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ABSTRACT Fe(II)-oxidizing microorganisms and Fe(III)-reducing microorganisms, which
drive the biogeochemical Fe cycle on the Earth’s surface, are phylogenetically and eco-
logically diverse. However, no single organism capable of aerobic Fe(II) oxidation and
anaerobic Fe(III) reduction at circumneutral pH have been reported so far. Here, we
report a novel neutrophilic Fe(II)-oxidizing Rhodoferax bacterium, strain MIZ03, isolated
from an iron-rich wetland in Japan. Our cultivation experiments demonstrate that MIZ03
represents a much more versatile metabolism for energy acquisition than previously rec-
ognized in the genus Rhodoferax. MIZ03 can grow chemolithoautotrophically at circum-
neutral pH by oxidation of Fe(II), H2, or thiosulfate as the sole electron donor under
(micro)aerobic conditions (i.e., using O2 as the sole electron acceptor). In addition, it can
reduce Fe(III) or nitrate under anaerobic conditions. Thus, this is the first report demon-
strating the presence of a single bacterium capable of both Fe(II) oxidation and Fe(III)
reduction at circumneutral pH. The observed physiology was consistent with its 4.9-Mbp
complete genome encoding key genes for iron oxidation/reduction (foxEY and mtrABC),
for nitrate reduction (narGHI), for thiosulfate oxidation (soxABCDXYZ), and for carbon fix-
ation via the Calvin cycle. Our metagenomic survey suggests that there are more
Rhodoferax members capable of Fe(II) oxidation and Fe(III) reduction. Such bifunctional
Rhodoferax may have an ecological advantage in suboxic/anoxic environments at cir-
cumneutral pH by recycling of Fe as the electron donor and acceptor.

IMPORTANCE The biogeochemical cycle of iron (Fe) via reactions of oxidation, reduc-
tion, precipitation, and dissolution is involved in the cycle of other ecologically rele-
vant elements, such as C, N, P, S, As, Co, Ni, and Pb. The Fe cycle on the Earth’s sur-
face is driven by a variety of Fe(II)-oxidizing microorganisms and Fe(III)-reducing
microorganisms. Here, we discovered a novel bacterium, Rhodoferax sp. strain MIZ03,
capable of both Fe(II) oxidation and Fe(III) reduction at circumneutral pH, and we
report its physiological characteristics and complete genome sequence. The unex-
pected capability of this bacterium provides novel insights into the Fe cycle in the
environment. Moreover, this bacterium will help to better understand the molecular
mechanisms of microbial Fe redox cycling as a model organism.
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The biogeochemical Fe cycle on the Earth’s surface is driven by phylogenetically
and ecologically diverse Fe(II)-oxidizing microorganisms (FeOM) and Fe(III)-reduc-

ing microorganisms (FeRM) (1–4). Ferrous ion (Fe21) is rapidly and abiotically oxidized
and precipitated as Fe(III) oxide minerals at circumneutral pH under atmospheric con-
ditions. However, the abiotic Fe(II) oxidation rate becomes slower under microaerobic
conditions, and thus more Fe21 is available for FeOM as the electron donor (3). Indeed,
all of the known neutrophilic, O2-respirating FeOM, such as Gallionella spp., Sideroxydans
spp., and Mariprofundus spp., are microaerophilic (3). The by-products from FeOM are solid
Fe(III) minerals that can be reduced and redissolved to Fe21 by FeRM, such as Geobacter
spp. and Shewanella spp., as the electron acceptor under anaerobic conditions (4). The
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phylogenetic diversity of neutrophilic, microaerophilic FeOM is limitedly unveiled probably
due to the technical difficulty of their cultivation. Accordingly, the molecular mechanisms
of Fe(II) oxidation by neutrophilic FeOM are largely unclear (5–7). Nevertheless, a
few candidate genes (e.g., cyc2 and mtoA) involved in Fe(II) oxidation have been
proposed (8, 9) and found in diverse microbial genomes/metagenome-assembled
genomes (MAGs) (7), implying that neutrophilic FeOM are more phylogenetically
diverse.

The genus Rhodoferax contains metabolically versatile species capable of photosyn-
thesis, fermentation, and aerobic and/or anaerobic respiration. So far, Rhodoferax ferrir-
educens has been reported as the sole Rhodoferax species that can anaerobically grow
by reduction of Fe(III) as the electron acceptor coupled with oxidation of organic acids
and sugars as the electron donors (10, 11). A recent report of enrichment cultivation
and metagenomics suggested the presence of H2-oxidizing and Fe(III)-reducing che-
molithoautotrophic Rhodoferax spp. in a subglacial environment (12). The capability of
Fe(II) oxidation by Rhodoferax spp. in iron mats has been proposed by environmental
analyses of geochemistry and microbial communities (13). However, no pure culture of
chemolithoautotrophic Rhodoferax spp. has been reported. Such chemolithoautotro-
phic Rhodoferax spp. potentially play a significant role in biogeochemical cycling of
carbon and iron in the dark, organic-poor, subsurface environments where the inor-
ganic energy sources are available. Here, we report a novel Rhodoferax isolate, desig-
nated strain MIZ03 (deposited in the Japan Collection of Microorganisms under the num-
ber JCM 34246), which grows chemolithoautotrophically at circumneutral pH using Fe(II),
H2, or thiosulfate as the sole electron donor under (micro)aerobic conditions.

We collected an iron-rich floc sample in a freshwater wetland (see Fig. S1 in the sup-
plemental material; 36°049410N, 140°059240E; 18°C, pH 6.5, ,0.01% salinity) next
Mizube Park, Tsukuba, Japan, in November 2018. Using the collected sample as the
inoculum, we performed isolation of microaerophilic Fe(II)-oxidizing bacteria (FeOB)
with a 96-well-plate gradient cultivation method as described previously (14). Details
of experimental procedures are described in the supplemental material. We were suc-
cessful in subcultivation of six positive cultures representing a typical iron-oxide band
for microaerophilic FeOB cultures (15, 16). 16S rRNA gene clone analysis indicated the
presence of known FeOB relatives (such as Sideroxydans and Thiomonas spp.) and a
Rhodoferax relative in these cultures (Table S1). In this study, we focused on the
Rhodoferax-containing culture. We subcultivated the Rhodoferax-containing culture on
R2A plates and performed single-colony isolation repeatedly. Eventually, the Rhodoferax
isolate, strain MIZ03, was obtained. The purity was checked using light microscopy, 16S
rRNA gene analysis, and shotgun genome analysis. We confirmed that MIZ03, as well as
the other FeOB strains obtained in this study, produced the iron-oxide band in the gradi-
ent culture tubes with an FeCO3 plug (Fig. S2), which resembles known microaerophilic
freshwater FeOB (15, 16).

We determined the physiology and complete genome sequence of MIZ03 (Table
S2). The phylogenomic tree (Fig. 1A) and the 16S rRNA gene similarity and average
nucleotide identity values compared to the close relatives (Table S2) suggest that
MIZ03 represents a novel species in the genus Rhodoferax. We tentatively propose
the name Rhodoferax lithotrophicus for this strain. In the phylogenomic tree, MIZ03
was clustered with metagenome-assembled genomes (MAGs) recovered from deep
subsurface groundwater environments (17, 18) but was distantly related to the two
MAGs (KJH.1 and KJN.1) of the chemolithoautotrophic enrichment cultures from
a subglacial environment (12) and to the genomes of any cultivates including R.
ferrireducens.

The optimum and range of growth temperature, pH, and salinity and the energy
metabolism of MIZ03 and close relatives are summarized in Table S2 (more details for
MIZ03 metabolism are shown in Table S3). For all the growth experiments for substrate
utilization, the strain was transferred at least three times using the specific growth
mode tested. MIZ03 grew chemoorganotrophically in R2A medium (containing various
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FIG 1 Genomics and chemolithoautotrophic growth of Rhodoferax lithotrophicus MIZ03. (A) Phylogenomic tree and gene content for microaerobic chemolithoautotrophy.
A maximum-likelihood tree based on the alignment of 120 bacterial marker proteins is shown. Bootstrap values (only .50%) are indicated at the nodes. Curvibacter
delicatus (GenBank accession no. GCF_001592265) was used as the outgroup (not shown). On the right side of panel A, the presence or absence (filled/opened squares)
of genes for FoxEY, Cyc2, and MtrABC (Fe oxidation/reduction), large and small subunits of group I hydrogenase (H2 oxidation), SoxABCDXYZ (thiosulfate oxidation), CbbM
(carbon fixation), NarGHI (nitrate reduction), CooNOPQ, and CydABX (aerobic respiration under low O2 concentration) is indicated for each genome/MAG. (B) Growth
curves of MIZ03 growing under the 1% O2 and air conditions. Cell densities in the cultures with H2 and air (green-filled circles) or 1% O2 (blue-filled circles), with
thiosulfate and air (orange-filled diamonds) or 1% O2 (purple-filled diamonds), with Fe(II) and 1% O2 (red-filled squares), and without any electron donors with air/1% O2

(yellow-opened diamonds), are shown. Error bars indicate the standard deviation of the mean of biological triplicates. For the thiosulfate-oxidizing cultures, an increase of
sulfate concentration (from an initial concentration of 0.7 mM to 9.2 6 0.3 mM at 21 days after inoculation) by thiosulfate oxidation was confirmed. For the H2-oxidizing
cultures, consumption of H2 was observed (Fig. S3). For the experiments with cells, the initial cell densities were approximately 1 � 104 cells/ml, as calculated from the
cell numbers in the inoculum. All the data points under the detection limit (d.l.; 2 � 105 cells/ml) are shown on the detection limit line. (C) Metabolic pathway of MIZ03
deduced from the annotated genome. A list of CDSs is shown in Table S4.
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organic substances such as yeast extract, peptone, and glucose) under dark and
(micro)aerobic conditions (1% O2 or air in the headspace). It also grew anaerobically by
fermentation in R2A medium, as reported for R. fermentans (19).

Our cultivation experiments demonstrated that MIZ03 grew chemolithoautotrophi-
cally at circumneutral pH by oxidation of Fe(II), H2, or thiosulfate as the sole electron
donor under (micro)aerobic conditions (Fig. 1B; Fig. S3 and S4). In addition, MIZ03
reduced nitrate and dissolved Fe(III) [i.e., Fe(III)-NTA (nitrilotriacetic acid) and Fe(III)-ci-
trate] or a solid Fe(III) mineral (ferrihydrite), coupled with oxidation of organic substan-
ces in R2A medium as the electron donor under anaerobic conditions but did not
reduce the other solid Fe(III) minerals tested (i.e., goethite, magnetite, and hematite)
(Fig. S5; Tables S2 and S3). The previous studies reported that R. ferrireducens can
reduce dissolved Fe(III) but not any solid Fe(III) minerals (10, 11). Although the reduc-
tion of ferrihydrite by MIZ03 enhanced its growth rate and yield (Fig. S5), it is unclear
whether the growth enhancement is caused by an energetic or nutritional effects (i.e.,
increase of iron availability).

The genome content was consistent with the observed metabolism (Fig. 1C; Table
S4). The MIZ03 genome encoded 87 protein-coding regions (CDSs) for c-type cyto-
chrome with one or more heme-binding motifs (Table S5), including homologs of
MtrA/MtoA, MtrC/MtoC, and FoxE, which have been reported as functional proteins for
Fe redox reaction in known Fe(II) oxidizers (e.g., Rhodobacter and Sideroxydans spp.)
and Fe(III) reducers (e.g., Geobacter and Shewanella spp.) as reviewed in reference 7. At
present, it is unclear which (or even whether) homologs are involved in iron oxidation/
reduction by MIZ03. No CDSs for Cyc2, which is thought to be involved in iron oxida-
tion by microaerophilic FeOB (6, 9), were found. For H2 and thiosulfate oxidation and
nitrate reduction, the MIZ03 genome encoded CDSs for respiratory H2-uptake [NiFe]
hydrogenase (group 1d), SOX system, and nitrate reductase (NarGHI), respectively. In
addition, it encoded a complete set of CDSs for the Calvin-Benson-Bassham cycle,
including ribulose bisphosphate carboxylase/oxygenase (RubisCO) form II (CbbM) for
autotrophy, and CDSs for aa3-, cbb3-, and bd-type terminal oxidases for (micro)aerobic
respiration. No CDSs for photosynthesis were found.

Aerobic Fe(II) oxidation and anaerobic Fe(III) reduction by a single microorganism
had been reported only in acidophiles (20). Some Fe(III) reducers can grow by anaero-
bic Fe(II) oxidation coupled with nitrate reduction (2), but not with aerobic respiration.
For the first time, we demonstrate that, among all three domains of life, there is a sin-
gle microorganism capable of microaerobic Fe(II) oxidation and anaerobic Fe(III) reduc-
tion at circumneutral pH. Such bifunctional microorganisms may have an ecological
advantage in suboxic/anoxic environments by recycling of iron as the electron donor
and acceptor. In addition to Fe(II), MIZ03 can grow chemolithoautotrophically using H2

or thiosulfate as the sole electron donor, which is consistent with its genome content.
Notably, other Rhodoferax genomes/MAGs also encode the genes likely involved in the
Fe(II)-, H2-, and thiosulfate-oxidizing chemolithoautotrophic growth under (micro)aero-
bic conditions (Fig. 1A). Indeed, the presence of such chemolithoautotrophic Rhodoferax
spp. has been suggested in several environments (12, 13). Further cultivation and physio-
logical tests may lead to discovering more diverse chemolithoautotrophic Rhodoferax spp.
and to emphasizing their ecological significance. Finally, the unique Rhodoferax bacterium
MIZ03 with the unexpected versatile metabolism, including Fe(II) oxidation and Fe(III)
reduction, will open a new window on the ecophysiology and molecular mechanism of
the Fe cycle as a model organism.

Data availability. The raw sequence data and the complete genome sequence of
MIZ03 have been deposited in the DDBJ under the accession numbers DRA011244 and
AP024238, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.5 MB.
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