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Abstract

Background

Type 2 diabetes (T2D) is highly prevalent in British South Asians, yet they are underrepre-

sented in research. Genes & Health (G&H) is a large, population study of British Pakistanis

and Bangladeshis (BPB) comprising genomic and routine health data. We assessed the

extent to which genetic risk for T2D is shared between BPB and European populations

(EUR). We then investigated whether the integration of a polygenic risk score (PRS) for T2D

with an existing risk tool (QDiabetes) could improve prediction of incident disease and the

characterisation of disease subtypes.

Methods and findings

In this observational cohort study, we assessed whether common genetic loci associated

with T2D in EUR individuals were replicated in 22,490 BPB individuals in G&H. We repli-

cated fewer loci in G&H (n = 76/338, 22%) than would be expected given power if all EUR-
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ascertained loci were transferable (n = 101, 30%; p = 0.001). Of the 27 transferable loci that

were powered to interrogate this, only 9 showed evidence of shared causal variants. We

constructed a T2D PRS and combined it with a clinical risk instrument (QDiabetes) in a

novel, integrated risk tool (IRT) to assess risk of incident diabetes. To assess model perfor-

mance, we compared categorical net reclassification index (NRI) versus QDiabetes alone.

In 13,648 patients free from T2D followed up for 10 years, NRI was 3.2% for IRT versus

QDiabetes (95% confidence interval (CI): 2.0% to 4.4%). IRT performed best in reclassifica-

tion of individuals aged less than 40 years deemed low risk by QDiabetes alone (NRI 5.6%,

95% CI 3.6% to 7.6%), who tended to be free from comorbidities and slim. After adjustment

for QDiabetes score, PRS was independently associated with progression to T2D after ges-

tational diabetes (hazard ratio (HR) per SD of PRS 1.23, 95% CI 1.05 to 1.42, p = 0.028).

Using cluster analysis of clinical features at diabetes diagnosis, we replicated previously

reported disease subgroups, including Mild Age-Related, Mild Obesity-related, and Insulin-

Resistant Diabetes, and showed that PRS distribution differs between subgroups (p =

0.002). Integrating PRS in this cluster analysis revealed a Probable Severe Insulin Deficient

Diabetes (pSIDD) subgroup, despite the absence of clinical measures of insulin secretion or

resistance. We also observed differences in rates of progression to micro- and macrovascu-

lar complications between subgroups after adjustment for confounders. Study limitations

include the absence of an external replication cohort and the potential biases arising from

missing or incorrect routine health data.

Conclusions

Our analysis of the transferability of T2D loci between EUR and BPB indicates the need for

larger, multiancestry studies to better characterise the genetic contribution to disease and

its varied aetiology. We show that a T2D PRS optimised for this high-risk BPB population

has potential clinical application in BPB, improving the identification of T2D risk (especially

in the young) on top of an established clinical risk algorithm and aiding identification of sub-

groups at diagnosis, which may help future efforts to stratify care and treatment of the

disease.

Author summary

Why was this study done?

• The common genetic changes associated with type 2 diabetes (T2D) have been exten-

sively investigated in large studies of people from European ancestry. However, it is not

known whether these findings can be transferred to people of South Asian origin, who

are disproportionately affected yet underrepresented in genetic studies.

• Polygenic risk scores (PRSs) have emerged as a useful clinical tool with which to

improve the prediction of who is/is not at risk of developing T2D, but they have not yet

been assessed alongside existing predictive tools already used in routine clinical care, or

to uncover “subtypes” of the condition.
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What did the researchers do and find?

• We assessed whether the common genetic differences associated with T2D in people of

European ancestry could be transferred to people of British Pakistani and Bangladeshi

(BPB) ancestry (n = 18,875). We found genetic differences between these ancestry

groups that were significant.

• We built a T2D PRS for BPB (n = 13,648) and integrated it with a clinical risk score

(QDiabetes). Our integrated risk tool (IRT) improved the prediction of T2D, especially

in individuals aged less than 40 years deemed low risk by QDiabetes alone. The PRS was

also associated with the development of T2D after a pregnancy affected by gestational

diabetes.

• Lastly, we used the PRS, in combination with standard clinical measures, to help eluci-

date subgroups of T2D in our study population (n = 5,904) and differences in the risk of

future diabetes complications.

What do these findings mean?

• Our work highlights the need for greater representation of diverse ancestry groups in

genetic studies of T2D.

• Integration of a PRS with clinical risk factors improved the prediction of T2D in BPB

individuals, especially in the young.

• The T2D PRS can help to identify clinically distinct disease subgroups at diagnosis.

Identification of these subgroups may support stratification of T2D care to improve

health outcomes and allocate healthcare resources more efficiently in the future.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
People of South Asian origin are disproportionately affected by type 2 diabetes (T2D) and tend

to develop the condition at younger ages and at a lower body mass index than European ances-

try individuals [1]. Despite this, they are underrepresented in studies assessing the genetic aeti-

ology of the disease. Furthermore, to our knowledge, there has been no systematic assessment

of the extent to which genetic risk loci identified in European ancestry individuals can be

transferred into South Asians. Given the known pathophysiological differences between these

populations [2,3], such an assessment is important for understanding the extent to which the

aetiology of the disease varies between them.

Characterisation of the genetic aetiology of T2D, using genome-wide association studies,

has allowed the development of polygenic risk scores (PRS) to aid the individualised clinical

prediction of common complex diseases [4–10]. To date, PRS have been developed and tested

predominantly in highly selected white European populations (EUR) with bias towards healthy

and older people [10,11]. For coronary artery disease, integration of PRS with clinical risk

tools has been shown to enhance the prediction of incident disease, in multiple ancestral

groups [5,6,9,12], which may help target preventative care. Similarly, there is considerable

potential to use PRS to improve the prediction of T2D risk [11], and, to date, their integration
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with well-validated clinical risk instruments already in routine use, such as QDiabetes, has not

yet been evaluated. Building enhanced risk tools that combine PRS with tools such as QDia-

betes could offer significant opportunities for clinical benefit including enhanced individual-

ised screening and preventive measures such as referral to diabetes prevention programmes

[13]. There is a particular need to investigate PRS in understudied groups who are at high risk

of T2D, including people of South Asian ancestry [11,14] and women with a history of gesta-

tional diabetes mellitus (GDM) [15]. PRS may also enhance the characterisation of T2D “sub-

groups,” a recent area of significant research and clinical interest due to their potential to

capture important heterogeneous features at diabetes diagnosis associated with common aetio-

logical disease pathways that may predict future diabetes complications and treatment respon-

siveness [2,16–18].

In this study, we aimed to develop and evaluate a T2D PRS in British Bangladeshis and

Pakistanis (BPBs) enrolled in the Genes & Health (G&H) programme [19]. This real-world,

community-based cohort (n = 48,144) combines genetic data with rich, lifelong electronic

health record data and comprises a minority ethnic group living predominantly in socioeco-

nomically deprived circumstances, otherwise underrepresented in health research [19]. We

therefore aimed, firstly, to examine the transferability of T2D genetic loci already ascertained

in individuals of European ancestry (EUR) to BPBs, taking into account power and differences

in linkage disequilibrium, and to optimise a PRS for this population. Secondly, we tested

whether the PRS enhanced the prediction of incident T2D when integrated with the com-

monly used clinical risk score, QDiabetes [20]. Thirdly, we sought to investigate whether the

PRS alone might predict the progression to T2D from gestational diabetes in BPB women, as

has been observed in European and Southeast Asian populations [21,22]. Finally, we explored

whether the PRS might predict clinically heterogeneous T2D subgroups at diagnosis, which

are increasingly well characterised [2,16–18,23].

Methods

Study population

G&H recruits BPB people aged 16 years and above, predominantly in community and primary

care settings. We used the 2020 data release [24], which comprises electronic health record

(EHR) data and genotype data from the Illumina Infinium Global Screening Array V3 Chip

on 22,490 participants [19]. Descriptions of quality control and imputation of genotype data

are provided in S1 Text. We applied specific inclusion and exclusion criteria to the G&H pop-

ulation for each analysis, described below and summarised in Fig 1. All analyses were planned

at study outset, with the exception of the derivation of a second clustering model (Integrated

Model), the rationale for which is given below.

Ascertainment of conditions using clinical coding

T2D, GDM, and associated complications were ascertained using clinical codes extracted from

primary and secondary care EHR, presented in full in S1 Table, developed using widely used

clinical coding resources [25]. We excluded individuals with clinical codes of conditions caus-

ing secondary or monogenic diabetes.

Transfer of previously identified GWAS loci to the study population

We obtained previously identified genetic loci associated with T2D from a genome-wide asso-

ciation study (GWAS) conducted in people of European ancestry (EUR) by Vujkovic and col-

leagues. [26]. We performed a GWAS of T2D in G&H and assessed if previously identified loci
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were reproducible in G&H at p-value <0.05 using previously established methods (S1 Text)

[9]. We assessed 338 T2D loci that had variants well imputed in G&H. The expected power for

replication was estimated assuming the same effect size as in the EUR discovery sample and

accounting for the allele frequency and sample size in G&H. Even though the same locus and

target gene may affect T2D risk in both populations, it is possible that this is caused by distinct

causal variants in the region. Therefore, trans-ancestry colocalisation analysis was performed

using TEColoc to assess whether a transferable locus shared the same causal variant between

BPB and EUR populations, using UK Biobank (UKBB) EUR individuals for the latter [27]. We

used overlapping variants in a 50-kb window and assessed 27 transferable loci in which�10%

of the variants from UKBB were well imputed in G&H and vice versa. We might not be able to

detect shared causal variants due to the low coverage for some loci, but it is not likely to cause

false positives. We also applied the Popcorn algorithm to estimate the trans-ancestry genetic

correlation between BPB and UKBB EUR populations [28]. Further methodological details are

given in S1 Text.

Polygenic risk score construction

We applied previously constructed scores from the PGS Catalog [29], principally developed in

EUR populations, to participants in G&H. These were compared to PRS optimised within

G&H using the clumping and p-value thresholding (C+T) method implemented in PRSice2

v2.2.11 [30,31] based on the largest published T2D multiancestry GWAS to date [26] (S1 Fig),

downloaded from dbGaP (phs001672.v4). While the EUR-specific GWAS was used for assess-

ing the transferability of loci as mentioned above, we constructed the PRS using the more pow-

erful multiancestry GWAS, which contained 9,004 cases and 12,066 controls with Pakistani

ancestry. We also tried using a South Asian–specific GWAS [32] to construct a PRS and com-

bining the PRS from the South Asian–specific GWAS with the one from the multiancestry

Fig 1. Summary of analyses in study. FPG, fasting plasma glucose; GWAS, genome-wide association study; G&H,

Genes & Health; HDL, high-density lipoprotein; PRS, polygenic risk score.

https://doi.org/10.1371/journal.pmed.1003981.g001
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GWAS using the method from Marquez-Luna and colleagues [33] (S1 Text). Neither of the

scores showed better performance; thus, we used the C+T PRS constructed from the multian-

cestry GWAS. For the C+T score, LD estimated from EUR samples (N = 503) from the 1,000

Genomes project was used for clumping (r2 = 0.1). We calculated multiple scores using various

p-value thresholds. We excluded one sample from each pair of 2nd degree relatives identified

using the kinship coefficient from KING v2.3.4 [34] and assessed the accuracy of PRS in unre-

lated individuals. We selected the PRS with the highest predictive accuracy in an independent

set of samples that were not included in the QDiabetes analysis described below, i.e., prevalent

cases with onset before the assessment date, and controls who did not meet inclusion criteria

for longitudinal analysis (aged 25 to 84 years with no prior history of T2D as of 1 May 2010, no

recorded value of HbA1c >48 mmol/mol or FPG>7.0 mmol/L; see S2 Table for characteris-

tics of cases and non-cases). The area under the receiver operating characteristic curve (AUC)

was estimated with the R package “pROC.” Predictive accuracy of PRS was quantified by incre-

mental AUC, or the gain in AUC when adding PRS to the reference model, which accounted

for participant age, gender, and 10 genetic principal components (PCs). We also calculated the

incremental pseudo R2 on the liability scale [35]. We used 13.6% as the prevalence estimate for

T2D in South Asian ancestry individuals in the UK, the background population from which

G&H is sampled, defined as all people from South Asian ethnicities (n = 255,066 aged�20

years) registered with a primary health physician/GP in 4 east London boroughs. The C+T

PRS with p-value threshold < 1 × 10−5 (2,877 SNPs; S3 Table) showed the highest predictive

accuracy among all the scores we constructed and was thus used in downstream analysis (S1

Text; S1 Fig). A scaled PRS following the normal distribution with mean and median of 0 and

standard deviation (SD) of 1 was constructed across BPB participants after regressing out the

first 10 PCs derived as described in S1 Text, allowing direct comparison between ancestry

groups [36]. We used additional PRSs associated with T2D and its aetiology that are previously

described in the literature by Mansour Aly and colleagues [18] and Udler and colleagues [37]

(S1 Text).

Development of an integrated risk tool to predict incident type 2 diabetes

We assessed whether PRS could enhance 10-year risk prediction of T2D compared to QDia-

betes, a validated, EHR-based risk prediction tool commonly used in UK primary care to esti-

mate an individual’s 10-year risk of developing T2D [20]. There are 3 QDiabetes models.

Model A provides estimates based on age, ethnicity, family history, comorbidities, and pre-

scribed medications. Model B (which has the highest clinical predictive value) uses the same

variables as model A, plus fasting plasma glucose (FPG), while model C is composed of model

A plus HbA1c. Analysis was performed in 13,648 individuals aged 25 to 84 years with no prior

history of T2D as of 1 May 2010, no recorded value of HbA1c >48 mmol/mol or FPG >7.0

mmol/L (S1 Table), using established inclusion criteria [20]. QDiabetes scores were calculated

on the assessment date of 1 May 2010 for each participant on the basis of available clinical data

required to run the model using the R package “QDiabetes” [38]. Numbers available for analy-

sis were model A (n = 13,648), model B (n = 4,334), and model C (n = 864). We applied multi-

ple imputation to fill in missing data for body mass index (BMI) and the Townsend

Deprivation Index using the R package “MICE” [39].

We combined the PRS and QDiabetes score, which were not significantly correlated, to

build an integrated risk tool (IRT) to estimate risk of developing T2D over the next 10 years, as

previously described [12]. For each individual, QDiabetes score was converted to an odds ratio

(OR) and multiplied by the odds calculated from the individual’s PRS given their QDiabetes

score, calculated from a logistic regression model incorporating PRS, QDiabetes, and an
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interaction between them, and training it separately on male and female participants. Ten-year

risk of disease was classified as high (>10%) or low (<10%) in line with [12]. We assessed rela-

tive model performance using the concordance index (C-Index) and categorical net reclassifi-

cation index (NRI). C-Indices were calculated from Cox proportional hazard models using the

R package “survival.” NRI was calculated as NRI = P(up|case) − P(down|case) + P(down|non-

case) − P(up|noncase), i.e., the sum of (1) the proportion of individuals who subsequently

developed T2D correctly reclassified as high risk, minus the proportion of individuals who

subsequently developed T2D incorrectly reclassified as low risk; and (2) the proportion of indi-

viduals who did not develop T2D correctly reclassified as low risk, minus the proportion of

individuals who did not develop T2D incorrectly reclassified as high risk. Categorical NRI per-

formance was assessed in the entire analysed sample, plus in age-by-sex subgroups, with 40

years chosen as the threshold for high/low age group comparison to reflect (1) a mean age at

T2D diagnosis of 49.1 years and median of 47.8 years in our cohort; (2) a mean age at study

entry of 39.1 years; (3) the fact that routine NHS health checks that include T2D screening are

offered at age 40; and (4) previous use of age 40 as a cutoff discriminating early from late-onset

diabetes in the literature [40]. We observed that findings were robust to alteration of this

threshold across a broad age range (S2 Fig). NRI confidence intervals were calculated using

bootstrapping (number of iterations = 1,000). The characteristics of reclassified individuals

were compared with descriptive statistics. In addition to the categorical NRI, at the request of a

peer reviewer, we also calculated continuous NRI using the R package “PredictABEL.” P(up|

case) and P(down|case) in the above equation now indicate the proportion of cases that had

higher or lower risk estimates using the IRT than QDiabetes, respectively.

Prediction of type 2 diabetes after gestational diabetes using PRS

In women with a history of GDM, we compared characteristics (including T2D PRS) of those

who subsequently did (n = 127) and did not (n = 175) develop T2D. We compared characteris-

tics between the 2 groups using multivariate logistic regression models that included risk fac-

tors used to construct the QDiabetes score. Details of a power calculation for this analysis are

available in S1 Text. The association between PRS and T2D in women with a history of GDM

was assessed in Cox proportional hazard models controlling for (1) QDiabetes score or (2)

unadjusted clinical risk factors used to construct the QDiabetes score.

Identification of type 2 diabetes subgroups and their association with PRS

We applied data-driven clustering techniques to define subgroups of individuals with distinct

characteristics in 2 separate models using latent class analysis (Stata V16.0) based on the meth-

odology used by [2,16,17]. The optimal number of clusters was selected on the basis of infor-

mation criteria elbow plots (S3 Fig) and was found to be 5 for all model iterations. The first

model (Clinical Model) was based on 5 clinical variables at the time of T2D diagnosis: age,

BMI, HbA1c, serum triglycerides, and serum high-density lipoprotein (HDL). Analysis was

restricted to 4,266 participants for whom values for these variables were available within 1 year

of T2D diagnosis. Differences in PRS between clusters were compared using analysis of vari-

ance (ANOVA) (RStudio V1.1.413). Having observed differing PRS distribution between clus-

ters derived using clinical variables, we next explored whether inclusion of PRS as a clustering

covariate could further delineate the aetiological processes underlying cluster membership. In

the second model (Integrated Model), we repeated clustering using age, BMI, HbA1c, serum

triglycerides, and PRS as covariates in 5,905 individuals with available data within 12 months

of diagnosis. HDL was omitted from the Integrated Model as its inclusion did not alter cluster

characteristics but did reduce sample size. Differences in previously reported glycaemic trait

PLOS MEDICINE Polygenic prediction of type 2 diabetes and its subtypes in British south Asians

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003981 May 19, 2022 7 / 22

https://doi.org/10.1371/journal.pmed.1003981


PRSs including fasting glucose, beta cell function, insulin sensitivity index, and corrected insu-

lin response were compared between each cluster and nondiabetic controls (n = 10,841) using

Bonferroni-corrected unpaired one-tailed t tests [18,37]. Further details are presented in

S1 Text.

Research ethics and reporting guidelines

G&H operates under approval from the National Research Ethics Committee (London and

Southeast), and the Health Research Authority (reference 13/LO/124); Queen Mary University

of London is the Sponsor. Written informed consent is obtained from all study volunteers,

and it allows analysis of health and genetic data and publication of results. This study is

reported according to the Transparent reporting of a multivariable prediction model for indi-

vidual prognosis or diagnosis (TRIPOD) statement (checklist available in S2 Text).

Results

As of 1 May 2020 (the end of the study period), 7,599 individuals with an EHR diagnosis of

T2D were enrolled in G&H, followed up for a mean of 9.69 years after diagnosis. 52.8% of

these individuals were in the most deprived Index of Multiple Deprivation quintile in the UK.

Mean age at time of diagnosis was 46.2 years. AAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:PleasecheckandconfirmthattheeditstothesentenceAtotalof 1; 205individualsð15:9%Þdevelopedmacrovascularcomplicationsbetween:::arecorrect; andamendifnecessary:total of 1,205 individuals (15.9%) developed

macrovascular complications between T2D diagnosis and the end of the study period; 2,300

(30.3%) developed microvascular complications.

Genetics of type 2 diabetes in BPB versus European individuals

We first investigated the extent to which genetic risk for T2D was shared between G&H (BPB)

and EUR individuals. The GWAS in G&H identified 3 significant associations at p-

value < 5 × 10−8 (S4 Table, S4 Fig), and they were all previously identified [26]. Four out of

the 6 genetic loci identified in the South Asian–specific GWAS by Kooner and colleagues [32]

were replicated in G&H (S5 Table). The trans-ancestry genetic correlation (i.e., the correlation

of causal-variant effect sizes) between G&H and UKBB EUR individuals was significantly

lower than 1 (rg = 0.68, standard error = 0.15, p-value (for the null hypothesis that rg = 1) =

0.03). Among the 338 genetic loci identified in EUR populations that had variants well

imputed in G&H, we observed significant evidence of transferability for 76 (22.5%) loci

(among them 13 were significant at p-value< 0.05/338; S6 Table), which was lower than

would be expected (30.0%) accounting for differences in power (one-sided binomial p-

value = 0.001). This suggested that a large proportion (75%) of the loci ascertained in EUR

populations, which were well powered to replicate in G&H did so. We did not observe any loci

that were well powered (power to replicate >0.8) but not transferable in G&H. The evidence

of transferability was consistent with other cardiometabolic traits (Observed/Expected = 0.62

for coronary artery disease and 1.0 to 1.2 for BMI, lipids, and blood pressure) that were

reported in the same cohort [9].

To assess whether causal variants were shared between EUR and BPB populations for the

transferable loci, we applied trans-ancestry colocalisation analysis. Of 27 replicated loci

assessed, 9 (33%) had significant evidence of shared causal variants (S7 Table). For example,

we observed shared causal variants at the TCF7L2 locus, one of the known loci with the stron-

gest association with T2D, and at the KCNJ11 locus, which is the target gene for drugs such as

Glyburide [41,42]. The proportion of transferable loci with shared causal variants for T2D was

lower than for triglycerides (56%; binomial p-value = 0.015) and total cholesterol (61%;

p = 0.003) and similar to HDL (48%), LDL (47%), and BMI (26%) (binomial p-value >0.05 for

all) in the same cohort [9].

PLOS MEDICINE Polygenic prediction of type 2 diabetes and its subtypes in British south Asians

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003981 May 19, 2022 8 / 22

https://doi.org/10.1371/journal.pmed.1003981


Performance of an integrated risk tool to predict incident type 2 diabetes

The characteristics of participants included in incident T2D risk prediction analyses are

shown in Table 1. We constructed a PRS for T2D using the clumping and p-value thresholding

method, based on multiancestry GWAS meta-analysis [26]. This had an OR per SD of 1.57

(95% confidence interval [CI]: 1.50 to 1.65), an incremental AUC of 0.032 (95% CI: 0.026 to

0.039), and an incremental R2 on the liability scale of 4.6% (95% CI: 3.7 to 5.6) in G&H. There

was no correlation between PRS and QDiabetes scores (Pearson’s coefficients −0.03, 0.08, 0.13

for QDiabetes models A, B, and C, respectively; associated p-values 0.31, 0.18, 0.16) (S8

Table). PRS was weakly correlated with fasting glucose (Pearson’s coefficient 0.11, p< 0.001)

and HbA1c (Pearson’s coefficient 0.07, p = 0.048) (S8 Table). Compared to QDiabetes alone,

the IRT combining QDiabetes model A (multiple clinical risk factors) with PRS improved the

10-year prediction of T2D as assessed by categorical NRI: NRI 3.22% (95% CI: 2.00% to

4.38%) in 13,648 individuals (Fig 2A). The IRT C-index, a goodness-of-fit metric approximat-

ing the area under the receiver–operator curve, was superior to QDiabetes model A for partici-

pants aged less than 40 years (p = 0.002) (Fig 3A, S9 Table), but not for people aged over 40

years. Enhancement of T2D prediction with the IRT persisted but was attenuated when QDia-

betes model B (model A plus FPG) was used: categorical NRI 0.80% (95% CI 0.21% to 1.42%).

The IRT did not improve on the QDiabetes score with model C (model A plus HbA1c): cate-

gorical NRI 0.20% (95% CI: −0.09% to 0.44%) (Fig 2B and 2C, S9 Table). Higher estimates of

model enhancement were observed with continuous NRI (S9 Table): Model A 28.1% (95% CI

23.9% to 32.1%; Model B 23.8% (95% CI 17.2% to 30.6%); Model C 19.4% (95% CI 4.92% to

33.9%). There were no observed differences in C-Index between QDiabetes and IRT in models

B and C (Fig 3B and 3C, S9 Table).

Table 1. Characteristics of participants included in analysis with each QDiabetes model.

Model A (N = 13,648) Model B (N = 4,334) Model C (N = 864) p-value

% Developing T2D 18.2 27.0 33.3 <0.001

T2D PRS −0.046 (0.99) −0.080 (0.99) −0.062 (1.01) 0.210

Age (Years) 35.4 (8.8) 42.0 (11.1) 45.2 (12.3) <0.001

% Female 49.8 59.2 64.9 <0.001

% Bangladeshi 69.9 73.9 58.0 <0.001

% Family history of diabetes 35.9 40.2 33.9 <0.001

Index of Multiple Deprivation (2015) score 7.4 (2.2) 7.8 (1.9) 7.2 (2.4) <0.001

BMI (kg/m2) 25.8 (4.6) 26.704 (4.624) 27.7 (4.7) <0.001

HbA1c (mmol/mol) 39.1 (4.3) NA 38.0 (4.2) 0.271

Fasting glucose (mmol/L) 4.9 (0.7) 4.8 (0.7) NA 0.154

HDL (mmol/L) 1.2 (0.3) 1.2 (0.3) 1.2 (0.3) <0.001

Triglycerides (mmol/L) 1.9 (1.3) 1.8 (1.2) 1.7 (1.2) 0.077

Preexisting Conditions

Gestational diabetes (% females) 4.1 5.2 10.7 <0.001

Polycystic ovarian syndrome (% females) 4.7 7.3 6.6 <0.001

Cardiovascular disease (%) 2.5 4.7 9.7 <0.001

Hypertension (%) 6.1 14.2 13.7 <0.001

QDiabetes Model A is calculated in individuals without HbA1c or FPG; Model B by adding FPG to Model A; and Model C by adding HbA1c to Model A. Values show

the mean with SD in brackets, unless otherwise indicated. Means were compared with ANOVA.

ANOVAAU : AbbreviationlistshavebeencompiledforthoseusedinTables1and2:Pleaseverifythatallentriesarecorrect:, analysis of variance; BMI, body mass index; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; PRS, polygenic risk score;

SD, standard deviation; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003981.t001
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Across all IRT models (for QDiabetes model A, B, and C), NRI was higher in participants

aged less than 40 years who subsequently developed T2D (cases) than those who did not (non-

cases), implying improved ability to correctly classify younger individuals as high risk. The

converse pattern was seen in individuals aged greater than 40 years, implying enhanced ability

to correctly classify older individuals as low risk. The clinical features of individuals whose risk

Fig 2. Performance of the IRT using NRI. NRI and 95% CIs comparing 10-year prediction of T2D between QDiabetes models A (n = 13,648), B (n = 4,334),

and C (n = 864) and IRTs combining each QDiabetes model with T2D PRS. NRI is presented overall and for age-by-sex subgroups. The NRI for individuals

who subsequently develop T2D (cases) and who do not develop T2D (non-cases) are presented alongside the NRI for cases and non-cases combined (all

individuals). CIAU : AbbreviationlistshavebeencompiledforthoseusedinFigs2 � 5:Pleaseverifythatallentriesarecorrect:, confidence interval; IRT, integrated risk tool; NRI, net reclassification index; PRS, polygenic risk score; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003981.g002

Fig 3. Performance of the IRT using C-Index. Comparison of C-Index calculated from Cox proportional hazard models for QDiabetes models A, B, and C

and IRTs combining each QDiabetes model with individual T2D PRS. C-index is presented for all participants and for age-by-sex subgroups. Data are

presented as mean with 95% CIs. CI, confidence interval; C-Index, concordance index; IRT, integrated risk tool; PRS, polygenic risk score; T2D, type 2

diabetes.

https://doi.org/10.1371/journal.pmed.1003981.g003
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was reclassified are presented in S10 Table. The number of individuals reclassified in each

model are presented by age band and sex in S11 Table.

Prediction of type 2 diabetes after gestational diabetes using PRS

In women who had a history of GDM, T2D PRS was higher in those who had subsequently

developed T2D, compared to those who had not (mean value (SD) 0.408 (0.93) versus 0.140

(0.98); p = 0.02) (Fig 4). Among individuals without T2D (non-cases), women with a history

of GDM displayed a higher mean PRS than age- and BMI-matched females without GDM and

compared to males (p = 0.003 and p = 0.001, respectively) (Fig 4). In multivariate survival anal-

ysis restricted to women with a history of GDM, T2D PRS was independently associated with

development of T2D after adjustment for (1) QDiabetes score model A (hazard ratio (HR) per

SD of PRS 1.23, 95% CI 1.05 to 1.42; p = 0.028) and (2) established risk factors for T2D (HR

1.37, 95% CI 1.17 to 1.57; p = 0.002) (S12 Table). Similar findings were observed in age- and

BMI-matched male and female (without a history of GDM) controls (S12 Table), indicating

that the utility of the T2D PRS for risk prediction does not appear to differ between women

with versus without GDM.

Type 2 diabetes subgroup identification using clustering

In our Clinical Model, we identified T2D subgroups by clustering age, BMI, HbA1c, HDL, and

triglycerides at the time of diagnosis (Fig 5A, Table 2A). We replicated some previously iden-

tified clusters: Mild Obesity-related Diabetes (MOD), Mild Age-Related Diabetes (MARD),

Severe Insulin-Resistant Diabetes (SIRD), and Mild Diabetes (MD), and used their previous

nomenclature [2,16,17,43]. In the absence of clinical measures of insulin secretion such as C-

peptide, we were unable to fully delineate the previously well-replicated Severe Insulin-Defi-

cient Diabetes (SIDD) cluster in the Clinical Model. However, our MD cluster may include

individuals who are insulin deficient as it is characterised by low serum triglycerides (1.21

(0.43) mmol/L) in addition to high HDL (2.07 (0.25) mmol/L), and our Clinically Undifferen-

tiated Diabetes (CUD) cluster likely also contains people with SIDD as its membership is char-

acterised by high HbA1c and low serum triglycerides. There were no statistically significant

differences in rates of progression to micro- or macrovascular complications between clusters

identified in the Clinical Model. However, we found that the PRS differed significantly

Fig 4. Mean T2D PRS in women with GDM. Mean T2D PRS in women with GDM who subsequently did and did not develop T2D, compared to

age- and BMI-matched control groups of females without GDM, and males. Data are presented as group mean with 95% CIs according to sex-by-

GDM subgroup, stratified by subsequent T2D status. BMI, body mass index; CI, confidence interval; GDM, gestational diabetes mellitus; PRS,

polygenic risk score; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003981.g004
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Fig 5. Cluster analysis using clinical variables at T2D diagnosis with and without PRS. Radar plots showing cluster mean values of the variables used to

derive 5 clusters of individuals with T2D at the time of diagnosis in 2 separate models. In panel A (Clinical Model), latent class analysis was performed using

age, BMI, HbA1c, serum triglycerides, and HDL. In panel B (integrated model), clustering was repeated using T2D PRS in place of HDL. The centre and edge

of each polygon represent the minimum and maximum mean cluster values for each variable, respectively. All polygons represent the same scale; all scales are

linear. Mean values for each variable within each cluster are represented by coloured dots. For example, mean BMI is highest in cluster 1. BMI, body mass

index; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; PRS, polygenic risk score; T2D, type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003981.g005

Table 2. Clinical and Integrated cluster analyses.

A

Clinical Model

MOD (N = 211) MARD (N = 861) SIRD (N = 32) MD (N = 95) CUD (N = 3,067) p-value

Age (Years) 44.5 (11.4) 50.9 (12.2) 43.1 (10.9) 49.3 (12.3) 45.2 (10.6) <0.001

BMI (kg/m2) 40.2 (3.6) 27.6 (4.0) 28.2 (3.9) 27.1 (5.2) 27.5 (3.7) <0.001

HbA1c (mmol/mol) 57.5 (15.8) 53.4 (13.4) 71.9 (26.9) 55.9 (17.63) 59.0 (16.4) <0.001

Serum triglycerides (mmol/L) 1.72 (0.73) 1.39 (0.63) 12.2 (3.95) 1.21 (0.43) 1.97 (1.08) <0.001

HDL (mmol/L) 1.17 (0.24) 1.45 (0.15) 0.79 (0.21) 2.07 (0.20) 0.99 (0.17) <0.001

PRS 0.07 (1.02) 0.23 (0.97) 0.29 (1.14) 0.26 (1.09) 0.34 (0.97) 0.002

B

Integrated Model

MOD (N = 556) MARD (N = 1180) SIRD (N = 37) IRD (N = 579) pSIDD (N = 3,489) p-value

Age (Years) 44.8 (9.6) 61.6 (7.6) 43.7 (11.3) 42.8 (9.9) 41.6 (7.6) <0.001

BMI (kg/m2) 37.2 (3.9) 27.5 (3.4) 28.1 (3.7) 27.8 (3.8) 26.7 (3.3) <0.001

HbA1c (mmol/mol) 60.0 (17.1) 53.1 (11.6) 72.8 (26.8) 63.3 (19.1) 60.0 (16.5) <0.001

Serum triglycerides (mmol/L) 1.77 (0.73) 1.62 (0.70) 13.0 (3.63) 4.97 (1.05) 1.66 (0.74) <0.001

PRS 0.16 (0.91) −0.10 (0.92) 0.41 (0.96) 0.25 (1.02) 0.48 (0.95) <0.001

Distribution of clustering variables and T2D PRS across 5 data-driven clusters of individuals with T2D at the time of diagnosis in a clinical (panel A) and integrated

clinical and genetic (panel B) model. PRS was not used as a clustering variable in the clinical model; it was used as a clustering variable in the integrated model. In the

clinical model, the distribution of PRS between groups was compared after cluster allocation. Data are presented as mean (standard deviation). Mean values were

compared using ANOVA.

ANOVA, analysis of variance; BMI, body mass index; CUD, Clinically Undifferentiated Diabetes; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; IRD,

Insulin-Resistant Diabetes; MARD, Mild Age-Related Diabetes; MD, Mild Diabetes; MOD, Mild Obesity-related Diabetes; PRS, polygenic risk score; pSIDD, Probable

Severe Insulin-Deficient Diabetes; SIRD, Severe Insulin-Resistant Diabetes.

https://doi.org/10.1371/journal.pmed.1003981.t002
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between clusters (ANOVA, p = 0.002) and that CUD was characterised by the highest observed

PRS (0.34 (0.97)). PRS was lowest in MOD and MARD, with mean PRS being 0.07 (1.02) and

0.23 (0.97), respectively.

Given these results, we next explored whether inclusion of PRS as a covariate in the cluster-

ing model could further delineate the subgroups by revealing their likely aetiology (henceforth

termed “Integrated Model”). We included PRS in the latent class analysis along with age, BMI,

HbA1c, and triglycerides (Fig 5B, Table 2B). We identified broadly similar clusters, although

with some additional differentiation not seen in the Clinical Model: MOD and MARD were

still identified, but in the latter, mean age was notably higher than in the Clinical Model (61.6

(7.6) versus 50.9 (12.2) years). In this analysis, 2 clusters representing insulin-resistant diabetes

were identified, differentiated by both the severity of hypertriglyceridaemia and PRS, and

therefore, we call these SIRD and Insulin-Resistant Diabetes (IRD). The MD cluster was not

identified in this analysis. Instead, this integrated analysis identified a cluster associated with a

high PRS (mean PRS 0.48 (0.95)), young age of onset (41.6 (7.6) years), low BMI (26.7 (3.3) kg/

m2), and low triglycerides (1.66 (0.74) mmol/L). Given that our PRS is constructed predomi-

nantly with variants that are known to have strong effect sizes on T2D (S7 Table) and that

these loci are well known [44] to represent defects in beta-cell function (including TCF7L2,

KCNJ11, HNF4A, CDKAL1, MTNR1B, SLC30A8, and IGF2BP2), we call this cluster Probable

Severe Insulin-Deficient Diabetes (pSIDD). Mean differences were compared between nondia-

betic controls and each cluster for previously identified glycaemic trait PRSs [18,37] (S5 Fig,

S13 Table). Compared to nondiabetic controls, the pSIDD cluster had higher fasting glucose

PRS (mean difference 0.298, one-sided p< 0.001) and the beta cell PRS (mean difference

0.302, one-sided p< 0.001). Additionally, we saw increasing odds of allocation to pSIDD with

increasing quintiles of fasting glucose PRS (OR for top versus bottom PRS quintile 1.15 (95%

CI 1.09 to 1.20) and beta cell PRS (OR for top versus bottom PRS quintile 1.16 (95% CI 1.10 to

1.21)), and decreasing odds of allocation to pSIDD with increasing corrected insulin response

PRS (OR for top versus bottom PRS quintile 0.87 (95% CI 0.83 to 0.91). These associations of

pSIDD with glycaemic traits are in keeping with previous reports of SIDD in the literature

[18]. The beta cell PRS was also significantly higher in SIRD (mean difference 0.339, one-sided

p = 0.02) and IRD (mean difference 0.239, one-sided p< 0.001) than in controls, suggesting

the possibility of combined insulin resistant and deficient aetiology underlying these clusters,

as described in other studies of South Asians [2].

In Cox proportional hazard models (S6 Fig), macrovascular complication rates were higher

in MARD and MOD (p< 0.001 and p = 0.009, respectively); microvascular rates were highest

in IRD and MARD (p< 0.001 and p = 0.002). In age-adjusted Cox proportional hazard mod-

els, rates of progression to micro- and macrovascular complications in the MARD cluster were

not significantly different to other clusters, but results for MOD and IRD were unchanged.

Discussion

In this study, we harness the power of a large population-based study of BPB people with

linked health and genomic data to improve the prediction of T2D. For the first time in a real-

world study population, we show that use of PRS enhances prediction of incident T2D on top

of an established and clinically validated risk prediction tool, QDiabetes. We also show that

among BPB women with a history of GDM, PRS is associated with T2D development. Addi-

tionally, we show that our PRS is variably associated with T2D subgroups and can itself distin-

guish a subgroup that is undifferentiated by clinical features.

ToAU : Pleasenotethat}toourknowledge}hasbeenaddedtothesentence}Toourknowledge; thisisthefirststudytosystematically:::}AsperPLOSstyle; addthephrase}toourknowledge}ifthereisapriorityclaim:our knowledge, this is the first study to systematically assess the transferability of genetic

loci associated with T2D in EUR individuals into BPB individuals. Previous studies have
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assessed directional consistency of genetic effects [45] or heterogeneity in allelic ORs [46]

across ancestry groups but, to our knowledge, have not explicitly asked how many genetic loci

one might expect to replicate in a sample of a given ancestry given the power and linkage dis-

equilibrium differences. We replicated a lower percentage of previously identified GWAS loci

(22.5%) in G&H than would be expected (30.0%) after accounting for power, consistent with

the only moderate trans-ancestry genetic correlation between the 2 populations. That fewer

loci were replicated than expected might also be due to ancestry-specific gene–environment

interactions and the Winner’s Curse phenomenon, an ascertainment bias in which the effect

sizes of previously reported loci were likely overestimated, which could lower the chances of

replication [47]. Among the genomic loci, which did transfer between EUR and BPB individu-

als and were powered to interrogate this, only 33% showed evidence of shared causal variants.

Hence, despite the considerable overlap in genetic risk between BPB and EUR individuals, our

results should still motivate larger studies of T2D genetics in different ancestry groups [48] in

order to better characterise the genetic contribution to disease and ancestry-specific aetiologi-

cal features. In the future, the findings of such studies may point to different effects of risk fac-

tors via mendelian randomisation, or different potential drug targets across populations.

Our IRT that combines QDiabetes scores with PRS modestly improved risk classification in

a population at high risk of T2D. Specifically, the IRT improved NRI compared to QDiabetes

models A (3.22%) and B (0.80%). The IRT did not improve NRI compared to model C, which

may reflect reduced power in model C due to lower sample size (n = 864) than the other 2

models (n = 13,648 for model A; n = 4,344 for model B). Alternatively, the lower NRI for mod-

els B and C could imply that the benefit of integrating genetic information with risk models

already incorporating metrics of hyperglycaemia is more limited than models without hyper-

glycaemic metrics (Model A). This hypothesis is supported by the association of HbA1c and

fasting glucose with PRS (correlation coefficients 0.11 and 0.07, respectively), although the

strength of the association is weak. This interpretation would be in line with previous findings

reported in EUR individuals by Lyssenko and colleagues [49] and Meigs and colleagues [50],

although as these studies were performed prior to the availability of any large GWAS data reas-

sessment with an updated PRS is of benefit, as is its reporting in BPB individuals. Hippisley-

Cox and Coupland [20] describe model B (incorporating FPG) as the best-fitting model in

11.5 million (multiethnic, but dominantly Europeans with only approximately 4.5% of South

Asian ancestry) individuals in the QResearch database (C-Index 0.89 for women, 0.87 for men

for model B, compared to 0.83 for women and 0.81 for men in model A), but we observed

lower C-Index values for QDiabetes alone in our study (Fig 3). The lower C-Index values for

comparable models in our study could be also due to differing age, and deprivation distribu-

tions between the QResearch database and G&H participants, and the lack of ethnic diversity

in our model, since ethnicity is strongly weighted in the QDiabetes risk estimation algorithms

and explains a large proportion of variance in T2D risk.

We observed positive NRIs with the IRT driven principally by enhanced reclassification of

younger individuals from low to high risk and improved downgrading of older individuals

from high to low risk. In the context of a growing burden of T2D in increasingly resource-con-

strained health systems, such reclassification would support more effective resource allocation,

with intensification of preventative care pathways for those at highest risk (e.g., early referral

to T2D prevention programmes [13]) and relaxation of those who are identified to be at

reduced risk. We found that individuals being reclassified as higher risk tended to be young

(mean age 36.0 years), free from comorbidities, and relatively slim (mean BMI 25.9 kg/m2;

Table 2). According to estimates by the International Diabetes Federation, half of cases of T2D

remain undiagnosed [51]. Using our IRT to identify these individuals, who would likely other-

wise have been considered healthy, as high risk could offer significant opportunities to identify
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and manage T2D early and prevent subsequent morbidity and mortality [52]. This finding is

particularly important given the observation that early-onset T2D is associated with rapid pro-

gression to vascular complications [53].

We showed that in BPB women with a history of GDM, a T2D PRS was associated with

development of T2D. This finding persisted after adjustment for established clinical risk fac-

tors and the QDiabetes risk score. Our findings are in keeping with prior reports of an associa-

tion between a T2D PRS and development of T2D in white [21] and Southeast Asian [22]

women with a history of GDM. While previous studies have applied alternative T2D PRSs to

women of South Asian origin to identify those at higher risk of GDM [54], none to date have

explored their association with T2D development in women with GDM. Although we

observed similar associations between PRS and T2D development in age- and BMI-matched

male and female controls, the clinical utility of this finding in women with a history of GDM is

clearer: this patient group is at extremely high risk of T2D, where improvements to follow-up

and screening processes achieved by individualisation could be valuable. This is particularly

clinically important in BPB women given their increased risk of developing T2D relative to

other ethnic groups, and the globally low uptake of postpartum diabetes screening in non-

white individuals [55]. Among individuals without T2D (non-cases), women with a history of

GDM displayed a higher mean PRS than age- and BMI-matched females without GDM and

compared to males. This could be because these individuals have increased propensity to

develop T2D in the future, but have not yet developed it, or because they have undiagnosed

T2D, for example, through missed screening tests postdelivery.

We used data-driven clustering approaches in 2 separate models to explore how PRS might

associate with the T2D subgroups that are increasingly recognised as a route to developing

stratified diabetes care. Despite the absence of biomarkers such as auto-antibodies and C-pep-

tide, which are seldom measured in the routine primary care datasets we had available, we

were able to reproduce previously described diabetes subgroups [2,16,17] in a previously unin-

vestigated population of BPBs. We showed heterogeneous distributions of a T2D PRS across

clusters in a model whose membership was defined by clinical measures. PRS was lowest in

the MARD cluster, concordant with our findings that it performed best in predicting the risk

of T2D in people aged under 40 years, and the MOD cluster, suggesting that other polygenic

influences (e.g., on body weight) may be more important. Our SIRD cluster was characterised

by markedly raised serum triglycerides and is worthy of further exploration in studies of rare

genetic variants. In the absence of clinical measures of insulin secretion such as C-peptide, we

were unable to fully delineate the previously well-replicated SIDD cluster in the Clinical

Model. However, our MD cluster may include individuals who are insulin deficient as it is

characterised by low serum triglycerides (1.21 (0.43) mmol/L) in addition to high HDL (2.07

(0.25) mmol/L), and our CUD cluster likely also contains people with SIDD as its membership

is characterised by high HbA1c and low serum triglycerides.

When we incorporated the PRS in an integrated cluster model with clinical features, we

observed additional delineation of subgroups than our previous model, with emergence of

clear clusters representing IRD and SIRD. This enhanced delineation was possible without bio-

chemical measures of insulin secretion and resistance or diabetes autoantibody data. As such

measures are rarely performed in routine primary care for people with diabetes (due to cost,

performance, and interpretative challenges), these findings suggest PRS could be a pragmatic

tool to aid clinical care if cheap genotyping chips become widely used in health systems. Inter-

estingly, we were also able to delineate a probable SIDD cluster, well described in other studies

of South Asians [23,56], on the basis of high polygenic susceptibility that was underpinned by

gene variants associated with insulin secretion, in combination with supportive clinical fea-

tures including high HbA1c, and low BMI and serum triglycerides. These findings are
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supported by tendencies towards higher scores on previously reported beta cell PRS [37] and

fasting glucose PRS [18]. This analysis showed that the diabetes subgroups identified using the

integrated cluster model were associated with differential rates of progression to complica-

tions, which were not apparent in the clusters found by the Clinical Model, implying that addi-

tion of PRS to data-driven identification of T2D subgroups could provide an unexplored

clinical tool to risk-stratify populations and target care.

This study has several limitations, including our need to impute missing data not present in

health records and the lack of a replication cohort to externally validate findings. Our analysis

of the progression to T2D after GDM was limited by the low uptake of postpartum diabetes

screening that may have resulted in underdiagnosis of T2D and ascertainment bias. Across all

of our analyses, it is likely that some individuals coded as having T2D actually have type 1 dia-

betes or rare monogenic forms of diabetes, although the absolute number of these and impact

on overall findings is likely to be very small. It is also likely that undiagnosed T2D may be pres-

ent in some of our controls, and this is expected to lead to a higher mean PRS in that group,

but attenuation of any effect sizes of analyses investigating its predictive ability. Misclassifica-

tion of type 1 and type 2 diabetes may have occurred in this real-world data set, although the

small number of individuals diagnosed with T2D managed with insulin alone (n = 14) suggests

the effect of this on our findings would be minimal. In the absence of C-peptide and auto-anti-

body data in our primary care data set, estimating misclassification rates is complex and

beyond the scope of this study. While miscoding of T2D may also have impacted results, previ-

ous research has suggested this occurs in fewer than 2% of individuals [57], and we would sim-

ilarly expect the effect of this on results to be small.

In conclusion, our T2D PRS, optimised in British South Asians, modestly enhances predic-

tion of incident disease when combined with an established clinical risk tool compared to

using the clinical tool alone, and particularly in young people. Additionally, the PRS has value

in predicting the onset of T2D in a specific high-risk group, women affected by gestational dia-

betes. These findings could aid the personalisation of care of people at risk of T2D. The PRS

also helps elucidate aetiologically different diabetes subgroups at diagnosis, in the absence of

insulin secretion/resistance measures, and these differ in their association with future compli-

cations. The value of PRS in this context may assist effective stratification of care in the future.

Our work provides important insight into the genetic risk in an ethnic group underrepre-

sented in research but disproportionately affected by T2D, and has significant potential to be

translated into clinical practice.
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