
these changes were less pronounced than changes to other metab-
olites not involved in cell wall biosynthesis (see Data Set S1 in the
supplemental material). A higher dose of ceftazidime (8� MIC)
was also unable to induce pronounced changes to these metabo-
lites (Fig. 6b; see Fig. S1c and Data Set S5 in the supplemental
material). Turnover of peptidoglycan has been shown to increase
after beta-lactam antibiotic treatment in E. coli (39), and the small
increases in these metabolic intermediates may be an indication of
futile recycling of peptidoglycan in responses to cell wall disrup-
tion.

(vi) 2-(Cyclobutylmethoxy)-5=-deoxyadenosine. The path-
way inhibited by 2-(cyclobutylmethoxy)-5=-deoxyadenosine, a
DNA ligase inhibitor, could not be determined from the 4-h time
course, as large areas of metabolism were affected (see Data Set S2
in the supplemental material). The untargeted analysis did iden-
tify significant disruption in DNA metabolism, however, when a
shorter time course over 30 min was used, revealing large increases
in purines, pyrimidines, and related metabolites (see Data Set S4

in the supplemental material). A large increase (on the order of
500-fold) in mass consistent with 	-glutamylputrescine was also
detected after 2-(cyclobutylmethoxy)-5=-deoxyadenosine treat-
ment over 4 h. As polyamines are not well separated on a pHILIC
column, the samples were rerun on a HILIC column (see Data Set
S6 in the supplemental material), and the polyamine pathway was
analyzed in more detail. In addition to the large increase in 	-glu-
tamylputrescine, there were smaller increases in masses consistent
with diacetylspermine (8-fold) and diacetylspermidine (4.7-fold)
but not in other metabolites of the polyamine pathway. These
changes were not detected in untreated cells or in fosmidomycin-
treated cells. The reason for this increase in acetylated or other
modified polyamines is unknown, but polyamines have been
shown to be produced in the presence of bactericidal agents as a
response to oxidative stress (40).

(vii) CCCP. Carbonyl cyanide m-chlorophenylhydrazone
(CCCP) had no measurable effect on the metabolome when the
background variation was taken into account (see Data Set S3 in
the supplemental material). CCCP inhibits oxidative phosphory-
lation by uncoupling the proton gradient in the electron transport
chain and would be predicted to have pleiotropic effects on cellu-
lar pathways. A direct effect from CCCP exposure would be alter-
ation of the adenylate energy charge (AEC); however, it is chal-
lenging to employ mass spectrometry-based measurements for
the calculation of AEC due to the differences in the ionizability of
the mono-, di-, and triphosphates. An additional explanation for

FIG 5 Fosmidomycin had a metabolite that appeared to be a cell-derived
alteration of the drug. (a) Extracted peaks of deoxyfosmidomycin (left) and
fosmidomycin (right). Black lines show the metabolite intensity at 2 h for each
replicate, red lines show the intensity at 4 h, and green lines show the intensity
in the 0-h control. (b) The ratio of deoxyfosmidomycin (fosmidomycin-O) to
fosmidomycin increases during incubation with the cells. Error bars show
standard deviations of the mean.

FIG 6 Changes to UDP-N-acetylmuramate and related peptides after ceftazi-
dime treatment. (A) Changes after treatment with 4� MIC ceftazidime; (B)
changes after treatment with 8�MIC ceftazidime. *, P value of �0.05; **, P
value of �0.001 (Student’s t test). “(s)” after the metabolite name indicates a
match (mass and retention time) to an authentic standard. Black bars, no-drug
control; white bars, treated with ceftazidime. Error bars show standard devia-
tions of the mean.
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the lack of perturbations seen with CCCP exposure is that the
disruption of membrane translocation of proteins does not pro-
duce a distinct metabolomic signature (41).

(viii) Triclosan. Treatment with triclosan, an inhibitor of
enoyl-acyl carrier protein reductase when bound with NAD�,
produced more than 100 detected metabolite features with signif-
icant (P � 0.05) changes of �5-fold (see Data Set S3 in the sup-
plemental material). Many of these changes related to an increase
in masses annotated as glycerophospholipids. There were also de-
creases in masses consistent with methylthioadenosine, S-adeno-
sylmethionine (matches authentic standard), and methylerythri-
tol cyclodiphosphate. S-Adenosylmethionine is present in both
the S-adenosylmethionine (SAM) cycle and in polyamine biosyn-
thesis. The metabolites of both of these pathways were analyzed,
and there was found to be a significant reduction in the majority of

metabolites in polyamine biosynthesis but not in the SAM cycle.
Glutathione biosynthesis was also severely affected by triclosan
treatment, which, together with the changes in polyamine metab-
olism, suggests that the cells are suffering from oxidative stress.
Polyamines interact electrostatically with negatively charged
biomolecules, such as DNA, RNA, lipids, and acidic proteins (42).
A lack of polyamines (putrescine, spermidine, and spermine) may
therefore make cell membranes and DNA more susceptible to
damage caused by oxidative stress. Adding a surplus (1 mM) of
methionine, arginine, ornithine, putrescine, S-adenosylmethio-
nine, glutathione, or cysteine did not rescue the cells from the
effects of triclosan (MIC data not shown). The actions of triclosan
on fatty acid metabolism may be compounded by an increase in
oxidative stress.

A multifactorial mode of action at high doses for triclosan has

FIG 7 AZ7 causes alterations in sulfur metabolism. (a) Changes in sulfur metabolites after AZ7 treatment; (b) isotopic distribution of m/z 545.0551; (c) structure
of AZ7; (d) fragments of m/z 545.0551. Error bars show standard deviations of the mean.
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been debated (43), and the polyamine changes seen here may re-
late to a membrane-destabilizing effect similar to those seen by
Villalaín and colleagues (44).

(ix) AZ7. AZ7 has an unknown mode of action, and the radio-
active precursor assay did not predict a specific area of inhibited
metabolism (Table 1). There were many annotated metabolites
altered after AZ7 treatment, including large increases in putative
homocysteine sulfinic acid, methylthioribose phosphate, and
dGMP (Fig. 7a). There were also several peaks present in only the
drug-treated samples that could not be identified by using any of
the databases incorporated into IDEOM. One of these peaks (neu-
tral mass, 545.0551; retention time, 8.24 min) had a chlorine iso-
tope pattern (Fig. 7b), indicating that it could be related to the
drug AZ7, which also contains chlorine (Fig. 7c). The predicted
formula of the peak m/z 545.0551 is C18H28O6N3ClS4.

Fragmentation of this m/z 545 revealed several fragments coe-
luting with the parent ion (Fig. 7d). Some of the fragments were
predicted to contain chlorine, but analysis of the fragmentation
data with mzCloud (https://www.mzcloud.org/; August 2015)
produced no hits. Fragments m/z 126 and m/z 146 were also found
in another mass that had a chlorine isotope pattern at retention
time 6.94 min (Fig. 7d). This second mass (neutral mass,
925.1202) was also present in drug-treated cells but not in un-
treated cells or in the drug sample alone and had a predicted
formula of C29H48O13N10ClS3.

To determine whether the masses seen were specific to AZ7
treatment of E. coli, human embryonic kidney cells were treated
with the drug. m/z 545 was detected in HEK cells, but m/z 927 was
not. Other masses with a chlorine isotope pattern were, however,
found in HEK cells, suggesting that this conjugation of the chlo-
rine-containing drug to intracellular metabolites is not specific to
E. coli or to particular metabolites. In addition to its antibacterial
activity, compound AZ7 also weakly inhibited growth of mamma-
lian cells and may exert its effects through conjugation to sulfur-
containing intracellular compounds. Knowing the mode of action
of AZ7 may help to refine its structure to reduce toxicity.

Conclusions. The data presented here show that it is possible
to use untargeted metabolomics to identify drug mode of action
where drugs specifically target metabolic pathways. Metabolite ex-
traction is simple and rapid, and a pipeline can be set up to treat
cells with any compound, extract the metabolome, run the
metabolome on a mass spectrometer, and analyze the data in an
automated way. For some drugs, follow-up analysis may be re-
quired, either using different drug doses or treatment times or
using a different column and mass spectrometer to analyze a more
specific area of metabolism. Although 4� MIC appears to be a

good starting dose for high-throughput analyses, it may be too
high for some compounds inducing wide toxicity within the
metabolome [as was seen with 2-(cyclobutylmethoxy)-5=-deoxy-
adenosine]. The dose of 4� MIC appeared to be too low to mea-
sure effects on cell wall metabolites from ceftazidime treatment,
and a higher drug dose of 8� MIC was required. These kinds of
modifications to the drug dosing may be required if the effects on
internal metabolism are too great or too small, but 4� MIC re-
mains a good starting concentration for higher-throughput as-
says.

A drug dose of 4� MIC appeared to be adequate to reduce E.
coli growth over a 4-h time course for all seven drugs tested here.
Time points of 0, 2, and 4 h were sufficient for many of the drugs
under test, but a shorter treatment time was needed for 2-(cy-
clobutylmethoxy)-5=-deoxyadenosine, as the effects on metabo-
lism were too prominent at 2-h posttreatment. Effects on the un-
treated control were evident, highlighting the need for adequate
controls in these types of experiment. Other methods used to cat-
egorize drugs into classes based on their mode of action use sta-
tistical techniques to compare them to drugs of known classes.
The method presented here does not require comparison with
drugs of a known class and can produce much higher resolution
data, in one case identifying the exact enzyme inhibited. Data on
toxicity can also be gathered, as was the case with AZ7, where clues
potentially pointing to reasons why this compound has unaccept-
able levels of toxicity in mammalian cells were gathered.

Untargeted metabolomics techniques using a metabolite iden-
tification software package such as IDEOM (25) were able to iden-
tify the target pathway or area of metabolism affected by an un-
known drug in around 50% of cases (Table 3), but an adequate
level of literacy in biochemistry is required. When this technique is
combined with other, more pathway-specific analyses and knowl-
edge of the drug structure and drug analogues, then predicting the
mode of action of a drug will be greatly simplified. As data from
further metabolome studies of untreated and drug-treated bacte-
ria are generated and analyzed, databases can be constructed with
the metabolite changes seen when certain targets or areas of me-
tabolism are inhibited, adding further power to metabolomics-
based prediction of mode of action.
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TABLE 3 Summary of the performance of our metabolomics assay with the radioactivity-based assay

Compound Radioactivity assay Metabolomics MOA

1-[3-Fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-
[2-(trifluoromethyl)phenyl]urea (AZ1)

DNA Thymidylate kinase

2-(Cyclobutylmethoxy)-5=-deoxyadenosine Mixed DNA
Triclosan Fatty acid Not found
Fosmidomycin No inhibition MEP/DOXP pathway
CHIR-090 Mixed Acyl lipids
CCCP Mixed Not found
5-Chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-

pyrimidinecarboxamide (AZ7)
Mixed Drug conjugation to S-containing metabolites?

Ceftazidime Cell wall Not found without knowledge of MOA
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