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The shortest light pulses produced to date are of the order of a
few tens of attoseconds, with central frequencies in the extreme
UV range and bandwidths exceeding tens of electronvolts. They
are often produced as a train of pulses separated by half the driv-
ing laser period, leading in the frequency domain to a spectrum
of high, odd-order harmonics. As light pulses become shorter and
more spectrally wide, the widely used approximation consisting
of writing the optical waveform as a product of temporal and
spatial amplitudes does not apply anymore. Here, we investigate
the interplay of temporal and spatial properties of attosecond
pulses. We show that the divergence and focus position of
the generated harmonics often strongly depend on their fre-
quency, leading to strong chromatic aberrations of the broadband
attosecond pulses. Our argument uses a simple analytical model
based on Gaussian optics, numerical propagation calculations,
and experimental harmonic divergence measurements. This effect
needs to be considered for future applications requiring high-
quality focusing while retaining the broadband/ultrashort char-
acteristics of the radiation.

attosecond pulse | high-order harmonic generation | Gaussian optics |
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E lectromagnetic waves are usually mathematically described
by a product of purely spatial and purely temporal terms.

This approximation often fails for broadband femtosecond laser
pulses (ref. 1 and references therein), and spatiotemporal cou-
plings need to be considered. Spatiotemporal couplings for vis-
ible or infrared (IR) light may be introduced by refractive and
dispersive elements, such as lenses, gratings, or prisms. The non-
collinear amplification in optical parametric crystals may also
potentially lead to spatiotemporal couplings, and it is impor-
tant to develop characterization methods to measure and reduce
their effects (2–4). In some cases, these couplings may be advan-
tageously used, as, for example, demonstrated by Vincenti and
Quéré (5) for the so-called “lighthouse” effect (6, 7).

The shortest light pulses, generated by high-order harmonic
generation (HHG) in gases, are in the extreme UV (XUV)/soft
X-ray region and in the range of 100 as (8–11), with band-
widths of a few tens or even hundreds of electronvolts (12,
13). These pulses are generated in a three-step process (14,
15). When an atom is exposed to a strong laser field, an elec-
tron in the ground state can tunnel through the atomic poten-
tial bent by the laser field, propagate in the continuum, and
recombine back to the ground state when (and if) returning
close to the ionic core. In this process, an XUV photon is
emitted, with energy equal to the ionization energy plus the
electron kinetic energy at return. Two main families of tra-
jectories leading to the same photon energy can be identified.
They are characterized by the “short” or “long” time of travel
of the electron in the continuum (16, 17). Interferences of
attosecond pulses emitted at each laser half-cycle leads to a
spectrum of odd-order harmonics.

The investigation of spatiotemporal coupling of attosecond
pulses requires measurements of their spatial properties, as a

function of time or, equivalently, frequency. Wavefronts of high-
order harmonics have been measured by several groups, using
different techniques such as Spectral Wavefront Optical Recon-
struction by Diffraction (18–20), lateral shearing interferome-
try (21), point-diffraction interferometry (22), and Hartmann
diffraction masks (23, 24). In particular, Frumker et al. (25)
pointed out that the variation of wavefront and intensity pro-
file with harmonic order leads to spatiotemporal coupling of the
attosecond pulses, with temporal properties depending on where
they are measured.

The spatial and spectral properties of high-order harmonics
strongly depend on the geometry of the interaction and, in par-
ticular, on whether the gas medium in which the harmonics are
generated is located before or after the focus of the driving laser
beam (26). The asymmetry between “before” and “after” can be
traced back to the phase of the emitted radiation, which is equal
to that of the incident laser field multiplied by the process order,
as in any frequency upconversion process, plus the dipole phase
which is accumulated during the generation and mostly origi-
nates from electron propagation in the continuum. While the
former is usually antisymmetric relative to the laser focus, the
latter depends on the laser intensity and is therefore symmet-
ric (21, 27). The total phase and thus the divergence properties
are different before and after the laser focus, leading to a strong
dependence of the spatiotemporal properties of the harmonic
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radiation on the generation conditions. In some conditions, har-
monics can be emitted with a flat wavefront (21) or even as a
converging beam (28, 29). Another phenomenon leading to an
asymmetry of HHG with respect to the generation conditions
is ionization-induced reshaping of the fundamental field, which
depends on whether the beam is converging or diverging when
entering the gas medium (20, 30–32).

In the present work, we show that the frequency components
of attosecond pulses generated by HHG in gases have differ-
ent divergence properties, which depend on the geometry of the
interaction and in particular on where the generating medium is
located relative to the laser focus. In some conditions, the posi-
tion of the focus and divergence strongly vary with frequency,
leading to chromatic aberrations, as sketched in Fig. 1, similar
to the effect that a chromatic lens has on broadband radia-
tion (33, 34). Any imaging optical component will focus the
frequency components of the attosecond pulses at different loca-
tions, resulting in spatiotemporal couplings. Depending on the
position where the pulses are characterized or used, they will
have different central frequencies, pulse durations, and spatial
widths. We use an analytical expression for the dipole phase (35)
combined with traditional Gaussian optics to predict the radius
of curvature, position of focus, and divergence of the two tra-
jectory contributions to HHG (29). This model, which assumes
generation in a thin slab (36, 37), is validated by using numeri-
cal simulations of HHG (38) for both thin and thick generating
media. We also present experimental measurements of the har-
monic divergence as a function of position of generation relative
to the laser focus. Finally, we discuss the implications of our
results for the focusing of broadband attosecond pulses.

Analytical Expression of the Dipole Phase
The single-atom response of HHG is well described by an
approximate solution of the time-dependent Schrödinger equa-

Fig. 1. Illustration of spatiotemporal coupling for an attosecond pulse: dif-
ferent frequencies (harmonic orders 31, 35, 59, and 67, with red, orange,
green, and blue colors respectively), generated with varying wavefront cur-
vatures and different divergences, as indicated in Inset, will be refocused
by XUV optics (here represented as a lens) at different positions, leading
to strong chromatic aberrations and an extended focus, both transversally
and longitudinally. The fundamental driving field is indicated by the dark
brown/black line.

tion (TDSE) for an atom in a strong laser field, called the
strong-field approximation (SFA) (39). This theory leads to a
simple analytical expression of the dipole phase, equal to αI ,
where α depends on the harmonic order and on the trajec-
tory contributing to HHG (16, 26, 40, 41) and where I is
the laser intensity. This expression has been used in numer-
ous investigations of the harmonic properties (17, 29, 41, 42).
Here, we use a more general analytical expression for the phase
(35), based on the semiclassical description of attosecond pulse
generation (14, 15).

In this approximation, the second step of the process is
described by solving Newton’s equation of motion for a free par-
ticle in the laser field. Fig. 2 shows the frequency (Ω) of the
emitted XUV radiation as a function of electron return time for
two different fundamental field intensities, indicated by the solid
and dashed curves. The frequency varies from Ωp, corresponding
to the ionization threshold (~Ωp = Ip, Ip denoting the ionization
energy and ~ the reduced Planck constant) to the cutoff fre-
quency Ωc (~Ωc = 3.17Up + Ip). Up denotes the ponderomotive
energy, equal to

Up =
αFS~Iλ2

2πc2m
, [1]

where αFS is the fine structure constant, m the electron mass,
c the speed of light, and λ the laser wavelength. The frequency
variation can be approximated by piecewise straight lines, as indi-
cated by the black solid lines. After inversion from Ω(t) to t(Ω),
for each straight line, we have

ti(Ω) = tpi +
tci − tpi
Ωc−Ωp

(Ω−Ωp), [2]

where i = s, ` refers to the electron trajectory (short or long),
and tpi and tci are defined as indicated by the dashed black
lines in Fig. 2. The values of tpi and tci , in both laser cycles and
femtoseconds (at λ= 800 nm), are summarized in Table 1. We
also indicate the return times for the short and long electron
trajectories leading to the threshold frequency (tts, tt`) and the
return time for the trajectory leading to the cutoff frequency (tc).
Neglecting the frequency dependence of the time for tunneling
and recombination, ti(Ω) can be interpreted as the group delay
of the emitted radiation. Its integral is the spectral phase

Φi(Ω) = Φi(Ωp) + tpi(Ω−Ωp) +
tci − tpi
Ωc−Ωp

(Ω−Ωp)2

2
. [3]

As shown in Fig. 2, the return times tpi , tci , and therefore the
second term in Eq. 3 do not depend on laser intensity. Using
Ωc−Ωp = 3.17Up/~, the coefficient in the third term can be
written as

tc− tpi
Ωc−Ωp

=
2γi
I

, [4]

where

γi =
(tci − tpi)πc

2m

3.17αFSλ2
. [5]

In this classical calculation, Φi(Ωp) is equal to zero for the
short trajectory, while it is proportional to the laser intensity
for the long: Φ`(Ωp) =α`I . The value of α` can be obtained
numerically within the classical approach used in this work
(43) and is found to be close to that given within the SFA,
equal to 4π2αFS/mω

3, where Ω is the laser frequency (16,
41). The parameters needed to describe Φi(Ω) for 800-nm
radiation are γs = 1.03 × 10−18 s2·W·cm−2, γ` = − 0.874×
10−18 s2·W·cm−2, αs=0, and α` =−2.38× 10−13 W−1·cm2.
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Fig. 2. Emitted XUV frequency as a function of return time for two laser
intensities, corresponding to the solid and dashed blue/red curves. The blue
curves describes the short trajectories, while the red lines refer to the long
trajectory. tts,t` are the return times for the short and long electron trajec-
tories leading to the threshold frequency Ωp. tc is the return time for the
trajectory leading to the cutoff frequency Ωc. tpi and tci (i = s, `) are return
times obtained by approximating Ω(t) as piecewise straight lines. Values for
these return times are indicated in Table 1.

The dipole phase can be approximated for the two families of
trajectories by the expansion:

Φi(Ω) =αiI + tpi(Ω−Ωp) +
γi
I

(Ω−Ωp)2. [6]

The present expression gives very similar results to, e.g., the
numerical results presented in ref. 40, obtained by solving saddle-
point equations within the SFA, with the advantage of being
analytical.

Wavefront and Spatial Width of XUV Radiation
We now use this analytical expression for the dipole phase
together with traditional Gaussian optics to predict the radius
of curvature, position of focus, and divergence of the two tra-
jectory contributions to HHG. A similar derivation has been
proposed, independently, by Quintard et al. (29) with, how-
ever, a different analytical formulation of the dipole phase. We
neglect the influence of propagation, considering an infinitely
thin homogeneous gas medium (36, 37, 44). Such an approxima-
tion is valid in a loose focusing geometry, where the generating
medium length is much smaller than the Rayleigh length. We
also assume that the fundamental field is Gaussian, with inten-
sity I (r , z ), radial width w(z ) at 1/e2, radius of curvature R(z ),
and peak intensity I0, z denoting the coordinate along the prop-
agation axis and r the radial coordinate. The focus position is
z = 0 and the waist w0 =w(0). Considering only the contribution
of one trajectory i , the phase of the qth harmonic field can be
approximated by

Φq(r , z ) = qφ(r , z ) + Φi(r , z ). [7]

The phase of the fundamental Gaussian beam is φ(r , z ) = kz −
ζ(z ) + kr2/2R(z ), where k is the wavevector equal to ω/c and
ζ(z ) the Gouy phase (45). This article is mainly concerned with
the third term, giving the curvature of the beam. The dipole
phase Φi(r , z ) is given by Eq. 6, for I = I (r , z ) and Ω = qω.
Omitting the second term in Eq. 6, which does not depend on
intensity and therefore on space, Φi(r , z ) can be expressed as

Φi(r , z ) =
αiI0w

2
0

w2(z )
e
− 2r2

w2(z) +
γi(Ω−Ωp)2w2(z )

I0w2
0

e
2r2

w2(z) . [8]

We use a Taylor expansion close to the center of the beam
to approximate Φi(r , z ) (Eq. 8). To determine the harmonic
wavefront, we only keep the terms proportional to r2 in Eq.
8, to which we add the r2-dependent contribution from the
fundamental, equal to qkr2/2R(z ). The resulting r2-dependent
contribution to the phase of the harmonic field can be written as
qkr2/2Ri , with

1

Ri
=

1

R(z )
− 4αiI0w

2
0 c

w4(z )Ω
+

4γi(Ω−Ωp)2c

I0w2
0 Ω

. [9]

For simplicity of the notations, we omit to explicitly indicate
the z dependence of Ri . The curvature of the harmonic field is
equal to that of the fundamental (first term) plus that induced
by the dipole phase. The second term is only present for the
long trajectory. This equation outlines the dependence of the
XUV radiation wavefront on frequency (Ω), electron trajectory
(i), intensity at focus (I0), and generation position (z ). Eq. 9 is
illustrated in Fig. 3A, representing the wavefronts induced by
the fundamental (black) and due to the dipole phase for the
short trajectory (green) as a function of the generation position.
The fundamental wavefront changes from convergent to diver-
gent through the focus, while that induced by the dipole phase is
always divergent and independent of the generation position (z ).

Using the reduced coordinate Z = z/z0, where z0 =πw2
0 /λ is

the fundamental Rayleigh length, Eq. 9 can be written as

z0
Ri

=
1

Z + 1/Z
− ηi

(1 +Z 2)2
+µi , [10]

where ηi = 2αiI0/q and µi = 2γiω
2(q − qp)2/qI0 are dimension-

less quantities (qp = Ωp/ω). For the short trajectory, since αs =
0, the positions where the radius of curvature diverges, corre-
sponding to a flat phase front, can be calculated analytically by
solving a second-order equation in Z ,

Z 2 +
Z

µs
+ 1 = 0. [11]

For µs≤ 0.5, the solutions to this equation are real and the radius
of curvature diverges at

Z±=− 1

2µs
±
√

1

4µ2
s

− 1. [12]

This discussion is illustrated graphically in Fig. 3B for the 23rd
harmonic of 800-nm radiation generated in Ar, with I0 = 3 ×
1014 W·cm−2 . In these conditions, we have ηs = 0, µs = 0.253,
η` =−6.38, and µ` =−0.215. Fig. 3B presents the radius of cur-
vature in reduced units Ri/z0 for the short (blue) and long
(red) trajectory contributions. Over the range shown in the

Table 1. Return times for the short and long trajectories relative
to the zero of the electric field

Return time Brief description Cycle fs

tts Short, threshold 0 0
tps Short, threshold, model 0.18 0.48
tcs Short, cut-off, model 0.40 1.07
tc Cut-off 0.45 1.20
tc` Long, cut-off, model 0.50 1.35
tp` Long, threshold, model 0.69 1.85
tt` Long, threshold 0.75 2.00

For the last column, a laser wavelength of 800 nm is used.
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figure, between −2z0 and z0, Rs/z0, represented by the blue
curve, diverges at Z+ =−0.272. The other solution of Eq. 11
is Z−=−3.68 which is outside the scale of the figure. For
the long trajectory, the radius of curvature, represented by the
red solid line, diverges at Z '−1.4. This behavior is quite
general for all harmonics, as discussed in the last section of
this work.

To estimate in a simple way the spatial width of the harmonic
field at the generation position, we assume that its amplitude is
proportional to the fundamental amplitude to a power p (36, 37,
44, 46, 47). This exponent is quite constant in the plateau region
and typically of the order of 4, as confirmed by our TDSE calcula-
tions presented below. The harmonic width is then simply equal
to W =w(z )/

√
p (here, as well, we omit to write explicitly the

z -dependence of W ).

Focus Position and Beam Waist
Knowing the beam radius of curvature and width at a given posi-
tion z , it is a simple exercise within Gaussian optics to determine
the position of the focus and the corresponding waist (e.g., ref.
45). The position of focus relative to the generation position z is
given by

zi =− Ri

1 + (λqRi/πW 2)2
, [13]

with λq =λ/q . By using reduced coordinates relative to the
fundamental Rayleigh length, Eq. 13 can be written as

zi
z0

=−Ri

z0

(
1 +

[
pRi

qz0(1 +Z 2)

]2)−1

. [14]

The corresponding waist at focus is

wi =
W√

1 + (πW 2/λqRi)2
, [15]

or, relative to the fundamental waist,

wi

w0
=

(
1 +Z 2

p

)1
2

(
1 +

[
qz0(1 +Z 2)

pRi

]2)− 1
2

. [16]

Fig. 4 shows the position of the harmonic focus (zi/z0) rel-
ative to that of the generation position (z/z0) (A) and the
normalized far-field divergence θi/θ0 =w0/wi (B) for the two
trajectories, short (blue solid line) and long (red solid line). The
color plots represent harmonic intensities obtained from a sim-
ulation presented in Numerical Calculations. The divergence of
the fundamental θ0 is defined as λ/πw0. Let us emphasize that
the zero of the horizontal scale is the laser focus, while in A,
zero on the vertical scale means that the focus of the harmonic
field coincides with the generation position. The focus position
and divergence strongly vary with z and quite differently for the
two trajectories. In both cases, the focus position changes sign,
and the divergence goes through a minimum when the radius of
curvature goes to infinity (Fig. 3).

For the short trajectory and Z ≤Z+, the focus is real, and
it is located after the generation position (zi ≥ 0) along the
propagation direction. The negative curvature of the conver-
gent fundamental beam is larger in magnitude than the positive
curvature induced by the dipole phase, and the harmonics are
generated as a convergent beam (29). When Z >Z+, the focus
is virtual and located before the generation position. Two cases
can be considered: When 0>Z >Z+, i.e., when the genera-
tion position is before the IR focus, the negative curvature

of the fundamental beam is smaller in magnitude than the
positive curvature induced by the dipole phase: The harmon-
ics are generated as a divergent beam. When Z ≥ 0, both
curvatures are positive, and the harmonics are generated as
a divergent beam. The divergence is smallest in the region
close to Z+.

The same reasoning applies for the long trajectory contri-
bution, except that Z+ is now replaced by Z ≈−1.4 (Fig. 3).
In this case, in the region with enough intensity for HHG,
i.e., |Z | ≤ 1.5, corresponding to I = 9× 1013 W·cm−2, the har-
monic focus is located just before the generation position, and
the divergence is much larger than that of the short trajectory
contribution.

At the positions where the radius of curvature diverges (indi-
cated by the dashed line in Fig. 4 for the short trajectory), the
harmonics are generated with a flat wavefront and with a large
focus (low divergence). In contrast, harmonics generated far
away from the divergence minima will inherit a curvature from
the fundamental and the dipole phase contribution which corre-
sponds to a significantly smaller beam waist in the real or virtual
focus and thus in a significantly larger divergence. The variation
of the divergence with generation position is due partly to the
dipole phase contribution, but also to the mismatch between the
harmonic order q and the amplitude variation here described by
a power law with exponent p = 4 (Eq. 16).

A

B

Fig. 3. (A) Representation of different contributions to the harmonic wave-
front, due to the fundamental (black) and due to the dipole phase for the
short trajectory (green) at different generation positions (z). The funda-
mental beam profile variation is indicated by the thick black dashed line.
(B) Radius of curvature of the 23rd harmonic as a function of generation
position. The laser wavelength is 800 nm, and the peak intensity at focus is
3× 1014 W·cm−2. The blue (red) solid line is obtained for the short (long)
trajectory. The thin solid line shows the radius of curvature of the funda-
mental. At the position Z+, where R(z) =−z0/µs, Rs/z0 diverges. As can be
seen in A, this is when the two phase contributions cancel out, as shown by
the horizontal blue dashed line. In both A and B, the vertical thin dashed
lines indicate the position of the harmonic focus (for the short trajectory,
in blue) and the fundamental focus (black). The symbols are defined in the
text; Eqs. 7, 10, and 12.

4782 | www.pnas.org/cgi/doi/10.1073/pnas.1817626116 Wikmark et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1817626116


IN
A

U
G

U
RA

L
A

RT
IC

LE
PH

YS
IC

S

A

B

Fig. 4. Position of the focus of the 23rd harmonic relative to the genera-
tion position (A) and far-field divergence (B) as a function of the generation
position relative to the laser focus. The results for the short and long trajec-
tory are indicated by the blue and red curves, respectively. The dashed line
corresponds to the position Z+, where the radius of curvature for the short
trajectory diverges. The color plots indicate results of a calculation based on
the solution of the TDSE, where HHG is assumed to occur in an infinitely thin
plane. In A, the on-axis intensity at a certain position along the propagation
axis is plotted as a function of generation position on a logarithmic scale.
Three different focal regions, labeled I–III can be identified. In B, the radial
intensity calculated at a distance of 50z0 from the generation position, long
enough to reach the far field, and normalized to the fundamental radial
intensity at the same distance is indicated.

Numerical Calculations
To validate the Gaussian model presented in this work, we
performed calculations based on single-atom data obtained by
solving the TDSE for a single active electron in Ar exposed
to a constant intensity. The time-dependent dipole response
was calculated for 5,000 intensity points. This allows us, for
each harmonic frequency, to precisely unwrap the amplitude
and phase variation as a function of intensity, and thus to
accurately describe the interferences of the trajectories. The
complex electric-field distribution at a given harmonic frequency
is obtained by integrating in time the polarization induced by
the fundamental field in an arbitrarily thin sheet of homoge-
neous Ar gas. The field is then propagated to different positions
relative to the generation position by calculating the diffrac-
tion integral in Fresnel approximation using Hankel transforms.
The influence of ionization is not taken into account. This
procedure is repeated for different gas target positions rel-

ative to the laser focus. We use a fundamental wavelength
of 800 nm, a pulse duration of 45 fs, and a peak intensity
of 3× 1014 W·cm−2.

Fig. 4A presents a color plot of the 23rd harmonic on-axis
intensity for different generation positions (horizontal axis). The
regions with the warmest colors (i.e., toward red) represent
the focal regions. The small regions with high peak inten-
sity (dark red, like that labeled II) correspond to the smallest
focus. The agreement between the numerical predictions and
those of the Gaussian model is striking. When Z ≤Z+, the
23rd harmonic is focused after the generation position (region
I). When Z ≥Z+, two focal regions can be identified, a very
thin one close to the generation position (region II) and a
larger one at larger negative zi (region III). The agreement
with the results of the Gaussian model allows us to interpret
the main contribution to these regions: short trajectory for I
and III and long trajectory for II. While the focus position for
the long trajectory contribution remains close to (just before)
the generation plane, the focus position of the short trajec-
tory contribution strongly depends on the generation position.
The harmonic radiation often exhibits two foci, due to the two
trajectories.

Fig. 4A presents a series of interference structures, some ver-
tical, others almost horizontal. To identify the physical reason
for these structures, we have performed simulations allowing us
to separate the contributions of the trajectories, using the thin
medium approximation and harmonic fields as in our model.
Instead of Gaussian optics, however, we used diffraction inte-
grals for the propagation. These simulations show that the hori-
zontal fringes (e.g., between regions II and III) concern the short
trajectory contribution and come from the fact that the harmonic
phase front and intensity profile are not those of a Gaussian
beam (37). The vertical features (e.g., between I and II), how-
ever, are a manifestation of quantum path interferences (41, 42),
since they only appear when both contributions are coherently
added.

The color plot in Fig. 4B is the 23rd harmonic radial inten-
sity at a distance of 50z0, as a function of generation position.
This distance is long enough to reach the far field region, so that
the radial intensity is proportional to the far field divergence.
As for the focus position, the comparison with the prediction of
the Gaussian model allows us to distinguish the contribution of
the two trajectories, with quite different divergence, especially
for |Z | ≤ 1. The red (blue) curves represent the 1/e2 divergence
within the Gaussian model for the long (short) trajectories. The
blue-green colored regions in B can be attributed to the long tra-
jectory, while the red–yellow–bright green regions are due to the
short trajectory.

An important question is whether these results are still valid
after propagation in a finite medium. We used the single-atom
data described as input in a propagation code based on the
slowly varying envelope and paraxial approximations (38). We
present in Fig. 5 results obtained for a 5.4-mm-long (A), 30-
mm-long (B), and 60-mm-long (C) homogeneous medium, using
a 2-mbar gas pressure and a fundamental waist size of w0 =
350µm. While Fig. 5A compares very well with the results shown
in Fig. 4A, as expected, Fig. 5 B and C shows clear effects
of propagation, related to ionization-induced defocusing of the
fundamental laser beam. In fact, two different phase-matching
regimes appear: one similar to what is present in absence of
propagation and which agrees well with the predictions of the
Gaussian model (compare regions I and III in Fig. 5 A and B),
and a second one, which also follows a similar model but for a
fundamental focus moved to the left (see regions I′ and III′ in
Fig. 5B), as expected for a fundamental beam that is defocused
due to partial ionization of the medium (20, 30–32). To examine
in more details the effect of propagation goes beyond the scope
of this paper.
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Fig. 5. Results of propagation calculations for the 23rd harmonic for a 5.4-mm-long (A), 30-mm-long (B), and 60-mm-long (C) gas cell. The on-axis intensity
at a certain position along the propagation axis is plotted as a function of generation position on a logarithmic scale. The results of the Gaussian model are
indicated by the blue and red solid lines for the short and long trajectories and are identical to those of Fig. 4A.

Experimental Divergence Measurements
Experiments were performed at the intense XUV beamline
of the Lund Laser Centre (48, 49), by using a multiterawatt
45-fs titanium–sapphire laser operating at a 10-Hz repetition
rate. The beam was (slightly) apertured to 27 mm and focused
by using a spherical mirror with focal length f = 8 m. The
laser aberrations were minimized by using a deformable mir-
ror coupled to an IR Shack–Hartmann wavefront sensor. The
harmonics were generated in a 60-mm gas cell filled with Ar
by a pulsed valve. We measured the divergence of the emitted
harmonics using a flat-field XUV spectrometer with an entrance
slit located approximately 6 m after the generation. For each
harmonic, the width was estimated by fitting a Gaussian func-
tion onto the transverse (spatial) direction of the spectrometer.
The IR focus was moved relative to the gas cell along the
direction of propagation by changing the voltage of the actua-
tor which controls the curvature of the deformable mirror. The
limits of the scan were imposed by the decrease of the har-
monic yield, which is slightly asymmetric relative to the laser
focus (26).

The widths of the 13th–19th harmonics are shown in Fig. 6A
and compared with theoretical predictions in B–D, obtained by
using a laser waist of 220 µm and a maximum intensity of 2.5×
1014 W·cm−2 (the Rayleigh length is estimated to 0.2 m). The
harmonic widths were calculated as (zi +L)θi , where L= 6 m is
the distance from the gas cell to the measurement point. Fig. 6B
presents results of numerical calculations based on solving the
TDSE and the propagation equations, using parameters mimick-
ing the experimental conditions as well as possible. In Fig. 6C,
the results of the Gaussian model for the short trajectory are
shown, while in Fig. 6D, a “truncated” Gaussian model is used,
where the expressions for the beam waist, radius of curvature,
and intensity variation of the fundamental beam now include
the effect of a circular aperture (50, 51), taken to be equal to
the experimental one. Going from the left to the right in all of the
plots in Fig. 6, the harmonic widths first decrease (or stay approx-
imately constant for the highest orders) and then increase. The
harmonic widths vary more strongly in the Gaussian model than
in the other calculations and in the experiment. We investigated
the reason for this difference by varying the parameters used in
the propagation simulations, such as medium length, gas pres-
sure, aperture diameter, and pulse energy. Unlike the conditions
used in Fig. 5 B and C, effects due to propagation, e.g., induced
by ionization-defocusing, are negligible, and the main reason for
the difference between Fig. 6 B and C is the beam truncation due
to the aperture, as confirmed by Fig. 6D. Effects due to propa-

gation in the nonlinear medium, which become nonnegligible at
higher laser intensity, actually lead to faster variation of the beam
divergence on both sides of the laser focus.

Chromatic Aberrations of Attosecond Pulses
Finally, we study the variation of the focus position and beam
waist over a large spectral bandwidth. To obtain a broad spec-
tral region, we consider generation of high-order harmonics in
neon atoms. HHG spectra obtained in Ne (52) are broader and
flatter than those in Ar, which exhibit a strong modulation due
to a Cooper minimum at ∼45 eV. Fig. 7 shows the predic-
tions of the Gaussian model, for the 31st to the 71st harmonics
of 800-nm radiation, at an intensity of 5× 1014 W·cm−2. We
only consider here the contribution from the short trajectory.
The Gaussian model is used here for simplicity. It should be
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Fig. 6. (A) Spatial widths of harmonics 13–19 generated in Ar and mea-
sured approximately 6 m after generation as a function of the cell position.
The solid lines are fit to the experimental data indicated by the circles. (B–D)
Spatial widths of the same harmonics as a function of generation position,
obtained by the numerical simulations solving the TDSE and the propa-
gation equations (B) and predicted by the Gaussian model for the short
trajectory (C) and the same model using a truncated Gaussian beam (D).
The peak intensity in vacuum is 2.5 × 1014 W·cm−2, and the laser beam
waist is 220 µm.
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reasonably accurate in conditions of thin medium, not too high
degree of ionization, which is the case for Ne atoms at the inten-
sity used, and high spatial quality, nontruncated, fundamental
beam.

The variation of the focus position as a function of gener-
ation position strongly depends on the process order. This is
due to the frequency dependence of Eq. 9 and, in particular,
depends on whether the radius of curvature diverges. Since µs

increases with frequency, the two zeros Z± of Eq. 9 move closer
to each other, as is clear in Fig. 7A by comparing, e.g., har-
monics 41 and 43 (Z± correspond to the two maxima in the
figure). At a certain frequency, corresponding to harmonic 45 in
Fig. 7A, −1/µs becomes tangent to R(z ) at z =−z0 (see also
Fig. 3). Above this frequency, the radius of curvature does not
diverge and remains negative. The harmonic focus position is
then always located before the generation position. As −1/µs→
0, when the frequency increases, the focus position becomes
largely independent from the generation. In this region, the
harmonics are much more focused, as shown by the blue lines
in Fig. 7B.

To estimate the consequence of these spatial properties on the
spectral characteristics of the attosecond pulses (25), we exam-
ine the variation of the on-axis spectrum at different positions
(labelled 1© to 4©), for the generation position indicated by the
dashed line. This is equivalent to examining the properties of

A

B

C

Fig. 7. Position of harmonic focus zi (A) and waist (B) as a function of gen-
eration position for harmonics 31–71. The different harmonic orders are
indicated by different rainbow color codes, from brown (31) to dark blue
(71). C shows harmonic spectra at four different positions along zi , indicated
from top to bottom by the numbered circles, for the generation position
marked by the dashed line in A. The spectral phase of the attosecond pulse
is shown in black for the first observation point, being largely independent
of the observation position. arb. units, arbitrary units.

A B

C D

Fig. 8. (A and B) Graphs show the on-axis spectral and temporal inten-
sity, respectively, in logarithmic scales, as a function of the observation
position, when generating at z =−0.75 z0. The positions 2© and 3© (see
Fig. 7A) are indicated by dashed lines. C and D show retrieved attosecond
pulses at two different detection positions, i.e., 2© and 3© in Fig. 7A, in a
linear scale.

the generated radiation after refocusing as illustrated in Fig. 1,
for different “detection positions” in the focal region. We here
assume equal strength of the generated harmonics, but account
for the frequency variation in beam waist size (Fig. 7B) and
position (Fig. 7A). The harmonic spectra shown in Fig. 7C are
found to be strongly dependent on the detection position, with,
in some cases, strong bandwidth reduction and displacement of
the central frequency. In contrast, the on-axis harmonic phase is
dominated by the attosecond chirp, given by the last term in Eq.
6 and indicated by the black line in Fig. 7C, and does not vary
much with the detection position.

Spatiotemporal Coupling of Attosecond Pulses
Finally, we estimate the influence of the chromatic aberrations
on the temporal properties of the attosecond pulses. We consider
a flat spectrum between harmonics 31 and 71 at the genera-
tion position indicated by the dashed line in Fig. 7, in the same
conditions as in the previous paragraph. We propagate the har-
monic fields using diffraction integrals and coherently add them
to obtain the resulting attosecond pulse train in space and time at
different detection positions. We take into account the different
focus positions and divergences of the frequency components of
the attosecond pulses, as well as the attosecond positive chirp.

Fig. 8 shows the spectral (A) and temporal (B) intensity (in
color) of the generated attosecond pulse on-axis as function
of the detection position relative to the generation position,
here equal to z =−0.75 z0 (dashed line in Fig. 7). In these
conditions, the central frequency and pulse duration of the
attosecond pulse vary distinctively, indicating strong spatiotem-
poral couplings. In particular, the high-frequency components
(high harmonic orders) form a tight virtual focus before the
generation position, while the low-frequency components have
a more loose and real focus behind (Fig. 8A). The highest
intensity is obtained before the generation position, while the
shortest pulse is obtained afterward, as follows from Fig. 8B. The
attosecond pulse is not the shortest at the generation posi-
tion, where the spectral bandwidth is the largest, because the
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attosecond chirp stretches the pulse in time. Fig. 8 A and B strik-
ingly show that the shortest pulse and the highest intensity of the
attosecond pulse are obtained in different positions, illustrating
the difficulty of refocusing high-order harmonics, particularly for
applications requiring high intensity.

Finally, Fig. 8 C and D shows the spatiotemporal intensity
profiles of the attosecond pulse at the positions where is it spec-
trally broadest (C, 2©) and where it is most intense (D, 3©). The
difference between the two cases is a signature of the strong spa-
tiotemporal couplings of the generated attosecond pulses. These
couplings, here studied at z =−0.75 z0 (dashed line in Fig. 7),
strongly depend on the position of generation.

Conclusion
In this work, we examine the focusing properties of high-order
harmonics generated in gases. We use a simple Gaussian optics
model, valid for a thin generating medium, assuming a funda-
mental Gaussian beam, and based on an analytical expression
of the frequency- and intensity-dependent dipole phase. This
model allows us to predict the focus and divergence of the two
trajectory contributions to HHG. We validate the predictions of
the model by numerical calculations based on solving the TDSE
for the single-atom response and propagation equations for the
response from the macroscopic medium. Experimental diver-

gence measurements performed at the intense XUV beamline
of the Lund Laser Centre show similar trends as those predicted
by the numerical calculations, as well as by an extension of the
Gaussian model, which includes the effect of a circular aperture.
We also discuss the consequences of the fact that the harmonics
have different focus positions and beam waists on the resulting
spectra and pulse durations. The relative harmonic amplitudes
are found to vary with the detection position, thus strongly
affecting the spatiotemporal properties of the corresponding
attosecond pulses.

The effects investigated in the present work have a strong
impact on applications of attosecond pulses, requiring a small
focal spot (e.g., to reach a high XUV intensity) over a broad
bandwidth or during a short (attosecond) duration. These spa-
tiotemporal couplings may be reduced by locating the generation
medium after the laser focus and/or by minimizing the influence
of the dipole phase, using a shaped fundamental beam (53, 54)
or generating in waveguides (capillaries) (47, 55).
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