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Abstract 79 

Substance use disorder (SUD) stands as a critical public health concern, contributing to substantial 80 

morbidity, mortality and societal costs. The effects of SUD on structural brain changes have been well 81 

documented. However, the neural mechanisms underlying SUD and the spatial-temporal volumetric 82 

changes associated with SUD remained underexplored. In this investigation, neuroimaging, behavioral 83 

and genomic data across four large population cohorts jointly covering the full lifespan were harmonized, 84 

and whole-brain volumetric trajectories between substance use disorders (SUDs) and healthy controls 85 

(HCs) were compared, revealing the potential neurobiological mechanisms and the genomic basis 86 

underlying SUD. Results highlighted three distinct life stages critical for the development of SUD: 1) 87 

adolescence to early adulthood (before 25y), where SUD is suspected to be the consequence of prefrontal-88 

subcortical imbalance during neurodevelopment; 2) early-to-mid adulthood (25y – 45y), where SUD was 89 

strongly associated with compulsivity-related brain volumetric changes; 3) mid-to-late adulthood (after 45y), 90 

where SUD-related brain structural changes could be explained by neurotoxicity. Results were externally 91 

validated both via longitudinal analysis of these population cohorts and in independent cross-sectional 92 

samples. In summary, our study demonstrated the lifespan whole-brain volumetric changes associated 93 

with SUD, revealed potential neurobehavioral mechanisms for the development of SUD, and suggested 94 

critical time window for effective prevention and treatment of SUD.  95 
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Introduction 96 

In recent years, there has been increasing research interest for human lifespan neuroscience, emphasizing 97 

the challenges of understanding mental health and human behaviors associated with social and 98 

physiological characteristics across different age stages1. While most psychiatric disorders onset before 99 

early adulthood2, possibly partly attributed to puberty-related hormonal changes and unbalanced brain 100 

development3, they demonstrated distinct lifetime prevalence and longitudinal trajectories. Given these 101 

complexities, understanding whether the neural signatures and behavioral profiles of different 102 

neuropsychiatric disorders follow distinct developmental trajectories or represent a homogeneous 103 

continuum remains an open question. Substance use disorder (SUD), which often emerges during 104 

adolescence and persists across the entire lifespan, provides a unique case for investigating the lifespan 105 

trajectories associated with brain volumetric changes and neurocognitive performances. 106 

 107 

SUD is a complex health condition characterized by compulsive, persistent and risky substance use or 108 

misuse behaviors in inappropriate situations4, exerting a lifespan impact on both mental and physical 109 

health5-7, including cognitive impairments, behavioral dysfunctions and chronic illnesses such as 110 

cardiovascular disease and diabetes8-10. The high prevalence of SUD further amplifies its negative impacts. 111 

In 2022, an estimated 17.3% (48.7 million) of the population aged 12 years or older in the United States 112 

had SUD according to a self-reported national survey of approximately 70 thousand participants11, 113 

including 29.5 million having an alcohol use disorder, 27.2 million having drug use disorder, and 8.0 million 114 

having both. In Europe, an estimated 29% (83.4 million) of those aged 15 years or older reported previous 115 

use of illicit drugs12. Some risk factors may exert different impacts at different life stages, with higher BMI 116 

positively correlated with alcohol consumption in adolescent girls13,14 and negatively associated with past-117 

year alcohol abuse risk in adult women15,16. Other factors were characterized by time-specific effects, for 118 

example, the shift from an enriched to standard environment in mice was only found to enhance the 119 

sensitivity of drug reward during early life stages17. Further, the progression of neuropsychiatric disorders 120 

may vary across time with differential impacts on the brain, likely due to time-varying neuroplasticity and 121 

long-term homeostatic compensation mechanisms taking place at different life stages18,19. For instance, 122 

the risk of substance dependence is reduced by 4%–5% for each year of delayed substance use initiation 123 

from age 13 to 21 years old when the brain gradually matures20, while significantly increased in older life 124 

stages with reduced drug metabolism and aging21,22. Findings on longitudinal SUD-related changes in 125 

brain regions were inconsistent across studies, with some studies focusing on SUDs among adolescents, 126 

while others specifically investigating early and mid-to-late adulthood23-27. Despite these insights, a 127 

comprehensive lifespan approach on the neural mechanisms underlying SUD remains underexplored. 128 

 129 

To address these questions, we utilized data from the Adolescent Brain Cognitive Development (ABCD) 130 

study28, the IMAGEN study29, the Human Connectome Project (HCP)30 and UK Biobank (UKB)31 with 131 

participants ranging from adolescence to early adulthood and extending into older ages. While previous 132 

studies have revealed that both brain structures and functional connectivity undergo characteristic 133 

changes across the lifespan32-34, a normative model was introduced to deal with the heterogeneity within 134 

population cohorts due to age and other study-specific characteristics, treating mental disorders and 135 

specific behaviors as deviations from a normative developmental trajectory35. Normative models were 136 

constructed for each brain region of interest (ROI) using the Generalized Additive Model for Location, Scale 137 

and Shape (GAMLSS)36, which have demonstrable accuracy for depicting life-course trajectories of brain 138 

morphology32,37. Morphological characteristics were quantified as centile scores for all individuals to adjust 139 
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for potential confounding. Separate volumetric trajectories were constructed for individuals with SUD and 140 

healthy controls (HCs). In general, compared to HCs, individuals with SUD had lower grey matter volume 141 

(GMV) in cortical regions, with differences following an inverted U-shape over time, while the GMV 142 

differences in subcortical regions gradually decreased over time. Both volumetric and neurobehavioral 143 

results were successfully validated using Enhanced Nathan Kline Institute-Rockland Sample (NKI-RS), 144 

Cambridge Centre for Ageing and Neuroscience (Cam-CAN), and Brains and Minds in Transition 145 

(BRAINMINT) samples. Correlations between GMV centiles and neurobehavioral scores were investigated 146 

throughout the life span using common factors and pooled meta-analysis of effect sizes due to 147 

inconsistencies in measurements across studies. Finally, to understand the genomic basis underlying the 148 

lifespan SUD trajectories, genome-wide association study (GWAS) and genomic correlation analysis were 149 

performed, and genetic variants associated with GMV-predicted SUD were identified using conjunctional 150 

FDR38 (conjFDR). 151 

Results 152 

Definition of SUD across the lifespan 153 

A total of 51,467 participants aged 9y – 70y with 53,199 neuroimaging scans across four cohorts (ABCD, 154 

IMAGEN, HCP and UKB) were included in the discovery set, and a total of 2,127 participants aged 12y –155 

89y from the cross-sectional NKI-RS, Cam-CAN and BRAINMINT studies were included for validation. 156 

Due to different accessibility of addictive substances used between adolescents and adults, an adaptive 157 

definition of SUD (among alcohol, tobacco, marijuana and any other reported addictive substances) was 158 

employed: for adolescents, those engaging in any addictive substances intake behavior or meeting the 159 

criteria of child addiction scale were classified as SUD; for adults, those meeting the clinical criteria of 160 

substance dependence or ranking in the top 25% of substance use frequency were classified as SUD. 161 

Meanwhile, participants with no substance use at any time throughout the life span or occasional 162 

substance use during adulthood were considered as HCs. Detailed descriptions of the definitions of SUD 163 

and HC were provided in the Methods section. Based on the criteria above, a total of 6,992 and 711 164 

participants were identified as SUDs, while 18,659 and 1,416 were included as HCs in the discovery and 165 

validation sets, respectively. Overall, the proportion of SUDs among the study population first increased 166 

with age, peaked at approximately the age of 25y, and then started to decrease thereafter, as well as the 167 

overlap of participants across different substance use groups. (Supplementary Fig. 1). 168 

 169 

Cross-sectional investigation (Supplementary Table 1) indicated consistent differences between SUDs and 170 

HCs on demographic characteristics across the lifespan: SUDs are more likely to be males (X2 = 8.80, P 171 

= 0.003 for ABCD; X2 = 5.29, P = 0.023 for IMAGEN-BL; X2 = 39.53, P < 0.001 for IMAGEN-FU2; X2 = 172 

39.03, P < 0.001 for IMAGEN-FU3; X2 = 41.71, P < 0.001 for HCP; X2 = 1248.3, P < 0.001 for UKB), having 173 

lower intelligence score (d = -0.40, P < 0.001 for ABCD; d = -0.20, P = 0.015 for IMAGEN-BL; d = -0.04, P 174 

= 0.031 for UKB), residing in poorer socioeconomic conditions (d = -0.48, P < 0.001 for ABCD; d = -0.16, 175 

P = 0.046 for IMAGEN-BL; d = -0.23, P = 0.002 for HCP; d = -0.27, P < 0.001 for UKB), and having 176 

experienced more negative life events (d = 0.44, P < 0.001 for ABCD; d = 0.17, P = 0.009 for IMAGEN-177 

FU2; d = 0.19, P = 0.010 for HCP; d = 0.22, P < 0.001 for UKB). On the contrary, we observed inconsistent 178 

BMI between SUDs and HCs across different life stages: SUDs are more likely to be associated with larger 179 

BMI during adolescence, but with lower BMI during late adulthood (d = 0.28, P = 0.011 for ABCD; d = 0.18, 180 

P = 0.024 for IMAGEN-BL; d = 0.15, P = 0.025 for IMAGEN-FU2; d = -0.05, P = 0.005 for UKB). 181 

 182 
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Lifespan volumetric brain differences between SUDs and HCs 183 

Twenty-four brain regions of interest (ROIs) involved in the development of SUD were selected as 184 

suggested by previous studies39,40. These regions (ventral/dorsal striatum, amygdala, hippocampus, insula, 185 

anterior cingulate and prefrontal cortex) are key components in the addiction neurocircuitry, and are 186 

involved in reward processing, motivation, contextual memory, interoception, and executive function. The 187 

GAMLSS model32 was employed to harmonize neuroimaging data across the lifespan and construct age-188 

specific normative ranges of HCs for each ROI (Supplementary Fig. 2). Cubic spline model was developed 189 

to estimate the age-specific GMV trajectories for SUDs and HCs separately, adjusting for sex, handedness 190 

and studies.  191 

 192 

Dynamic GMV volumetric differences across the lifespan were observed between SUDs and HCs (Fig. 1). 193 

During childhood and adolescence, compared to HCs, SUDs showed higher volumetric GMV in the 194 

bilateral putamen and lower GMV in the bilateral nucleus accumbens, insula, frontal pole, orbitofrontal, 195 

superior frontal, rostral anterior cingulate (ACC) and left caudal ACC. Notably, participants with SUD 196 

experienced delayed development in the left medial orbitofrontal and bilateral nucleus accumbens, regions 197 

that may mediate dopamine-related goal-directed behavior41,42. This is also consistent with the finding that 198 

smaller left ventral mediofrontal cortex was causally associated with smoking initiation among 199 

adolescents26. However, these GMV volumetric differences observed in early life stages gradually 200 

diminished with brain development, which indicated that early brain volumetric differences between SUDs 201 

and HCs could possibly contribute to the substance use. Later during adulthood, SUDs exhibited relatively 202 

lower GMV and faster GMV decreasing rate in most ROIs. Starting from amygdala, GMV differences 203 

between SUDs and HCs became increasingly apparent in the hippocampus, nucleus accumbens, medial 204 

orbitofrontal cortex, and right lateral orbitofrontal cortex. involving hippocampus, nucleus accumbens, 205 

medial orbitofrontal cortex and right lateral orbitofrontal cortex. Notably, higher volumetric GMV in SUDs 206 

was also observed in the salience network (SN; also called mid-cingulo-insular network, including insula, 207 

rostral ACC and left lateral orbitofrontal cortex), with significant differences starting at approximately 30y, 208 

peaking at mid 40ys and gradually diminishing after 60y. According to the lifespan volumetric differences 209 

between SUDs and HCs, ROIs can be subdivided into three categories: those differentiating SUDs and 210 

HCs at early stages of life, including bilateral frontal pole, insula, orbitofrontal, superior frontal, rostral ACC, 211 

nucleus accumbens and putamen; those differentiating SUDs and HCs at intermediate stages of life, 212 

including bilateral insula, lateral orbitofrontal and rostral ACC; and those differentiating SUDs and HCs at 213 

later stages of life, including left frontal pole, lateral orbitofrontal, bilateral medial orbitofrontal, superior 214 

frontal, amygdala, hippocampus and nucleus accumbens.  215 

 216 

The lifespan volumetric patterns between SUDs and HCs were validated via both longitudinal analysis of 217 

the neuroimaging data using ABCD and UKB (Supplementary Fig. 3) and cross-sectional analysis of the 218 

external NKI-RS, Cam-CAN and BRAINMINT datasets (Supplementary Fig. 4). Due to the limited sample 219 

size and relatively large standard errors in validation samples, it was impractical to obtain statistically 220 

significant results as in the discovery set. Therefore, the external validation largely relied on observing 221 

similar GMV volumetric patterns between SUDs and HCs, with moderate to strong correlations in 71% 222 

significant comparative z-statistics (17 out of 24 ROIs; r = 0.25-0.95) between the discovery and validation 223 

set.  224 

 225 

Since the change of SUD definition from adolescence to adulthood may lead to the discontinuity of 226 
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volumetric GMV changes, a sensitivity analysis was conducted by modifying the SUD definition for adults 227 

such that those with above experimental substance use or regular substance use were also included as 228 

SUDs. Despite inconsistencies in certain ROIs, the overall lifespan GMV patterns between SUDs and HCs 229 

remain similar (Supplementary Fig. 5). 230 

 231 

Although the lifespan volumetric patterns between SUDs and HCs were relatively consistent in the left and 232 

right hemispheres, we noticed that differences in the right hemisphere were more pronounced in putamen, 233 

frontal pole and lateral orbitofrontal regions compared to the left hemisphere, while differences in the left 234 

hemisphere were greater in the medial orbitofrontal and caudal ACC. These observed volumetric 235 

differences in the left and right hemispheres may suggest potential roles of the corresponding hemisphere 236 

during SUD development. 237 

 238 

Further, we investigated the lifespan volumetric trajectories for SUDs separately for each addictive 239 

substance, including alcohol, tobacco, marijuana and any other type of addictive drugs. The lifespan 240 

volumetric differences between SUDs and HCs showed highly similar patterns for alcohol, tobacco and 241 

marijuana (Supplementary Fig. 6-8), with slightly higher GMV in insula, rostral ACC and lateral orbitofrontal 242 

observed for alcohol and marijuana users during early adulthood. However, inconsistent results were 243 

observed for drug users, who showed higher GMV than HCs during late adulthood (Supplementary Fig. 244 

9). This inconsistency was likely due to the small sample size and less robust model fitting of GMV 245 

trajectories for drug users.             246 

 247 

Lifespan associational patterns between neurobehavioral performances and SUD 248 

Since SUD is often associated with neurobehavioral changes, we next investigated how this association 249 

varies with age across lifespan by comparing SUD-related neurobehavioral performances between SUDs 250 

and HCs in each study. Significant neurobehavioral differences in SUD emerge progressively over the life-251 

course (Fig. 2A and Supplementary Tables 2-5). During pre-adulthood (in ABCD and IMAGEN studies), 252 

SUDs were more likely to be engaged in rule-breaking behaviors, had more conduct problems and higher 253 

impulsivity scores, especially in sensation seeking, based on self-reported questionnaires and cognitive 254 

tests such as Monetary Incentive Delay task (MID) in ABCD and Monetary-Choice Test (KIRBY) in 255 

IMAGEN. It is noteworthy that SUDs did not show preference for immediate rewards facing large delayed 256 

rewards in the KIRBY compared to HCs (d = 0.10, Padj = 0.154), nor did they exhibit differences in reaction 257 

time on the Stop Signal Task (SST) (d = -0.06, Padj = 0.363), indicating that their impulsive behaviors were 258 

relatively limited. We also found no evidence toward some aspects of impaired executive functioning 259 

among SUDs via the Dimensional Change Card Sort Test in ABCD (cognitive flexibility) (d = -0.20, Padj = 260 

0.072) and the spatial working memory test in IMAGEN (d = -0.07, Padj = 0.363), although SUDs exhibited 261 

lower fluid (d = -0.26, Padj = 0.028) and crystallized cognitive abilities than HCs (d = -0.40, Padj = 6.51×10-262 
4). During early adulthood (in HCP study), SUDs started to show lower self-awareness, as measured by 263 

NIH Toolbox meaning and purpose in life (d = -0.31, Padj = 2.95×10-4), and life satisfaction (d = -0.19, Padj 264 

= 0.032), while continued to have higher rule-breaking and impulsivity scores as measured by 265 

questionnaires compared to HCs. They also display steeper delay discounting across all reward sizes, 266 

including larger delayed rewards, suggesting potentially increased impulsivity for SUDs when transitioning 267 

from adolescence to adulthood. Finally, during late adulthood (in UKB), SUDs exhibited both increased 268 

mood problems and worse neurocognitive performances for executive functions compared to HCs. The 269 

lifespan associational patterns between neurobehavioral performances and SUDs were partially validated 270 
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using the NKI-RS study with a broader age range (Supplementary Fig. 10), where we observed 271 

consistently higher rule-breaking and risk-taking scores for SUDs compared to HCs during both pre-272 

adulthood and adulthood, with effect sizes decreasing over time. 273 

 274 

Continuous SUD-related cognitive performances were derived from publicly available cognitive brain 275 

atlases43 across the lifespan, by correlating factor-level cognitive brain atlas with volumetric brain 276 

differences between SUDs and HCs. Seven factors (working memory, emotion processing, reward 277 

sensitivity, social cognition, general decision making, general cognitive impairment and inhibitory control, 278 

and behavioral adaptation) were extracted from 133 cognitive terms, which explained 91% of the total 279 

variances (Supplementary Table 6, Supplementary Fig. 11-12). Working memory, behavioral adaptation, 280 

and reward sensitivity were primarily associated with SUD during early life stages. Specifically, the 281 

prominent association between reward sensitivity and SUD in early adulthood aligned with our analytical 282 

results using IMAGEN and HCP. In contrast, the general cognitive impairment and inhibitory control – SUD 283 

association kept increasing and reached its peak during mid-to-late adulthood. This observed shift in the 284 

cognitive profiles linked to SUD across the lifespan is consistent with the from-impulsivity-to-compulsivity 285 

addiction hypothesis41,44. 286 

 287 

Nonetheless, it should be noted that despite progressively greater impulsivity found among SUDs in terms 288 

of fun seeking, sensation seeking and delay discounting, no significant differences were found between 289 

SUDs and HCs in terms of the Flanker inhibitory control and attention test. This suggests that when 290 

generalizing conclusions, one needs to consider issues such as different functionality of the composite 291 

dimension of impulsivity45. 292 

 293 

Having observed the lifespan associational patterns between neurobehavioral performances and SUDs, 294 

we next explored the underlying neurobiological mechanisms via lifespan trajectories of volumetric GMV 295 

(Fig. 3). Generalized rule-breaking and impulsivity scores were calculated by factor analysis to 296 

accommodate for measurement variability across studies (Supplementary Fig. 13). Correlational analyses 297 

between neurobehavioral performances and volumetric GMV were jointly conducted in pre-adulthood for 298 

ABCD and IMAGEN, while separately in adulthood for HCP. Consistent with the volumetric patterns during 299 

pre-adulthood, higher impulsivity was associated with higher volumetric GMV in dorsal striatum (bilateral 300 

caudate and right putamen) and lower GMV in prefrontal (bilateral lateral orbitofrontal, frontal pole and left 301 

medial orbitofrontal)/rostral ACC. Later in adulthood, higher impulsivity scores were associated with lower 302 

GMV in bilateral caudate, frontal pole, lateral orbitofrontal, rostral ACC, right nucleus accumbens and left 303 

medial orbitofrontal cortex. In contrast, significant negative correlation was observed between rule-304 

breaking scores and GMV in rostral/dorsal striatum, prefrontal regions, and ACC during pre-adulthood, 305 

with no significant correlations observed in adulthood. These results were robust when adjusting for rule-306 

breaking scores between impulsivity and brain regions, and vice versa (Supplementary Fig. 14).  307 

 308 

Longitudinal investigation of adolescent SUD development 309 

While cross-sectional lifespan studies have provided valuable insights into SUD, understanding the early 310 

factors that contribute to substance use initiation in adolescence from a longitudinal perspective is also 311 

crucial for elucidating the mechanisms of SUD development in adolescence and informing prevention 312 

strategies. Thus, we investigate whether pre-adulthood volumetric differences could contribute to the 313 

initiation of substance use, along with any behavioral evidence. To test this, pre-adulthood HCs at baseline 314 
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were divided into two subgroups, with the first subgroup developing SUDs in the follow-up visits (hereafter 315 

called follow-up SUDs) and the other subgroup remaining as HCs (hereafter called follow-up HCs). 1,930 316 

out of 11,085 (17.41%) pre-adulthood HCs in ABCD and 549 out of 987 (55.62%) pre-adulthood HCs at 317 

baseline in IMAGEN were identified as follow-up SUDs, respectively. In ABCD, follow-up SUDs tend to 318 

have higher GMV in bilateral caudate (left: d = 0.05, Padj = 0.031; right: d = 0.06, Padj = 0.018) and putamen 319 

(left: d = 0.05, Padj = 0.028; right: d = 0.06, Padj = 0.018), and lower GMV in left medial orbitofrontal (d = -320 

0.06, Padj < 0.001), right lateral orbitofrontal (d = -0.02, Padj = 0.045), right frontal pole (d = -0.03, Padj = 321 

0.046), bilateral rostral ACC (left: d = -0.05, Padj = 0.009; right: d = -0.05, Padj = 0.018) and caudal ACC 322 

(left: d = -0.04, Padj = 0.009; right: d = -0.04, Padj = 0.009 (Supplementary Fig. 15). These results were 323 

consistent with the volumetric differences between SUDs and HCs observed in the early-life stages, and 324 

indicated an important role of the prefrontal-striatum imbalance in the onset of SUD. Due to smaller sample 325 

size and potentially improvement of the prefrontal-striatum imbalance among adolescents, only lower 326 

volumetric GMV in medial orbitofrontal was observed in the follow-up SUDs in IMAGEN (Supplementary 327 

Fig. 10). Additionally, we examined whether resilience to pre-adulthood prefrontal-subcortical imbalance 328 

may depend on the severity of SUD, and found no significant correlations between longitudinal GMV 329 

changes and quantities of substance used or levels of substance dependency (Supplementary Table 7). 330 

Regarding behavioral performance comparisons, follow-up SUDs exhibited higher total impulsivity score 331 

and greater sensation seeking behaviors as measured by behavioral questionnaires in both ABCD and 332 

IMAGEN, whereas they also showed more conduct problems and rule-breaking tendencies in IMAGEN 333 

(Supplementary Table 8). However, no differences in rule breaking behavior were observed between 334 

follow-up SUDs and follow-up HCs in ABCD. 335 

 336 

SUD-related genomics 337 

To elucidate the genomic basis underlying the lifespan volumetric and neurobehavioral differences 338 

between SUDs and HCs, we conducted a study-wise genome-wide association study (GWAS) 339 

(Supplementary Fig. 16 and 17). Correlations between summary statistics from each study GWAS were 340 

estimated and studies with closer age alignment of participants showed higher genetic correlations (Fig. 341 

4A), suggesting a gradual transition of genomic contributions to SUD over time. When compared with 342 

another published GWAS of SUD risk factors (Addiction risk factor; Addrf)46,47, genetic correlations 343 

between summary statistics in the corresponding GWAS were observed to increase with age and 344 

significant genetic correlation (R2 = 0.19, P =7.16×10-22) was obtained between the UKB GWAS and 345 

published GWAS. 346 

 347 

Next, a weighted-GMV (wGMV) score was calculated for each participant by weighing all ROI centiles with 348 

corresponding z-values obtained in the regional differential pattern for SUD (Fig. 4B), which represented 349 

one’s probability of being SUD (versus HC). Significant wGMV differences were observed between SUDs 350 

and HCs in all studies except HCP (ABCD: d = 0.05, P = 0.041; IMAGEN: d = 0.11, P = 0.026; HCP: d = 351 

0.02, P = 0.196; UKB: d = 0.23, P = 1.64×10-28; one-sided t-test).  352 

 353 

Finally, conjFDR was utilized to identify the localization of shared genetic variants between SUD and 354 

wGMV, localizing those specifically associated with SUD-related brain changes. At conjFDR < 0.05, five 355 

shared genetic loci were separately identified across the lifespan in ABCD, HCP and UKB/Addrf (Fig. 4C), 356 

whereas no significant locus was found in IMAGEN (Supplementary Fig. 18). During pre-adulthood (in 357 

ABCD), the shared locus rs11609619 on chromosome 12 was mapped to CCDC91 and achieved 358 
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significantly higher polygenetic score (PGS) for CCDC91 expression in SUDs compared to HCs (d = -0.08, 359 

P = 0.007). CCDC91 has been reported to be involved in the development and maintenance of white 360 

matter microstructure48, an essential component of brain tissue for efficient neural communications49 and 361 

neurodevelopment50. It was also found to be involved in several neurodevelopmental disorders in previous 362 

studies51, indicating an important role of brain maturation in the initiation of SUD. During early-to-mid 363 

adulthood (in HCP), three loci (rs10936851 on chromosome 3 mapping to PTPRD, rs9567983 on 364 

chromosome 13 mapping to NUDT15, and rs6129798 on chromosome 20 mapping to ZHX3) were 365 

identified, with only rs10936851 achieving significantly higher PGS for PTPRD (d = 0.15, P = 0.046) in 366 

SUDs. PTPRD is highly expressed in brain and works as a synaptic specifier and neuronal cell adhesion 367 

molecule52. Previous studies have implicated its involvement in dopaminergic reward pathway and 368 

increased vulnerability to substance addictiony53,54. Finally, during mid-to-late adulthood (in UKB/Addrf), 369 

the shared locus rs10438244 on chromosome 14 was identified, which is a non-coding transcript variant 370 

and was previously reported to be associated with alcoholism and tobacco use disorder55. Although it has 371 

been found to be associated with the expression of multiple genes56 (i.e. TDRD9, KLC1 and COA8), only 372 

significantly higher PGS for COA8 was observed in SUDs (d = -0.05, P = 0.011). COA8 (previously referred 373 

to as APOPT1) plays critical role in the release of cytochrome c and protection against oxidative stress57, 374 

and has been indicated in the development of a broad spectrum of psychiatric disorders58,59. Combined 375 

with the lifespan trajectory for the effects of these loci on SUD (Supplementary Fig. 19), these findings 376 

suggest distinct genomic foundations for GMV-predicted SUD across different life stages. 377 

 378 

To further examine the dynamic relationship between neurobiological markers and SUD-related volumetric 379 

differences, we performed a longitudinal association analysis leveraging the cortical gene expression 380 

atlas60 (Fig. 4D), which provided 20 molecular- and cellular-level markers alongside one cortical 381 

microstructure marker. During early-to-mid adulthood, dopaminergic neurotransmitter (ni3-FDOPA-DAT-382 

D1-NMDA) significantly explained the estimated SUD-HCs brain differences in cortical ROIs, with the 383 

strongest effect observed around 34y. This result is consistent with the mechanistic pathway we identified 384 

within similar age range using HCP. 385 

 386 

Discussion 387 

SUD has long been a critical public health issue due to its high prevalence and negative impacts on both 388 

mental and physical health5,7,11,12. Animal models and human studies have shown the importance of 389 

understanding the neurobiological mechanisms underlying the initiation and development of SUD40,61. 390 

However, due to the variability in brain morphology measurements and dynamic changes in volumetric 391 

GMV during different life stages, age has long been suggested as a potential confounder in elucidating the 392 

roles of neuroplasticity in SUD23. Here, by harmonizing neuroimaging, neurobehavioral and genomic data 393 

across multiple large population cohorts, we explored the lifespan trajectories of volumetric brain 394 

morphology associated with SUD, SUD-related neurobehavioral performances, and its genetic basis. The 395 

entire lifespan can be divided into three stages (Fig. 5): before 25y, where imbalanced regional brain 396 

development lead to SUD and SUD-related impulsivity; 25y to 45y, with enlarged ROIs in salience network 397 

and reinforcement of craving behaviors; after 45y, where SUD ultimately lead to widespread brain 398 

volumetric reductions. 399 

 400 

During pre-adulthood (from 8y to early 20s), individuals with SUD exhibited higher GMV in putamen, which 401 
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may imply a greater propensity to habit learning in SUDs41, and lower GMV in nucleus accumbens, ACC, 402 

superior frontal and prefrontal cortex. Similar volumetric GMV differences in these brain regions were 403 

observed in participants with potential risk of developing follow-up SUD in the longitudinal analysis. Aligned 404 

with previous studies26, SUDs in IMAGEN only showed significantly decreased volumes in left medial 405 

orbitofrontal, which is more restricted compared to the brain regions in younger cohorts. This is likely due 406 

to the small sample size and SUD-associated neuroadaptations62 among IMAGEN adolescents. Our 407 

findings on brain regions with decreased SUD-related volumetric GMV (i.e. prefrontal, ACC and nucleus 408 

accumbens) were consistent with previous research on adolescent substance use63-68, suggesting 409 

important role of these ROIs on the development of adolescent SUD. However, although some studies 410 

have demonstrated evidence of larger dorsal striatum volumes for SUDs during early-adulthood69-71, few 411 

studies exist for adolescents. Our results extended existing findings on SUD initiation in pre-adulthood, 412 

and future research with larger sample sizes on adolescent SUD are required to provide further validation. 413 

 414 

Combing the lifespan volumetric GMV and neurobehavioral patterns between SUDs and HCs, multiple 415 

potential mechanisms could be inferred to contribute to the development of SUD during adolescence. 416 

Firstly, developmental imbalance between dorsal striatum and prefrontal cortices was associated with 417 

impulsivity, which was also referred to as stopping impulsivity72, where dorsal striatum received extensive 418 

dopaminergic innervation from substantia nigra73 and were enlarged when the dopaminergic neurons are 419 

over-expressed in the nigrostriatal pathway74. It has been shown to be involved in a dopamine-related 420 

impulsivity trait75. This aligned with the findings from longitudinal analyses, indicating that impulsivity 421 

precedes substance use initiation, suggesting a potential causal role. Additionally, lower volumetric 422 

prefrontal cortices and ACC may be associated with lower top-down cognitive control, leading to increased 423 

rule-breaking behaviors during adolescence76,77. Consistent with previous findings78,79, our results 424 

demonstrated negative correlations between nucleus accumbens/ventral striatum and rule-breaking 425 

scores. This can be explained since nucleus accumbens receives projections from both the insula and the 426 

ventromedial prefrontal cortex80, and rule-breaking was associated with decreased activation of insula 427 

during reward anticipation79. Ventral striatum also plays an important role in adjusting goal-directed 428 

behavior based on predictions of future events, with action value signals broadcasted to prefrontal control 429 

regions to guide decision making81. This process is especially critical during adolescence, a period 430 

characterized by changing environmental demands and a growing need for peer connection, making 431 

adolescents particularly vulnerable to peer influence and subsequent substance use82-84. Taken together, 432 

these findings, along with other research on diverse cognitive differences in adolescent alcohol misusers85, 433 

underscore the complex and multifaceted nature of SUD development in this critical developmental period. 434 

 435 

In addition, our results revealed negative correlations between the dorsal striatum and rule-breaking 436 

behaviors. As impairments in putamen and caudate function have been reported to be associated with 437 

inferior performances of rule-based tasks86,87, a possible explanation is that lower volumes of putamen 438 

and caudate lead to dysregulation of rule-based behavior. Our findings on the genomic basis of SUD-439 

related neurobehavioral changes also highlighted the importance of neurodevelopment, with gene 440 

CCDC91 identified to be involved in the onset of neurodevelopmental disorders. 441 

 442 

Significantly, brain volumetric differences between SUDs and HCs in pre-adulthood diminished when 443 

transitioning from late adolescence to early adulthood. Given that adolescence is a period characterized 444 

by morphological and functional transformations of the brain88, we hypothesize that the diminishing 445 
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differences between SUDs and HCs could be explained by continued neurodevelopment or by 446 

compensatory adjustment of brain function. Longitudinal investigation suggested a potential mechanism 447 

of imbalanced neurodevelopment in ROIs between subcortex and cortex for SUD. Therefore, the 448 

resilience-like volumetric changes during early life stage could be explained either by the immature brain 449 

development in the absence of substance use89, or neuroadaptations of the reward system in the presence 450 

of substance use20. Studies using rodent models demonstrated that enriched environment during 451 

adolescence could reduce drug sensitivity in adulthood by decreasing the dopaminergic neurons in 452 

substantia nigra and activity of the hypothalamic-pituitary-adrenal axis90-94. This suggested a unique 453 

adaptation of the brain to dopamine-induced behaviors in adolescence and a possible crucial interventional 454 

window for SUDs before the age of 30. 455 

 456 

Increased volumetric GMV was observed in SN for participants with SUD in early-to-mid adulthood, 457 

specifically in rostral ACC, insula and lateral orbitofrontal. This network is known to be involved in emotion, 458 

self-awareness, autonomics95, and plays a role in mediating conscious emotion and interoception 459 

associated with addictive substances96. The increased regional GMV of SN might be attributed to 460 

hyperconnectivity within SN97,98 and enhanced craving behaviors99,100 associated with increased 461 

dopaminergic activity101. However, some studies showed inconsistent results with decreased GMV of 462 

insula and activation of multiple addiction associated tasks102, where inconsistency depend on the severity 463 

and duration of SUD. Due to the negative effect of overactivation of SN on mood sensitivities103, lower self-464 

awareness and mood instability were observed. These factors are believed to contribute to the substance 465 

craving behaviors and self-administriation101,104. Compared to the complex cognitive differences observed 466 

in early adulthood SUD, only that factor encompassing general cognitive impairment, including inhibitory 467 

control, and memory processes was linked to SUD in mid-to-late adulthood, as revealed by brain-informed 468 

correlation analysis. Remarkably, these findings are the first to lend support from the perspective of 469 

population analysis to the hypothesis that, as drug experience accumulates, the characteristics of drug 470 

use shifts from impulsive behaviors to compulsive behaviors41,44. Alongside this, the more general 471 

cognitive impairment in mid-to-late adulthood might be explained by the progressive expansion of drug-472 

related brain activity from the ventromedial prefrontal regions toward more posterior and even temporal 473 

regions105, suggesting an important additional burden on the management of elderly drug users due to 474 

general intellectual deterioration which will require additional rehabilitation. 475 

 476 

Further, identification of a significant SUD-associated PTPRD locus suggested potential overactivation of 477 

the dopaminergic reward pathway and enhanced values of additive substance cues. This result was also 478 

supported by an age-related increase in the explained variance of a dopaminergic factor to the brain 479 

change within the age range for HCP participants. Specifically, this factor was mainly composed of 480 

dopamine precursors FDOPA, transporters DAT, D1 receptors enhancing drug-seeking behavior, and 481 

NMDA receptors involved in habit formation. Therefore, early-to-mid adulthood can be characterized by 482 

addiction development with positive feedback related to awareness/mood and reward system. It should be 483 

noted that the volumetric differences between SUDs and HCs could only be observed for alcohol and 484 

marijuana users, and future research of larger sample is called for smoking and intra-venous drug 485 

administration106.  486 

  487 

The SUD-associated volumetric changes of SN diminished during mid-to-late adulthood, which could be 488 

explained by decreased functional connectivity and activation among older adults107,108, increased reward 489 
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threshold62, and potential neurotoxicity of the substances. This was subsequently supported by the findings 490 

from the genetic analysis that significant SUD-associated locus COA8 was involved in the oxidative stress 491 

process. Brain regions with significant volumetric differences between SUDs and HCs emerge from 492 

subcortex, amygdala, hippocampus, nucleus accumbens, extend to superior frontal and frontal pole cortex, 493 

and finally to orbitofrontal cortex, naturally aligning with the timing of brain development and highlighting 494 

the importance of neurodevelopment during the onset of SUD. Finally, the age-specific genetic correlations 495 

across different studies additionally underscore the gradual evolving process of SUD-related mechanisms 496 

from a genetic perspective.  497 

 498 

Regarding hemispheric differences, although similar lifespan changes in both hemispheres were observed, 499 

regions related to top-down response inhibitory control appeared to be more pronounced in the right 500 

hemisphere. 501 

 502 

While the homogeneity in the brain differential patterns across different substances was found, this was 503 

not the case for participants with drug use disorder in the subgroup analysis, particularly in terms of late 504 

adulthood. Despite the evidence that some types of drugs may cause gliosis, leading to larger regional 505 

volumes109,110, this result might arise from selection bias due to our exclusion criteria for participants with 506 

neuropsychiatric disorders and a very small relative sample size in the drug use disorder in UKB. 507 

 508 

To the best of our knowledge, this is the first study exploring the dynamics of SUD associated volumetric 509 

trajectories across the lifespan. Our study demonstrated the importance of brain maturation in elucidating 510 

the neurobiological mechanisms and genetic basis contributing to SUD. Nonetheless, there are several 511 

limitations associated with this study. Firstly, due to limited accessibility of DSM assessment, definition of 512 

SUD mostly depended on self-reported frequency and quantity of substance use. It should come to mind 513 

that since ABCD does not include questions related to the substance use experience, the definition of SUD 514 

has had to be relaxed to include substance misuse behaviors—that is, any over-early use of addictive 515 

substances for participants. While this may seem to be a relatively broad definition, only 0.7% of individuals 516 

in ABCD are identified as SUDs under this criterion. Secondly, although validated using longitudinal data, 517 

the lifespan GMV trajectories for SUDs and HCs were estimated using cross-sectional data, with limited 518 

sample sizes in childhood and mid-to-late adulthood. Further validations are needed for early adulthood, 519 

where a noticeable shift of brain mechanisms could potentially occur. Cohorts with large sample sizes and 520 

more detailed substance use data as well as actual clinical diagnosis are needed to validate the robustness 521 

of our findings. Thirdly, different neurobehavioral measurements were adopted in different studies, which 522 

could lead to bias in identifying brain regions associated with SUD. Although we tried to tackle this issue 523 

by extracting common factors for rule-breaking behaviors and impulsivity across studies, consistent 524 

neurobehavioral measurements are called for more accurate identification of consistent SUD-associated 525 

brain regions. Fourthly, while previous studies have offered rationales for using cross-sectional brain 526 

atlases in longitudinal association analysis60, bias is inevitable, particularly for age-sensitive research. 527 

Finally, caution should be taken when interpretating consistently higher impulsivity among SUD 528 

participants, mostly in self-reported measures. Given that impulsivity is considered a broad and 529 

multifaceted concept, different test results may convey different messages. Future research on multi-530 

ancestry comparisons is also called for more generalized conclusions. 531 

 532 

 533 
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Methods 534 

Ethical statement  535 

All cohort data used in this study comply with relevant ethical regulations and informed consent was sought 536 

from all participants and a parent/guardian of each participant if under 18 years in all studies. ABCD and 537 

HCP study was supported by the National Institutes of Health (NIH). The IMAGEN study was approved by 538 

local ethnical research committees at each research site: King's College London, University of Nottingham, 539 

Trinity College Dublin, University of Heidelberg, Technische Universitat Dresden, Commissariat a l'Energie 540 

Atomique et aux Energies Alternatives, and University Medical Center. UK Biobank has approval from the 541 

North West Multi-centre Research Ethics Committee as a Research Tissue Bank approval. NKI-RS 542 

received approvals from the Nathan Kline Institute and Montclair State University. Cam-CAN was approved 543 

by the local ethics committee, Cambridgeshire 2 Research Ethics Committee and BRAINMINT was 544 

approved by the Regional Committee for Medical and Health Research Ethics South-Eastern Norway. 545 

Participants 546 

Participants from four large population cohorts (ABCD, IMAGEN, HCP and UKB) were harmonized to 547 

estimate the lifespan trajectories of volumetric GMV for SUDs and HCs in the discovery set, and those 548 

from NKI-RS and Cam-CAN were harmonized similarly for external validation except BRAINMINT. In all 549 

studies, participants with both non-missing neuroimaging and substance use data were included, and 550 

those with any serious medical or neurological conditions, pre-existing psychiatric or neuropsychiatric 551 

disorders other than SUD, other illnesses that could confound neuroimaging, or with GMV beyond 4 552 

interquartile ranges in any ROI were excluded. 553 

ABCD is a longitudinal neuroimaging cohort with 11,875 adolescents from 21 sites across the United 554 

States enrolling at baseline. The version 3.0 (baseline; 9-10 years old) and 4.0 (follow-up; 11-13 years old) 555 

of the annual curated data releases for ABCD (https://abcdstudy.org/about/) were used in this analysis. At 556 

baseline, a total of 11,301 participants (52.2% males) consisting of 11,217 HCs and 84 SUDs were included, 557 

with 7,775 having follow-up imaging visits. IMAGEN is a multicenter neuroimaging longitudinal cohort, 558 

where approximately 2,000 healthy adolescents of European descent across multiple sites in Europe were 559 

recruited at baseline (age 14y) and multiple follow-up visits at 16y (FU1), 19y (FU2) and 23y (FU3). A total 560 

of 1,504 participants (53.7% males) with 1,298 HCs and 185 SUDs at baseline, 539 HCs and 419 SUDs 561 

at FU2, and 345 HCs and 450 SUDs at FU3 were included in this analysis, with average number of MRI 562 

scans per participant being 2.15. HCP is a cross-sectional cohort of healthy young adult aged 22y – 37y 563 

and a total of 1,113 participants (45.6% males) with 396 HCs and 310 SUDs were included in this analysis. 564 

UKB is an ongoing population cohort with over 500,000 participants aged 37y – 73y recruited in 2006-565 

2010, where follow-up neuroimaging assessments were applied to a subset of participants from 2014 to 566 

2019. A total of 37,549 participants (47.3% males), with 6,243 HCs and 5,897 SUDs at baseline and 914 567 

HCs and 328 SUDs at follow-up visits were included in the analysis. NKI-RS is an ongoing cross-sectional 568 

cohort of adults in Rockland County111, and a total of 1,112 participants (37.6% males) aged 12y – 80y 569 

with 862 HCs and 250 SUDs were included for external validation. Cam-CAN is a cross-sectional project 570 

designed to explore healthy aging, with 700 participants in UK aged 12y – 89y examined for brain structure 571 

measures112, and a total of 445 participants (49.0% males) with 140 HCs and 305 SUDs were included for 572 

validation. The BRAINMINT study is a longitudinal study investigating the mechanisms of brain plasticity 573 

involving children and adolescents aged 9y – 25y from Oslo in Norway. Only cross-sectional data from 570 574 

participants (28.4% males) were included for the validation analysis, comprising 414 HCs and 156 SUDs. 575 

Detailed descriptions of population characteristics for studies were provided in the Supplementary Tables 576 
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1 and 9. 577 

Assessment of substance use 578 

Due to the varying accessibility of addictive substances for participants in different life stages, different 579 

standards were used to identify participants with SUD and HC. For ABCD, according to the self-reported 580 

substance use interview records, SUD was defined as participants with: 1) any full drink of beer, wine or 581 

liquor; 2) more than just a puff of cigarette, electronic cigarette, “chew”, cigar, hookah, pipes, and nicotine 582 

replacement; 3) more than just a puff of marijuana-included products and fake marijuana; and 4) any try 583 

of stimulants, depressants, hallucinogens and inhalants, and HC was defined as those with no use of any 584 

addictive substance. For IMAGEN, SUD was defined as participants with: 1) child Alcohol Use Disorders 585 

Identification Test (AUDIT) total score > 7; 2) Fagerstrom Test for Nicotine Dependence (FTND) score >= 586 

1; 3) any try of marijuana (grass, pot) or hashish for participants at baseline / > 10 times for participants at 587 

follow-ups; and 4) any try of stimulants, depressants hallucinogens and inhalants, and HC was defined as 588 

those with no exposure to any addictive substance. The frequency and quantity of substance use was 589 

measured by European School Survey Project on Alcohol and Drugs (ESPAD) questionnaire. For HCP, 590 

SUD was defined as participants with: 1) DSM-4 criteria for alcohol abuse or alcohol dependence met; 2) 591 

FTND score ≥ 4; 3) DSM-4 criteria for marijuana dependence met; and 4) any use of illicit drugs > 10 times, 592 

and HC was defined as those meeting all of the following requirements: 1) no DSM-4 alcohol dependence 593 

or abuse symptoms endorsed; 2) no smoking history or only experimental uses; 3) no marijuana used ever; 594 

4) no use of illicit drugs ever. For UKB, SUD was defined as participants with: 1) weekly alcohol 595 

assumption > 15 units and alcohol use almost daily; 2) current smokers on most or all days; 3) cannabis 596 

ever taken > 100 times; and 4) ever addicted to illicit or recreational drugs, and HC was defined as those 597 

meeting all of the following requirements: 1) less than weekly use of alcohol; 2) no current and past 598 

smoking; 3) no marijuana use; 4) never addicted to illicit or recreational drugs. For NKI-RS, SUD was 599 

defined as participants with: 1) any use of tobacco, alcohol, marijuana and additive drugs (age<18); 2) 600 

clinical diagnosis of substance abuse or dependency in DSM-IV (age≥18), and HC was defined as those 601 

not meeting the criteria of SUD. For Cam-CAN, SUD was defined as participants with: 1) weekly alcohol 602 

use ≥ 3 or 4 times; 2) current smoking; 3) intermediate or substantial drug use severity, and HC was defined 603 

as those meeting all of the following requirements: 1) monthly alcohol use < 4 times or less or past drinker; 604 

2) total smoking quantity < 100 or past smoker; 3) no drug used ever. For BRAINMINT, substance use 605 

behaviors were measured using CRAFFT+N questionnaire. SUD was defined as participants with any use 606 

of full drink containing alcohol, tobacco-related products, marijuana or anything else to get high in past 607 

year and CRAFFT score >= 2, and HC was defined as those not meeting the criteria of SUD. 608 

In sensitivity analysis, we tested whether the discontinuity of brain volumetric differences between SUDs 609 

and HCs from pre-adulthood to adulthood could be attributed to the change of SUD/HC definition. 610 

Definitions of SUD and HC were modified by replacing all above defined HCs in HCP and UKB as mild 611 

SUDs.  612 

Assessment of behavioral and neurocognitive performances 613 

Neurobehavioral measurements were selected according to potential circuits associated with SUD39,40. In 614 

ABCD, rule breaking and conduct problem scores from Child Behavior Check List (CBCL), "fun seeking" 615 

score from Behavioral inhibition and Behavioral Activations scales (BIS/BAS), total impulsivity score from 616 

the UPPS-P Impulsive Behavior Scale, Flanker Inhibitory Control and Attention Test (Flanker) and Stop 617 

Signal Test (SST) were used for the measurement of rule-breaking behaviors and impulsivity. The accuracy 618 

rates of small reward trials and large reward trials adjusted the accuracy in neural trials from Monetary 619 
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Incentive Delay task (MID) were used to measure reward sensitivity. The Dimensional Change Card Sort 620 

Test (DCCS) score was used to measure the cognitive flexibility aspect of executive function. In IMAGEN, 621 

conduct problem score from Strengths and Difficulties Questionnaire (SDQ), novelty seeking personality 622 

score from Temperament and Character Inventory (TCI), average sensation seeking and impulsivity scores 623 

from Substance Use Risk Profile Scale (SURPS) as well as Monetary-Choice Questionnaire (KIRBY) were 624 

used for the measurement of rule-breaking behaviors and impulsivity. The CANTAB Spatial Working 625 

Memory (SWM) test was used to measure working memory components of executive function113. In HCP, 626 

rule breaking score from Achenbach Adult Self Report (ASR), conduct problem score from Semi-Structured 627 

Assessment for the Genetics of Alcoholism (SSAGA), Flanker test as well as delayed discounting task 628 

were used to measure rule-breaking behaviors and impulsivity. The index in discounting task is the Area 629 

Under the Curve for Discounting of different delayed reward vary in $200 and $4K. A smaller AUC indicates 630 

steep delay discounting, i.e., increased preference toward short-term benefits. DCCS was used for the 631 

measurement of executive function. We also included emotional measurements offered by NIH Toolbox, 632 

where participants were asked to evaluate their life experiences in terms of life satisfaction, meaning and 633 

purpose, and perceived stress. In UKB, the only question about rule-breaking is whether people treated 634 

themselves as a risk-taking person. Other measurements for psychological well-being included mood 635 

swing, irritability, fed-up feelings, anhedonia feeling and life satisfaction for individuals. Executive function 636 

was measured by numeric short-term memory task and tower rearranging test. In NKI-RS, the health 637 

subscale risk taking score from the Domain-Specific Risk-Taking Scale (DOSPERT), rule-breaking 638 

behavior score from youth/adult self-report (YSR/ASR), sensation seeking score from UPPS-P Impulsive 639 

Behavior Scale, impulsivity score from parent-rated Conners ADHD Rating Scale (Conner-P) and Conners 640 

Adult ADHD Rating Scale (CAARS), social awareness score from Social Responsiveness Scale (SRS), 641 

executive functioning score from Conner-P and conflict effect score from Attention Network Test (ANT) 642 

were used. Self-esteem score was calculated as the sum of the 7th, 8th and 14th term in Beck Depression 643 

Inventory (BDI) questionnaire. 644 

Assessment of adverse childhood experience 645 

The total childhood trauma experiences score was calculated as the number of reported events at initial 646 

measurements across emotional neglect, physical neglect, emotional abuse, physical abuse and sexual 647 

abuse subscales. In ABCD, emotion neglect from Children's Report of Parental Behavioral Inventory 648 

(focused on the first caregiver; ≥2 matching descriptions), physical neglect from Parent Monitoring Survey 649 

(focused on the first three personal safety questions; ≥1 matching descriptions), abuse (764-765 for 650 

emotional abuse; 761-763 for physical abuse; 767-769 for sexual abuse) from Parent Diagnostic Interview 651 

for DSM-5 (KSADS) Traumatic Events - post-traumatic stress disorder module (≥1 matching descriptions) 652 

were obtained as suggested114. In IMAGEN, all subscales were obtained from Childhood Trauma 653 

Questionnaire (CTQ) with pre-defined cut-off values115. 654 

Acquisition, imputation and quality control of genomic data 655 

For ABCD, the genotype data were obtained directly from the public release 3.0, and imputed using the 656 

Michigan Imputation Server with hrc.r1.1.2016 reference panel116 and Eagle v2.3 phasing. Due to genetic 657 

diversity85 and low linkage disequilibrium (LD) levels of African populations86, a total of 2,387 ABCD 658 

subjects self-reporting ancestral origins as Black or African American was excluded. One participant per 659 

family was randomly selected to avoid within family correlations. For IMAGEN, details of the genotyping 660 

and quality control could be found in Desrivières et al117, imputed using the TOPMed imputation server 661 

with the HapMap3 reference panel118. For HCP, detailed genotyping and quality control could be found 662 
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in119, where imputation was performed with the 1000 Genomes panel120. For UKB, detailed genotyping 663 

and quality control procedures are available in121. Individuals that were estimated to have recent British 664 

ancestry and have no more than ten putative third-degree relatives in the kinship table were included. 665 

Similar quality control standards were performed by PLINK 1.90 across studies. Individuals with >10% 666 

missing rate and single-nucleotide polymorphisms (SNPs) with call rates < 95%, minor allele frequency < 667 

1%, deviation from the Hardy-Weinberg equilibrium with P < 1E-10 were excluded from the analysis. Thus, 668 

a total of 7,662 participants and 5,020,358 SNPs in ABCD, 1,982 participants and 5,966,316 SNPs in 669 

IMAGEN, 897 participants and 5,375003 SNPs in HCP, and 337,151 participants and 8,894,431 SNPs in 670 

UKB were included in the genomic analysis. 671 

Acquisition and preprocessing of neuroimaging data 672 

Neuroimaging data in ABCD were obtained using 3T scanners (Siemens Prisma, General Electric MR750 673 

and Philips Achieva dStream) with 32-channel head coil and high resolution T1-weighted structural MRI. 674 

The pre-processing processes and quality control procedures were completed by the ABCD research 675 

teams according to the ABCD standard pipeline and protocol122,123. Neuroimaging data in IMAGEN were 676 

obtained using 3T MRI systems based on the ADNI protocol from 4 different manufacturers (Siemens 677 

Philips, GE Healthcare, and Bruker), with detailed MR protocols and QC procedures described in124. In 678 

HCP, neuroimaging data were obtained on a Siemens Skyra 3T scanner employing a 32-channel head 679 

coil with protocols provided in https://www.humanconnectome.org. In UKB, neuroimaging data were 680 

obtained with a standard Siemens Skyra 3T scanner with a 32-channel head coil, identical in both hardware 681 

and software in Manchester, Newcastle, and Reading. Details of preprocessing and QC processes could 682 

be found in125. In brief, quality-controlled processed T1-weighted neuroimaging data were obtained directly 683 

from cohort teams. The NKI-RS neuroimaging data were obtained following the same protocols as HCP 684 

provided by the University of Minnesota. Quality controlled T1 images were downloaded. The Cam-CAN 685 

neuroimaging data were provided by the University of Cambridge using the same MRC CBU scanner 686 

according to126. The BRAINMINT neuroimaging data were obtained using a 3T GE SIGNA Premier scanner 687 

with a 48-channel head coil. Then regional volumes were extracted by FreeSurfer v6.0 (BRAINMINT 688 

processed by v7.3.2) cross-sectional pipelines using Desikan-Killiany (h.aparc) atlas for cortical regions, 689 

and ASEG atlas for subcortical regions, except for UKB, where Brain volumetric phenotypes could be 690 

acquired directly by category ID 192&190. Quality check was performed according to FreeSurfer 691 

reconstruction quality-controlled (QC) measures.  692 

Harmonization of neuroimaging data across multiple cohorts via GAMLSS  693 

Motivated by the use of GAMLSS model in construction of brain charts32, normative model was used to 694 

harmonize neuroimaging data across multiple study cohorts. ComBAT method was first employed to 695 

remove confounding due to imaging scanners within each study (ComBat function in sva-3.46.6 package). 696 

For Cam-CAN, due to a change in the scanner coil during data collection and differences in MTI TR across 697 

participants, these two confounding variables were also preemptively corrected using ComBAT. Next, 698 

regional GMV was modeled using a generalized gamma distribution, with mean and variance defining 699 

functions involving fractional polynomials of age, sex, handedness and study-specific random effects 700 

(gamlss-5.4.18 package)32. The number of fractional polynomials and whether to include a study random 701 

effect was determined for each ROI based on Bayesian information criterion (BIC) (Supplementary Fig. 2). 702 

The same optimal GAMLSS models were also applied during the validation phase. Only cross-sectional 703 

HCs were used for model fitting, including baseline ABCD data, sampled IMAGEN data, HCP data and 704 

baseline UKB data. A single observation was randomly sampled from all visits among IMAGEN Individuals 705 
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with more than one neuroimaging scans, with sampling probability being standardized reciprocal of the 706 

distribution frequency. Finally, volumetric characteristics for each participant were placed on the normative 707 

model to obtain age- and sex-specific centiles. 708 

Estimation of the lifespan volumetric GMV trajectories for SUDs and HCs 709 

Since GAMLSS does not provide standard error estimates, generative additive model (GAM) was used to 710 

compare mean regional GMV across different ages between SUDs and HCs. First, confounding effects 711 

due to sex, handedness and study on the GMV measures were removed, and covariate-adjusted GMV 712 

were obtained, with the underlying assumption that effects of these confounders on GMV were 713 

independent of substance use status. Next, lifespan GMV trajectories across age were constructed 714 

separately for SUDs and HCs using GAM (gam function in mgcv-1.9.0). Cubic spline with K=3 was used 715 

as the basis function for age (spline-4.2.2). To obtain continuous comparisons of the age-dependent GMV 716 

trajectories between SUDs and HCs, we began by predicting the mean and standard error estimated from 717 

group-level GMV trajectories at discrete ages between 8y and 70y with a step of 0.05y. Two-sided z test 718 

was used to test the null hypothesis that population GMV in SUDs and HCs was identical. After correcting 719 

for multiple comparisons via False Discovery Rate (FDR) method, GAM with cubic spline basis were 720 

selected to construct continuous significance comparisons between SUDs and HCs across the lifespan. 721 

Then, we explored whether there was heterogeneity in brain differential patterns for SUDs from two 722 

aspects. On one hand, SUDs were divided into four groups with different substance use behaviors, 723 

including alcohol, tobacco, marijuana and any other type of addictive drugs. Lifespan volumetric patterns 724 

were estimated separately for these four groups and compared with HCs. On the other hand, hierarchical 725 

clustering method was used for individual GMV centiles to investigate potential clustering characteristics 726 

in changing patterns between brain regions for SUD. 727 

Validation of the lifespan volumetric GMV trajectories for SUDs and HCs 728 

The lifespan brain differential trajectories for SUD were validated in two ways. Firstly, validation was 729 

performed using the longitudinal ABCD and UKB datasets, where the baseline data overlapped with the 730 

training data. Individual longitudinal volumetric changes were calculated as the difference in GMV between 731 

follow-up and baseline. The change rate in SUD relative to HC was obtained using the linear regression 732 

model adjusting for age and sex. The magnitude and direction of change rates for ROIs were compared 733 

with the estimated slope differences at the corresponding individual ages using fitted GAM models. 734 

following the same estimation process and parameter settings as mentioned above. Second, external NKI-735 

RS and Cam-CAN datasets were harmonized following the same estimation process and parameter 736 

settings as mentioned in the discovery analysis above, resulting in an independent normative model for 737 

the entire validation phase. Since the BRAINMINT samples could only be analyzed on a local server, an 738 

inverse-variance weighted meta-analysis was conducted to combine the HC and SUD change trajectories 739 

from BRAINMINT with those derived from NKI-RS and Cam-CAN samples in overlapping ages. Then two-740 

sided z tests at different time points and GAM with cubic spline basis were used to refit the differential 741 

trajectories similarly. As it is hard to obtain statistically significant results in the validation sets due to limited 742 

samples, spearman correlation analysis was used to assess the consistency of differential patterns in the 743 

discovery and validation datasets. 744 

Comparison of lifespan neurobehavioral performances between SUDs and HCs 745 

Two-sided t-test was used to compare neurobehavioral measurements between SUDs and HCs in the 746 

discovery phase. In ABCD, we also applied down-sampling methods to address the severe class 747 

imbalance problem in SUD. A linear interaction term between age and SUD was included to evaluate the 748 
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time-varying neurobehavioral changes in SUDs in external validation, with age, SUD, sex, handedness 749 

included as covariates. Standard error was calculated assuming multivariate normal distribution. Factor 750 

analysis was applied to calculate composite scores for rule-breaking and impulsivity due to heterogeneity 751 

of measurement tools (Supplementary Fig. 13). As there is only one self-reported question about risk-752 

taking personal characteristics related to rule-breaking or impulsivity in UKB, it is not included in the brain-753 

neurobehavior correlational analysis. The number of common factors were determined by the number of 754 

eigen values larger than 1. Correlations between the extracted factors and GMV centiles of each ROI were 755 

calculated for all studies. BH-FDR method was used for multiple testing. To highlight the impact of lifespan 756 

brain-neurobehavior correlations, effect sizes were meta-analyzed within studies of adolescents (ABCD 757 

and IMAGEN), whereas HCP was only used as the resource of adult study. Since rule-breaking and 758 

impulsivity are mildly correlated in ABCD (r = 0.08, Padj = 1.47×10-12), we adjusted for rule-breaking score 759 

in the correlational analysis between impulsivity and brain GMV, and vice versa as a sensitivity analysis. 760 

Longitudinal association analysis using brain atlases 761 

Cognitive term based meta-analysis statistical brain atlases43 were downloaded from Neurosynth43 762 

(https://neurosynth.org/) and parcellated according to the APARC and ASEG atlases using NiMARE 763 

0.0.11127,128. Factor analysis with varimax rotation was then used. All factors explaining > 1% of the 764 

variance were kept, resulting in seven factors. To ensure that these factors were highly representative of 765 

underlying cognitive processes, only cognitive terms with loadings > 0.2 and also within the top 50th 766 

percentiles were retained for each factor. Factor loadings and factor-level brain atlases are available in the 767 

Supplementary Fig. 11-12. Subsequently, univariate correlation analyses were performed between the 768 

factor-level cognitive brain atlases and differential z-statistic of ROIs between SUD and HC at 0.5y intervals 769 

from 8y to 70y. Explained variance (R2) was calculated to represent the influential levels, and P-values 770 

were determined using 1000 spin permutations. BH-FDR method was used for multiple testing within each 771 

ROI. A similar analysis was conducted using neurobiomarker brain atlases60, where 20 molecular- and 772 

cellular-level factors were obtained along with one cortical microstructure factor from cortical gene 773 

expression atlases, limiting the analysis to cortical region of interest. P-values were also calculated via 774 

1000 permutations and adjusted for multiple testing by BH-FDR method, with null maps generated 775 

according to60.  776 

GWAS, genetic correlation analysis and conjFDR 777 

Scalable and accurate Implementation of generalized mixed model55 (SAIGE) was used for genetic 778 

associations to avoid inflating Type I error due to case-control imbalance, and P values were obtained via 779 

saddlepoint approximation. Given the longitudinal nature of ABCD and IMAGEN, participants were defined 780 

as cases when they can be classified as SUDs for more than the average times of the total visits. This 781 

resulted in 6,177 cases (SUDs) and 1,485 controls (HCs) in ABCD, and 605 cases and 1377 controls in 782 

IMAGEN, respectively. To better understand how estimated GMV trajectories may contribute to the 783 

development of SUD, we calculated a wGMV score, representing the possibility of being classified as SUD 784 

using GMV. This score was composed of all ROI centiles weighted by the z-value obtained in the GWAS 785 

comparing SUDs and HCs. When wGMV was used as the continuous phenotype, GWAS was conducted 786 

using Plink 2.0, with sex, handedness, age at baseline, self-reported ethnicity, and the top k population 787 

genetic principal components (k = 20 for ABCD and k = 10 for the other three studies) included as 788 

covariates. Within-sibship GWAS129 was used for both binary and continuous phenotype GWAS for HCP.  789 

A published GWAS of SUD risk factors46,47 (Addrf) was used as a reference to assess the consistency of 790 

our GWAS results, where cross-trait polygenic risk score was calculated and used to evaluate genetic 791 
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correlations between summary statistics of the published GWAS and SUD GWAS. Specifically, the 792 

published GWAS was used as the testing sample and PGS was calculated on the testing sample after LD-793 

based pruning (window size=50kb, variant count=5 and R2 threshold=0.1) using the GWAS summary 794 

statistics from the current GWAS in Plink 1.90, adjusting for sex, handedness, age, self-reported ethnicity, 795 

and population genetic principal components. Estimated genetic correlations were then corrected using 796 

bcPRS function in R130.  797 

Finally, ConjFDR131 was used to identify specific shared genetic variants between SUD and wGMV. Test 798 

statistic for the SNP effects on SUD is re-ranked based on their associational strength with wGMV, 799 

obtaining the conditional FDR value. The maximal conditional FDR value was selected as the conjFDR 800 

value. We also investigated common genetic variants shared between wGMV in UKB and the SUD risk 801 

factor with the study population primarily consisting of individuals in mid-to-late adulthood. As no significant 802 

results were found between SUD and wGMV in UKB (Supplementary Fig. 18), we instead reported the 803 

conjFDR results between SUD in UKB and the SUD risk factor. 804 

Genetic variants identified in the above analysis were mapped to genes using Open Targets Genetics 805 

(www.opentargets.org), which integrates evidence from molecular phenotype quantitative trait loci, 806 

chromatin interaction, in silico functional predictions and distance between the variant and the canonical 807 

transcript start site of genes. To further prove the effects of specific genes on SUD, we calculated PGS for 808 

both RNA expression and protein level of corresponding genes based on publicly available GWAS 809 

summary statistics132. Two-sided t-test was used to compare the PGS between SUDs and HCs. 810 

 811 

Data Availability 812 

The raw ABCD, IMAGEN, HCP, UKB, NKI-RS, Cam-CAN and BRAINMINT data are protected and are not 813 

available due to data usage agreement. However, access can be obtained upon application except 814 

BRAINMINT samples, which could only be analyzed on local server in the University of Oslo. ABCD data 815 

can be accessed at https://abcdstudy.org/; IMAGEN data can be accessed by email at https://imagen-816 

project.org/; HCP data are available from: https://www.humanconnectome.org/; UKB data can be accessed 817 

at https://biobank.ndph.ox.ac.uk/; NKI-RS data can be applied by mail; and Cam-CAN data can be 818 

accessed from: http://www.mrc-cbu.cam.ac.uk/datasets/camcan/. Cognitive term and factor-level gene 819 

expression brain atlases can be accessed at https://neurosynth.org/ and 820 

https://github.com/LeonDLotter/CTdev/. Published GWAS summary statistics of SUD risk factor (Addrf) 821 

can be accessed by mail from46. Publicly available GWAS summary statistics for multi-omics traits can be 822 

accessed at https://www.omicspred.org/. 823 

 824 

Code Availability 825 

Primary analyses were conducted in R v4.2.2 and atlas-related analysis were conducted in Python 3.9.10. 826 

GAMLSS models were performed using gamlss-5.4.18 and gamlss.dist 6.1-1 R packages. GAM models 827 

were built using mgcv 1.9.0 R package. NiMARE 0.0.11 was used to download and process Neurosynth 828 

atlases. SAIGE was used to perform GWAS (https://github.com/saigegit/SAIGE) and genetic correlation 829 

was calculated following codes from https://github.com/xm1701/bcPRS?tab=readme-ov-file using Plink 830 

1.90 and bcPRS 0.0.0.9000 R package. ConjFDR was used to identify genetic loci shared between two 831 

phenotypes (https://github.com/precimed/pleiofdr). Open Targets Genetics was used to perform functional 832 

annotations (www.opentargets.org). 833 
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Fig. 1. Lifespan GMV trajectories for SUDs and HCs (A) Visualization of ROIs with significant differences between SUDs and HCs at 
different life stages throughout the lifespan. Blue indicates lower GMV in SUDs compared to HCs, while red indicates the opposite. (B) 
Estimated lifespan GMV trajectories for SUDs (red) and HCs (blue) with 95% confidence bands, adjusting for sex, handedness and study. 
Observed mean GMVs from each study were displayed as points, with errors bars representing standard errors (Top). Two sample t-test was 
used to compare GMV between SUDs and HCs across the lifespan, with Benjamini-Hochberg correction for multiple testing within each ROI. 
Log p-values from the tests were reported against the significance level (dashed red line) (Bottom).
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cal differences and then converting the result into a Z statistic, while ignoring the directionality.
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