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Abstract: Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that
can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and
pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on
compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their
limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity
in swallowing-related neuronal networks. Several new and innovative strategies based on
neurostimulation in peripheral and cortical swallowing-related regions have been investigated,
and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical
neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels
expressed in peripheral swallowing-related regions. A considerable number of animal and human
studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported
improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is
also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this
strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may
therefore be a promising pharmacological treatment strategy for the management of oropharyngeal
dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and
molecular mechanisms.

Keywords: oropharyngeal dysphagia; chemosensory ion channels; peripheral chemical
neurostimulation strategy; neurophysiological mechanisms; molecular mechanisms

1. Introduction

Swallowing is a physiological process that transports ingested materials (e.g., foods and liquids)
and saliva from the oral cavity into the stomach [1–5]. It is a highly integrated and complex sensorimotor
process that has both volitional and reflexive components [1–5]. Depending on the anatomical locations
of the ingested material, the process of swallowing can been divided into three phases: Oral, pharyngeal,
and esophageal [1–5]. The oral phase is volitional and includes the process of taking materials into the
oral cavity, and the preparation by chewing, or mastication, of a bolus of suitable size and consistency
to be swallowed [1–5]. In the pharyngeal phase, the bolus is transferred into the esophagus by a
reflex mechanism known as the swallowing reflex, which also prevents the bolus from entering the
respiratory tract. During this reflex, the epiglottis swings down to cover the laryngeal vestibule and
the laryngeal opening is closed off by the vocal cords and arytenoids, leading to a sealing of the
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airway [1–5]. The laryngeal vestibule closes to prevent the entry of the bolus into the trachea. The hyoid
bone and larynx then move upward and forward, and the upper esophageal sphincter is elevated.
Next, the upper esophageal sphincter opens, and the bolus moves to the esophagus. During the
esophageal phase, the bolus and liquid are transported into the stomach with the aid of peristaltic
contraction and gravity [1–5].

Difficulties in the process of swallowing are termed dysphagia. Swallowing difficulties often lead
to severe complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia,
which have high mortality rates [6–12]. Generally, dysphagia is divided into oropharyngeal and
esophageal subtypes based on the location of the swallowing difficulty [13–15]. In oropharyngeal
dysphagia, difficulty arises when transporting the food bolus or liquid from the oral cavity to the
esophagus, while in esophageal dysphagia, the impedance occurs in the esophagus itself [13–15].
Oropharyngeal dysphagia is more prevalent and more severe than esophageal dysphagia [16].
In oropharyngeal dysphagia, patients have difficulties with evoking swallowing. Triggering of
the swallow is often delayed, leading to impaired safety of swallowing. If the swallow response is not
evoked at the correct time, the airways may remain open during swallowing. This can allow the entry
of food particles or liquids into the laryngeal vestibule above the vocal folds (termed penetration,)
or even deep into the airway below the vocal folds (termed aspiration), and may lead to aspiration
pneumonia [17,18]. Airway penetration and aspiration are caused by a delayed laryngeal vestibule
closure time and slow hyoid motion [6,19]. Impaired safety of swallowing with bolus penetration
occurs in more than half of all patients with oropharyngeal dysphagia, and approximately 20–25%
of these patients present aspiration into the airway [6,20,21]. The inability to swallow efficiently
can also lead to the presence of bolus residues in the oropharyngeal region (termed oropharyngeal
residues), which causes the sensation of having food stuck in the oral cavity or throat regions [22,23].
Oropharyngeal residues occur because of weak bolus propulsion forces and impaired pharyngeal
clearance [6,19]. There are many causes of oropharyngeal dysphagia, including neurovascular
accidents (e.g., stroke or head injury), neurodegenerative diseases (e.g., Parkinson’s disease, dementia,
amyotrophic lateral sclerosis, multiple sclerosis, or Alzheimer’s disease), neuromuscular problems
(e.g., polymyositis/dermatomyositis or myasthenia gravis), and local lesions (e.g., head and neck
tumors, surgical resection of the oropharynx/larynx, or radiation injury) [22–24]. More than half
of all stroke patients and around 30% of traumatic brain injury patients develop some kind of
swallowing dysfunction. In addition, approximately 50–80% of patients with Parkinson’s disease,
Alzheimer’s disease, and dementia have oropharyngeal dysphagia [12,18,25–27]. Many older people
also develop oropharyngeal dysphagia [22,23,28–31]. The prevalence of oropharyngeal dysphagia
among institutionalized aged patients is more than 50%, while it is approximately 30% among the
general older population [8–12,32–35].

There is no established pharmacological therapy for the management of oropharyngeal
dysphagia [36,37]. Currently, its clinical management is mainly focused on compensatory strategies and
swallowing exercises/maneuvers [28,38–40]. Common compensatory strategies include modification
of the properties of the bolus to be swallowed (e.g., changing the volume, viscosity, or texture of the
bolus), and the adoption of different postures before swallowing (e.g., chin tuck or head tilt) [28,38–43].
Such compensatory strategies are short-term adjustments that aim to compensate for the swallowing
difficulty, but they do not usually change the impaired swallowing physiology or promote the
recovery of swallowing function in patients with oropharyngeal dysphagia [38,39,43,44]. Thickeners
are often used to increase the viscosity of the bolus, to reduce penetration or aspiration [19,21,45].
Although, increasing the viscosity of the bolus using thickeners can improve swallowing safety,
studies have reported that it also increases the amount of oropharyngeal residue [19,21,46–48].
Thickeners also have poor palatability, leading to poor compliance by patients [21,46]. Increasing
the bolus volume has been reported to increase penetration and aspiration, along with increased
amounts of oral [49] and pharyngeal residues, during swallowing in neurogenic oropharyngeal
dysphagia patients [19,49]. Some common swallowing exercises/maneuvers include tongue exercises,
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jaw exercises, effortful swallow exercises, and Mendelsohn maneuvers (voluntarily holding the
larynx in an elevated position). The aims of these exercises/maneuvers are to improve the efficacy
of swallowing-related muscles, improve the motion of the bolus, and promote modest neuroplastic
changes (i.e., the reorganization of neural connections) [39,41–43]. Although both compensatory
strategies and swallowing exercises/maneuvers are widely used in clinical practice, the evidence to
support their effectiveness is often limited [19,21,39,41–43,45,50–53].

In addition to compensatory strategies and swallowing exercises/maneuvers, neurostimulation
or sensory stimulation strategies have also been investigated for the management of oropharyngeal
dysphagia, although they have not yet become part of mainstream clinical practice [39,41,50–54].
In these strategies, stimuli are applied to central (cortical) or peripheral swallowing-related regions.
In central neurostimulation strategies, transcranial magnetic stimulation, or transcranial direct
current stimulation is applied to the brain to activate the swallowing-related motor cortex and
corticobulbar pathways [39,55–59]. These strategies have shown promising results in stroke
patients with oropharyngeal dysphagia [55–58,60,61]; however, to conduct these therapies (especially
transcranial magnetic stimulation), specific and expensive equipment and well-trained professionals
are required [62,63]. In peripheral neurostimulation/sensory stimulation strategies, various types of
sensory stimuli (e.g., mechanical, thermal, electrical, or chemical) are applied to the oropharyngeal
regions. These stimuli increase the sensory inputs to the swallowing center of the brainstem, as well as
to the swallowing-related sensory cortex via the sensory nerves that innervate these regions, and thus
improve swallowing function [39,54,64–66]. Sensory inputs from peripheral swallowing-related regions
are important for normal swallowing [66–68]. Interrupting sensory inputs from the pharyngeal and
laryngeal swallowing-related regions has been reported to disrupt the swallowing process. For example,
topical anesthesia applied to the oropharyngeal region disturbs oropharyngeal swallowing and reduces
motor cortex activity in the brain [69–71]. Moreover, when local anesthesia is applied to the superior
laryngeal nerve (SLN), which innervates the laryngopharynx and associated laryngeal regions, healthy
individuals have been reported to experience an illusory globus sensation in the throat, effortful
swallowing, and laryngeal penetration of fluid during swallowing [72]. Anesthetizing the larynx
of healthy adults also results in a higher incidence of penetration, aspiration, and pharyngeal
residues when swallowing [73]. In the aged population, sensory input from swallowing-related
regions is impaired, and this impairment has been related to oropharyngeal dysphagia and impaired
swallowing safety [70,74–77]. One study reported that, compared with young healthy individuals,
the threshold for electrical sensory stimulation to the pharynx is markedly increased in aged healthy
individuals, along with a reduction in stimulation-induced activity of the cerebral cortex (pharyngeal
event-related potentials) [78]. Additionally, in aged individuals with oropharyngeal dysphagia,
there are delayed, impaired, and disruptive patterns of cortical activity in response to pharyngeal
stimulation; disturbances in the connections from the throat to the cortex have also been observed [78,79].
Furthermore, studies reported that the older people show delayed onset of the pharyngeal swallow,
increased pharyngeal residue, delayed laryngeal vestibule closure, delayed upper esophageal sphincter
opening, and delayed hyoid movement during swallowing [6,80–83]. Sensory deficits in peripheral
swallowing-related regions may be caused by reductions in nerve supply in swallowing-related
regions in the aged population [74,75,77,84]. Studies have reported that sensory discrimination in
the pharyngeal and laryngeal regions progressively diminishes with age [77,84]. Significant sensory
deficits in laryngopharyngeal regions have also been observed in stroke and Parkinson’s disease
patients [76,85,86].

Because peripheral sensory inputs are important for swallowing, peripheral sensory stimulation
strategies have been investigated in animal and clinical studies, and have been found to be effective
for modifying swallowing function [39,64,65]. Several review papers have discussed the efficacy
of these strategies in the management of oropharyngeal dysphagia [39,54,64–66]. Various forms of
mechanical stimuli, including touch, pressure, and air puffs, have been investigated and were
observed to modulate the swallowing process [54,64,66,87,88]. Thermal sensory stimuli have
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also been investigated, with diverse results [89–96]. Several studies have used a metal probe
to provide cold thermal stimuli, resulting in a combination of cold thermal and mechanical
stimuli [90,92,93,96]. Some such studies reported improved swallow responses with this combination of
cold thermal and mechanical stimuli [89,91–93], while others observed no significant effects [90,95,96].
Electrical stimulation to the pharynx has also been investigated, and was observed to facilitate
swallowing function by reducing pharyngeal transit time, swallow response time, and frequency of
aspiration [59,97–103]. Neuromuscular electrical stimulation to activate the peripheral motor nerves
supplying swallowing-related muscles has also been investigated; however, inconsistent results were
observed [104–109]. In addition, transcutaneous electrical sensory stimulation to activate the peripheral
sensory nerves (without muscle contraction) leads to a reduced swallow response time and frequency
of aspiration in patients with oropharyngeal dysphagia after stroke, but not in patients with Parkinson’s
disease [104,110–112].

Along with other peripheral sensory stimulation strategies, peripheral chemical sensory
stimulation is effective for facilitating swallowing function, and many recent animal and clinical
studies have investigated this strategy [44,48,79,82,113–117]. With peripheral chemical sensory
stimulation, various chemosensory ion channels that are expressed in peripheral swallowing-related
regions are targeted. Chemosensory ion channels can be activated by chemical stimuli and are
involved in the transduction of chemical stimuli to neurological signals. In patients with oropharyngeal
dysphagia, the activation of these channels by their chemical agonists in peripheral swallowing-related
regions results in significant improvements in many of the biomechanical events of swallowing
physiology, safety, and efficacy [44,48,49,79,82,113–115,118,119]. This strategy is therefore promising
for the development of pharmacological therapeutics for oropharyngeal dysphagia [36,37]. The present
review discusses recent advancements in peripheral chemical sensory stimulation strategies, including
their molecular targets and neurophysiological mechanisms. An understanding of the molecular and
neurophysiological mechanisms is important for the development of effective therapeutics.

2. Targeting Chemosensory Ion Channels to Improve Swallowing Function

The nerves innervating peripheral swallowing-related regions are reported to respond to chemical
stimuli [120–123]. A number of studies, including by our group, have observed that the afferent nerves
innervating the pharyngeal and laryngopharyngeal regions respond to various acids (e.g., citric acid
and HCl) and salts (e.g., KCl and NH4Cl) [120–123]. The second-order neurons, located in the nucleus
tractus solitarii (NTS), also respond to chemical stimuli applied to peripheral swallowing-related
regions [124]. These observations suggest that various chemosensory ion channels in peripheral
swallowing-related regions may be activated by chemical stimuli. Moreover, promising results have
been observed when these channels are targeted with their chemical agonists to improve swallowing
function (Tables 2 and 3).

2.1. Targeting Transient Receptor Potential Channels (TRPs)

TRPs are integral membrane proteins of the plasma membrane that act primarily as non-selective
ion channels [125,126]. Many TRPs are polymodal and can be activated by various stimuli, including
thermal, mechanical, and chemical stimuli [125–127]. The polymodal nature of these channels
make them ideal molecular interfaces between a range of external stimuli and the nervous system.
Their expression has been observed in both neuronal and non-neuronal tissues [125–127], and they play
an important role in many physiological and pathological processes [125–129]. To date, 28 mammalian
TRPs have been cloned, and they can be grouped on the basis of their amino acid sequence homology
into six subfamilies: TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), TRPML (mucolipin), TRPP
(polycystin), and TRPV (vanilloid) [125,126,129]. Chemical agonists of several members of these TRPs
have been used in swallowing-related research to understand their effects on swallowing physiology,
as well as their therapeutic effects in the management of oropharyngeal dysphagia (Tables 2 and 3).
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Table 1. Animal studies investigating the effects of targeting chemosensory ion channels on swallowing.

Targeting Channels Agonists and Its Application Animals Mode of Application Effects on Swallowing Ref.

TRPV1

Capsaicin solution
(25 µM) into the laryngopharynx
and associated laryngeal regions

Rats Acute

1. Capsaicin triggered a greater number of
swallowing reflexes compared to distilled
water/saline/vehicle;

2. Capsaicin shortened the intervals between the
evoked swallowing reflexes compared to distilled
water/saline/vehicle;

3. Prior topical application of a TRPV1 antagonist
significantly reduced the number of
capsaicin-induced swallowing reflexes and
lengthened the intervals between the
evoked reflexes.

[116]

Capsaicin solution
(10 µM) into the larynx Guinea pigs Acute Capsaicin triggered a greater number of swallowing

reflexes compared to saline. [130]

Capsaicin solution
(10 µM) on the vocal folds Rats Acute Capsaicin triggered a considerable number of

swallowing reflexes. [131], [132]

Capsaicin solution
(600 nM) into the

pharyngolaryngeal region

Rats (a dysphagia
model) Acute Capsaicin improved the triggering of swallowing

reflexes compared to that of distilled water. [133]

TRPM8
Menthol solution

(50 mM) into the laryngopharynx
and associated laryngeal regions

Rats Acute

1. Menthol triggered a greater number of
swallowing reflexes compared to distilled
water/saline/vehicle;

2. Menthol shortened the intervals between the
evoked reflexes compared to distilled
water/saline/vehicle;

3. Prior topical application of a TRPM8 antagonist
significantly reduced the number of
menthol-induced swallowing reflexes and
lengthened the intervals between the
evoked reflexes.

[116]
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Table 2. Animal studies investigating the effects of targeting chemosensory ion channels on swallowing.

Targeting Channels Agonists and Its Application Animals Mode of Application Effects on Swallowing Ref.

ASIC3

Guanidine-4-methylquinazoline
(GMQ) solution (0.5 to 10 mM)
into the laryngopharynx and
associated laryngeal regions

Rats Acute

1. GMQ dose-dependently facilitated the triggering
of swallowing reflex;

2. Prior topical application of an ASIC3 antagonist
significantly reduced the number of
GMQ-induced swallowing reflexes and
lengthened the intervals between the
evoked reflexes.

[117]

Agmatine (50 mM to 2 M)
solutions into the laryngopharynx
and associated laryngeal regions

Rats Acute

1. Agmatine dose-dependently facilitated the
triggering of swallowing reflex;

2. Prior topical application of an ASIC3 antagonist
significantly reduced the number of
agmatine-induced swallowing reflexes and
lengthened the intervals between the
evoked reflexes.

[117]

ASICs and TRPV1

Acetic acid (5 to 30 mM), citric
acid (5 to 30 mM) solutions into
the pharyngolaryngeal region

Rats Acute Acetic acid and citric acid evoked a greater number of
swallowing reflexes compared to distilled water. [134]

Citric acid solution
(10 mM) into the

pharyngolaryngeal region

Rats (a dysphagia
model) Acute Citric acid solution improved the triggering swallowing

reflexes compared to that of distilled water. [133]

Note: Acute application refers to the condition when the agonists applied for a single time in the swallowing-related regions.
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Table 3. Human studies investigating the effects of targeting chemosensory ion channels on swallowing.

Targeting Channels Agonists and Its Application Patients/Participants Mode of Application Effects on Swallowing Ref.

TRPV1

Capsaicin
(1 nM to 1 µM) solution

into the pharyngeal region

Aged patients with cerebrovascular
diseases or dementia presenting

oropharyngeal dysphagia
Acute Capsaicin solution dose-dependently reduced the

latency to trigger a swallow response. [118]

Capsaicinoid (150 µM)
containing nectar bolus

ingestion

Aged patients presenting
oropharyngeal dysphagia Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Upper esophageal sphincter opening time
during swallowing reduced;

3. Time for maximal vertical movement of the
hyoid bone and larynx during
swallowing reduced;

4. Prevalence of laryngeal penetration during
swallowing reduced;

5. Prevalence of pharyngeal residue of bolus
during swallowing reduced.

[44]

Capsaicinoid (150 µM)
containing nectar bolus

ingestion

Aged/stroke/neurodegenerative
disease patients presenting
oropharyngeal dysphagia

Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Prevalence of laryngeal penetration during
swallowing reduced;

3. Prevalence of pharyngeal residue of bolus
during swallowing reduced;

4. Bolus propulsion velocity during
swallowing increased.

[48]

Capsiate (1–100 nM) into the
pharyngeal region

Patients with history of aspiration
pneumonia presenting

oropharyngeal dysphagia
Acute Capsiate dose-dependently reduced the latency to

trigger a swallow response. [135]

Capsaicinoid (10 µM)
containing nectar bolus

ingestion

Aged patients presenting
oropharyngeal dysphagia

Chronic
(three times/day, before meals for 10 days)

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Score of the penetration-aspiration
scale lowered;

3. Amplitude of cortical sensorial response to
pharyngeal electrical stimulation increased;

4. Latency to evoke cortical sensorial response
to pharyngeal electrical
stimulation decreased.

[79]

Capsaicin containing pickled
cabbage (1.5 µg/10 g) ingestion Healthy participants Chronic

(before every major meal/day for 20 days) Latency to trigger a swallow response reduced [136]

Capsaicin containing lozenges
(1.5 µg/lozenge)

Aged patients with cerebrovascular
diseases presenting oropharyngeal

dysphagia

Chronic
(before every major meal/day for 4 weeks) Latency to trigger a swallow response reduced. [119]
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Table 3. Cont.

Targeting Channels Agonists and Its Application Patients/Participants Mode of Application Effects on Swallowing Ref.

TRPV1

Capsaicin containing thin film
food (0.75 µg/film) ingestion

Aged patients presenting
oropharyngeal dysphagia

Chronic
(before every major meal/day for 1 week)

1. Duration of cervical esophageal opening
during swallowing shortened;

2. Symptoms of oropharyngeal
dysphagia reduced;

3. Substance P concentration in saliva
increased in patients who showed
improvement of swallowing.

[113]

Capsaicin (150 µM) containing
nectar bolus ingestion along

with cold thermal
tactile stimulation

Aged patients with history of stroke
presenting oropharyngeal dysphagia

Chronic
(three times/day, before meals for 3 weeks)

Swallowing function improved assessed by
swallowing assessment tools. [137]

Capsaicinoid (10 µM)
containing nectar bolus

ingestion

Aged patients presenting
oropharyngeal dysphagia

Chronic
(three times/day, before meals for 10 days)

The swallowing safety improved evidenced by
reduction of the prevalence of aspiration and

lowering the score in penetration-aspiration scale.
[114]

Capsaicin (0.5 g of 0.025%)
containing ointment into the ear

canal

Aged patients presenting
oropharyngeal dysphagia

Acute and chronic
(once daily for 7 days) Swallowing function improved. [138]

TRPM8

Menthol solution (100 µm to 10
mM) into the pharyngeal region

Aged patients presenting
oropharyngeal dysphagia Acute Menthol dose-dependently reduced the latency to

trigger a swallow response. [139]

Menthol (1 and 10 mM)
containing nectar bolus

ingestion

Aged/stroke/neurodegenerative
diseases patients presenting
oropharyngeal dysphagia

Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Prevalence of laryngeal penetration during
swallowing reduced.

[48]

TRPA1

Cinnamaldehyde (756.6 µM)
and zinc (70 µM) containing

nectar bolus ingestion

Aged/stroke/neurodegenerative
diseases patients presenting
oropharyngeal dysphagia

Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Upper esophageal opening time during
swallowing reduced;

3. Score in penetration-aspiration
scale lowered;

4. Frequency of safe swallows increased;
5. Latency of evoking cortical response to

pharyngeal electrical stimulation shortened.

[82]

Citral (1.6 mM) containing
nectar bolus ingestion

Aged/stroke/neurodegenerative
diseases patients presenting
oropharyngeal dysphagia

Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Upper esophageal opening time during
swallowing reduced.

[82]
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Table 3. Cont.

Targeting Channels Agonists and Its Application Patients/Participants Mode of Application Effects on Swallowing Ref.

TRPV1 and TRPA1

Piperine (150 µM and 1 mM)
containing nectar bolus

ingestion

Aged/stroke/neurodegenerative
diseases patients presenting
oropharyngeal dysphagia

Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Time required for maximum anterior
extension of hyoid bone during
swallowing reduced;

3. Score in penetration aspiration
scale lowered;

4. Prevalence of laryngeal penetration during
swallowing reduced.

[115]

Black pepper oil (a volatile
compound) (100 µL for 1 min)

to the nostrils with a paper stick
for inhalation.

Aged patients with cerebrovascular
diseases presenting oropharyngeal

dysphagia
Acute Latency to trigger a swallow response for distilled

water reduced. [140]

Piperine (150 µM and 1 mM)
containing nectar bolus

ingestion

Aged/stroke/neurodegenerative
diseases patients presenting
oropharyngeal dysphagia

Acute

1. Laryngeal vestibule closure time during
swallowing reduced;

2. Prevalence of penetration during
swallowing reduced;

3. Bolus propulsion velocity during
swallowing increased.

[48]

Black pepper oil (a volatile
compound) (100 µL for 1 min)

to the nostrils with a paper stick
for inhalation.

Aged patients with cerebrovascular
diseases presenting

oropharyngeal dysphagia

Chronic
(three times/day, before meals for 30 days)

1. Latency to trigger a swallow response for
distilled water reduced;

2. Serum substance P level increased;
3. Regional cerebral blood flow in right

orbitofrontal and left insular
cortex increased.

[140]

Black pepper oil (a volatile
compound) (100 µL for 1 min)

to the nostrils with a paper stick
for inhalation.

Pediatric patients with severe
neurological disorders often

receiving tube feeding

Chronic (three times/day, before meals for
3 months)

1. The amount of oral intake of foods by the
patients increased;

2. Swallowing-related movements increased.
[141]

TRPV1, TRPA1 and
TRPV3

Vanillin (a volatile compound),
(flow rate 7 L/min for 200 ms)

delivered ortho-and
retro-nasally

Healthy participants Acute
The frequency of swallowing for continuous

intraoral sweet stimuli (glucose) increased in case
of retro-nasal delivery.

[142]

TRPA1 and TRPM8
Citral (1.6 mM) and isopulegol

(1.3 mM) containing nectar
bolus ingestion

Aged/stroke/neurodegenerative
diseases patients presenting
oropharyngeal dysphagia

Acute Upper esophageal opening time during
swallowing reduced. [82]
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Table 3. Cont.

Targeting Channels Agonists and Its Application Patients/Participants Mode of Application Effects on Swallowing Ref.

ASICs and TRPV1

Citric acid (2.7% or 128 mM)
containing liquid bolus

ingestion

Aged patients with neurological
diseases presenting oropharyngeal

dysphagia
Acute Prevalence of aspiration and penetration during

swallowing reduced. [143]

Lemon juice containing barium
liquid bolus (1:1) ingestion

Patients with strokes and
neurological diseases presenting

oropharyngeal dysphagia
Acute

1. Swallow onset time reduced;
2. Time required to trigger the pharyngeal

swallow (pharyngeal delay time) reduced;
3. Frequency of aspiration reduced;
4. Oropharyngeal swallow efficiency increased.

[49]

Lemon juice containing barium
liquid bolus (1:1) ingestion

Healthy participants and head and
neck cancer patients Acute Pharyngeal transit time reduced. [144]

Citric acid (80 mM) delivered
on the tongue Healthy participants Acute

1. Frequency of swallowing increased;
2. Hemodynamic responses in the cortical

swallowing-related areas prolonged.
[145]

Lemon juice application on the
tongue along with nasal

inhalation of lemon juice odor
Healthy participants Acute

Motor evoked potential from the submental
muscles increased during volitional swallowing
induced by transcranial magnetic stimulation.

[146]

Citric acid solution (20 mM)
ingestion Healthy participants Acute Activity of submental muscle during

swallowing increased. [147]

Citric acid solution (2.7% or 128
mM) ingestion Healthy participants Acute

1. Amplitude of anterior tongue-palate
pressure during swallowing increased;

2. Activity of submental muscles during
swallowing increased.

[148]

Lemon juice (10%) solution
ingestion (4 ◦C before delivery)

Healthy participants and stroke
patients with and without
oropharyngeal dysphagia

Acute

1. Inter-swallow interval shortened in healthy
participants of <60 years of age;

2. Inter-swallow interval unaffected in
stroke patients;

3. Velocity and capacity of swallowing reduced
both in healthy individuals and
stroke patients.

[149]

Lemon juice delivered on
tongue Healthy participants Acute

1. Number of swallowing increased;
2. Salivation increased;
3. Amount of salivation correlated with the

number of swallowing.

[150]

Acetic acid (10 and 100 mM)
applied on the posterior part of

the tongue
Healthy participants Acute Latency to trigger swallowing prolonged

compared to that of water. [151]
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Table 3. Cont.

Targeting Channels Agonists and Its Application Patients/Participants Mode of Application Effects on Swallowing Ref.

ASICs and TRPV1

Citric acid (2.7%)
solution ingestion Healthy participants Acute Lingual pressure during swallowing increased. [152]

Citric acid (10%) solution
ingestion Healthy participants Acute Speed of swallowing reduced compared to that

of water. [153]

Citric acid containing gelatin
cubes (4.4 g of citric acid in 200

ml of gelatin) chewing
and ingestion

Healthy participants Acute

1. Oral preparation time during
swallowing accelerated;

2. Amplitude of submental muscle activity
during swallowing increased;

3. Duration of submental muscle activity
during swallowing reduced.

[154]

Lemon water (50%)
solution ingestion Healthy participants Acute

1. Activity of submental muscles during
swallowing increased;

2. Onset time of activation of the submental
muscles closely approximated.

[155]

Lemon juice (a drop of 100%
lemon juice in the anterior

faucial pillar) + cold
mechanical stimuli using a

probe (around 8–9 ◦C) before
swallowing of water

Healthy participants Acute Latency to trigger swallowing reduced. [156]

Lemon juice (1:16, mixed with
water) ingestion Healthy participants Acute Onset time of activation of the submental and

infrahyoid muscles shortened. [157]

Note: Chronic application refers to the condition when the agonists applied for multiple times over a period of time in the swallowing-related regions.
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2.1.1. Targeting TRPV1

TRPV1 was the first member of the TRPV subfamily to be isolated [158]. It can be activated by a wide
range of natural compounds (e.g., capsaicin, capsiate, piperine, resiniferatoxin, tinyatoxin, camphor,
eugenol, gingerols, shogaols, cannabidiol, carvacrol, evodiamine, vanillin, and thymol), synthetic
compounds (e.g., olvanil and arvanil), acids/low pH, and thermal stimuli (~43 ◦C) [125,126,158–166].
It is also activated by endogenous ligands such as protons, anandamide, arachidonic acid metabolites,
and N-arachidonyl dopamine [125–127,161].

Studies have reported TRPV1 expression in swallowing-related regions. In animal studies, TRPV1
immunoreactivity has been observed in the intraepithelial and subepithelial nerve fibers of the oral
cavity, tongue, soft palate, pharynx, epiglottis, trachea, and larynx [167–170]. Immunoreactivity has
also been observed in the oral and olfactory epithelium [169,171–174], and within and beneath the taste
papillae located in the tongue, soft palate, and epiglottis [167,169]. In addition, TRPV1 is also expressed
in peripheral ganglia (e.g., the trigeminal, nodose, petrosal, and jugular ganglia) [116,128,167,175–177],
which contain the cell bodies of afferent neurons that carry sensory inputs from peripheral
swallowing-related regions. In the nodose and petrosal ganglia of rats, around one-third of retrogradely
traced afferent neurons from the pharyngeal and soft palate regions show TRPV1 immunoreactivity [167].
We have also observed that around one-third to one-half of the retrogradely traced afferent neurons
from the laryngopharyngeal and associated laryngeal regions showed TRPV1 immunoreactivity in the
nodose, petrosal, and jugular ganglionic complex (NPJc) [116]. Approximately two-thirds of these
neurons were unmyelinated [116]. In humans, TRPV1 expression has been observed in epithelial cells
and subepithelial nerve fibers of the tongue, pharynx, nasal cavity, epiglottis, and larynx [178–180].
The presence of TRPV1 channels in swallowing-related regions provides evidence of their involvement
in the swallowing process.

Effects of TRPV1 Agonists on Swallowing

The effects of chemical TRPV1 agonists on swallowing processes have been investigated in
animals (Table 2) and humans (Table 3). In animals, the topical application of capsaicin (a natural
pungent ingredient of chili) to swallowing-related regions facilitates the triggering of the swallowing
reflex [116,130–132]. We have previously reported that using a capsaicin-containing solution to
stimulate the laryngopharynx and associated laryngeal regions in rats leads to increased numbers
of evoked swallowing reflexes compared with vehicle, saline, or distilled water [116]. Capsaicin
application also shortens the intervals between evoked reflexes [116]. Furthermore, the topical
application of a TRPV1 antagonist prior to the application of capsaicin significantly reduces the number
of swallowing reflexes and lengthens the intervals between the evoked reflexes, indicating the specific
involvement of TRPV1 [116]. Additionally, the use of different concentrations of capsaicin modulated
the SLN response that innervates the laryngopharynx and associated laryngeal regions [116]. In an
animal model of dysphagia induced by transient middle cerebral artery occlusion, the TRPV1 agonist
capsaicin has also been observed to overcome the reduced ability to trigger swallowing reflexes [133].

In humans, a number of studies have investigated the efficacy of TRPV1 agonists to modulate
swallowing behavior. The acute or chronic ingestion of TRPV1 agonist-containing solutions, foods,
or boluses modulates the various biomechanical events of swallowing (Table 3). In patients
with dysphagia associated with cerebral thrombosis or dementia, the acute application of a
capsaicin-containing solution (1 nM to 1 µM) to the pharyngeal region causes dose-dependent
reductions in the latency to trigger the swallow response [118]. Another study found that the acute
ingestion of nectar boluses containing 150 µM capsaicinoid (present in hot chili sauce), prepared using
a thickener, markedly improved swallowing safety in older dysphagic patients with oropharyngeal
dysphagia. This improvement occurred via shortening the time for laryngeal vestibule closure and
upper esophageal sphincter opening, and by shortening the time to the maximal vertical movement of
the hyoid and larynx, compared with the ingestion of nectar boluses without capsaicinoid. Capsaicinoid
ingestion also markedly reduced the prevalence of laryngeal penetration and pharyngeal residue in
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this study [44]. However, the acute ingestion of a lower dose (10 µM) of capsaicinoid-containing nectar
boluses did not exert significant changes in swallowing events in chronic poststroke and older patients
with oropharyngeal dysphagia [79,181], although it did increase the excitability of the motor cortex in
response to pharyngeal electrical stimulation [181]. Another study reported that the acute application
of red wine (without alcohol) or the polyphenols obtained from Cabernet Sauvignon grapes (used to
make red wine) to the pharyngeal region led to reduced latencies of swallow responses in older patients
with dysphagia associated with cerebrovascular diseases [182]. This effect may be caused by the
positive allosteric actions of the polyphenols on TRPV1 [182]. The same study found that polyphenols
increased capsaicin-induced currents in small-diameter dorsal root ganglion neurons inhibited by
a TRPV1 antagonist (capsazepine) in mice. However, the polyphenols themselves did not increase
currents in the neurons, suggesting the positive allosteric action of polyphenols on capsaicin-induced
TRPV1 activation [182].

The effects of chronic TRPV1 agonist ingestion on swallowing have been investigated both in
healthy participants without oropharyngeal dysphagia and in patients with oropharyngeal dysphagia
with different etiologies (Table 3). In healthy older and young participants with no swallowing
difficulties, the chronic supplementation of capsaicin-containing pickled cabbage before every major
meal for 20 days reduced the latency to evoke swallowing in response to a glucose solution delivered
to the pharynx [136]. One week after the supplementation had ended, the effects of capsaicin
supplementation remained in young participants but had faded out in older participants [136]. In a
mid-term randomized controlled study, older patients with dysphagia associated with cerebrovascular
diseases received chronic daily supplementation of lozenges containing a low concentration of
capsaicin (1.5 µg/lozenge) before every major meal for 4 weeks [119]. Compared with a placebo,
this supplementation significantly reduced the latency to evoke swallowing in response to distilled
water delivered to the pharynx [119]. The extent of the reduction in latency was greater in patients
who had a long baseline latency to evoke swallowing before starting the supplementation [119].
Participants in this study did not complain of unpleasant feelings or show symptoms of any clinical
complications related to the supplementation, either during the study period or for several months
after the investigation [119]. In a double-blind, placebo-controlled, crossover study conducted in
older patients with oropharyngeal dysphagia, patients received chronic daily supplementation of
capsaicin in film foods before every major meal for 1 week. Compared with a placebo, this treatment
improved the symptoms of oropharyngeal dysphagia and shortened the duration of cervical esophageal
opening in a greater number of patients [113]. In addition, in the patients who had improved swallow
responses to the capsaicin supplementation, the neuropeptide substance P was significantly increased
in saliva after capsaicin administration compared with placebo, even though the amount of saliva was
unchanged [113]. A randomized, double-blind study was conducted in older stroke patients with
oropharyngeal dysphagia [137]. Supplementation with capsaicin-containing nectar boluses along with
cold thermal and tactile stimuli before every major meal for 3 weeks improved swallowing function,
as assessed using swallowing assessment tools (the water swallow test and eating assessment tool),
compared with placebo [137]. No adverse reactions were attributed to capsaicin supplementation in this
study [137]. Another randomized study was conducted to compare the effects of mid-term (5 days/week
for 2 weeks) capsaicinoid supplementation (three times/day, before meals) and transcutaneous sensory
electrical stimulation (1 h/day) in older patients with oropharyngeal dysphagia [114]. Both treatment
strategies improved the safety of swallowing by reducing aspiration, with lower scores in the
penetration–aspiration scale [114]. However, capsaicin treatment was effective in a greater percentage
of patients (approximately 68%) compared with transcutaneous sensory electrical stimulation therapy
(approximately 42%). The authors reported no serious adverse events related to either capsaicin or
transcutaneous sensory electrical stimulation therapy [114]. Another study compared the effects of
the acute and chronic ingestion of capsaicinoid-containing nectar boluses on swallowing function,
as well as on cortical activity (sensorial event-related potential) in response to pharyngeal electrical
stimulation (using electroencephalography) [79]. This study observed that the acute application of
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10 µM capsaicinoid-containing nectar boluses to aged patients did not improve swallowing function or
exert significant changes in pharyngeal electrical stimulation-induced cortical activity [79]. However,
chronic supplementation with the same amount of capsaicinoid reduced the impaired safety of
swallowing compared with placebo supplementation [79]. Additionally, chronic supplementation
with the TRPV1 agonist improved cortical sensorial responses to pharyngeal electrical stimulation
compared with placebo supplementation [79]. These results indicate improvements in the conduction
and integration of sensory information in the cortex [79]. Furthermore, in the patients receiving
chronic supplementation, the reductions in laryngeal vestibule closure time were strongly correlated
with reductions in the latency to evoke a cortical response to pharyngeal electrical stimulation [79].
This finding indicates a relationship between improved cortical activity and improved swallowing
function [79]. The findings of this study suggest that chronic TRPV1 stimulation in peripheral
swallowing-related regions leads to neuroplastic changes in the cerebral cortex that augment any
improvements in swallowing function [79]. The authors of this study also reported that chronic TRPV1
stimulation did not produce any adverse events or desensitization effects in patients [79].

To avoid pungency of capsaicin/capsaicinoids, a non-pungent agonist of TRPV1, capsiate, was
used in dysphagic patients with a history of aspiration pneumonia to assess its effects on swallowing
function [135]. Acute application of capsiate (1–100 nM) to the pharyngeal region through a nasal
catheter caused dose-dependent reductions in the latency to evoke a swallowing [135]. At doses of 10
and 100 nM, the latencies were significantly shorter than that of distilled water [135].

Application of a TRPV1 agonist into the ear canal can also improve swallowing performance [138].
A pilot study reported that acute or chronic (once daily for 7 days) application of capsaicin-containing
ointment (around 1 mM) in the external auditory canal improved swallowing function in older patients
with dysphagia, as assessed by endoscopic swallowing scores [138]. In this study, the effects lasted for
60 min after an acute application [138]. Moreover, chronic application led to significantly improved
swallowing function in patients with severe swallowing problems [138]. The effects observed in this
study may be attributed to capsaicin-induced activation of the auricular branch of the vagus nerve
(Arnold’s nerve), and the subsequent ectopic antidromic release of substance P in laryngopharyngeal
regions [138].

TRPV1 agonists have also been reported to modulate upper gastrointestinal tract motility [183–185].
In healthy individuals, the acute application of capsaicin to the esophagus improves esophageal
clearance by increasing the strength of primary (swallow-induced) [183] and secondary esophageal
peristalsis [186], and by lowering esophageal sphincter pressure [183].

2.1.2. Targeting TRPA1

TRPA1 was identified slightly later than TRPV1 [187,188]. TRPA1 can be activated by a wide
range of natural and synthetic chemical stimuli, such as allyl isothiocyanate (present in mustard oil
and wasabi) [189,190], cinnamaldehyde (present in cinnamon oil) [190], allicin and diallyl disulfide
(present in garlic extract) [191–193], methyl salicylate (present in wintergreen oil) [190], gingerol
(present in ginger) [194], carvacrol (present in oregano) [195], curcumin (present in turmeric) [196],
umbellulone (present in Umbellularia californica) [197], ligustilide (present in Angelica acutiloba) [198],
heavy metals (e.g., zinc, copper, or cadmium) [199,200], tetrahydrocannabinol [189], formalin [201],
lipid peroxidation products (e.g., prostaglandin) [202], and oxidative stress products (e.g., hydrogen
peroxide or 4-hydroxynonenal) [203–205]. Volatile compounds and odorants (e.g., ethyl vanillin,
α-terpineol, or amyl acetate) can also activate TRPA1 channels [206–208].

Expression of TRPA1 has been observed on nerve fibers and in epithelial cells in the oral, nasal,
pharyngeal, laryngeal, and esophageal regions [173,209–211]. TRPA1 is also expressed in the trigeminal,
nodose, jugular, and petrosal ganglia [128,212–214]. In human biopsy tissues from oropharyngeal
regions, TRPA1 was observed to be localized on submucosal structures, including nerve fibers and
cells resembling fibroblasts [178].
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Effects of TRPA1 Agonists on Swallowing

The effects of the acute administration of TRPA1 agonists on safety, efficacy, and the biomechanical
events of swallowing were investigated in a three-arm, quadruple-blind, randomized clinical trial that
included patients with oropharyngeal dysphagia associated with aging, stroke, or neurodegenerative
diseases [82]. The patients received nectar boluses mixed with citral (1.6 mM) and a combination of
cinnamaldehyde (756.6 µM) and zinc (70 µM) as TRPA1 agonists, and a combination of citral (1.6 mM)
and isopulegol (1.3 mM) as a mix of TRPA1 and TRPM8 agonists [82]. All of these agonists significantly
reduced the upper esophageal sphincter opening time. The TRPA1 agonists (cinnamaldehyde and zinc
combination, and citral) significantly reduced the laryngeal vestibule closure time, but the combination
of TRPA1 and TRPM8 agonists (citral and isopulegol combination) did not [82]. The cinnamaldehyde
and zinc combination also reduced the penetration-aspiration scale scores and increased the frequency
of safe swallows in patients with oropharyngeal dysphagia [82]. Moreover, the cinnamaldehyde
and zinc combination reduced the latency to evoke a cortical response to pharyngeal electrical
stimulation [82]. The cinnamaldehyde and zinc combination was also observed to be the most efficient,
safe, palatable, and well-tolerated among the agonists [82]. Citral was reported to be more intense and
less pleasant than the placebo when the patients were asked to rate the palatability of the agonists.
No adverse events or severe adverse events were reported to be related to agonist use in this study [82].

2.1.3. Effects of Dual TRPV1 and TRPA1 Agonists on Swallowing

The stimulation of swallowing-related regions with a dual TRPV1 and TRPA1 agonist, piperine,
has been observed to improve swallowing function in patients with oropharyngeal dysphagia [48,115].
A randomized, double-blind, controlled study was conducted in older patients with oropharyngeal
dysphagia related to aging, neurodegenerative diseases, or stroke. In this study, the acute ingestion
of piperine-containing nectar boluses (150 µM and 1 mM) significantly improved swallowing safety
compared with piperine-free nectar bolus ingestion [115]. However, the prevalence of oropharyngeal
residues, maximal vertical and anterior distances of hyoid movement, and speed of bolus propulsion
were not significantly affected by piperine treatment in this study. Abdominal pain occurred in one
participant, but it was found to not be related to piperine administration [115]. The results of another
study, involving the same kinds of patients with oropharyngeal dysphagia, also supported the efficacy
of piperine for improving swallowing safety [48].

The nasal inhalation of piperine also improves swallowing behavior. A randomized, controlled
study involving aged patients with a previous history of stroke investigated the acute nasal inhalation
of black pepper oil (100 µL for 1 min, administered to the nostrils with a paper stick) [140]. Compared
with both lavender oil and distilled water, this treatment significantly reduced the latency to evoke
a swallowing in response to distilled water delivered to the pharyngeal region [140]. In addition,
compared with pretreatment latencies, the chronic inhalation of black pepper oil (three times/day,
before each meal), but not lavender oil, for 30 days significantly reduced the latency to evoke
swallowing [140]. Serum substance P levels and regional cerebral blood flow in the right orbitofrontal
and left insular cortices were also increased in patients who received chronic inhalation of black
pepper oil [140]. Another study investigated the effects on swallowing behavior in healthy individuals
of orthonasal (in the external nares) and retronasal (in the nasopharynx) delivery of a food flavor
compound, vanillin (flow rate: 7 L/min for 200 ms), combined with continuous intraoral sweet stimuli
(glucose) [142]. There was an increased frequency of swallowing with reduced latency when vanillin
was delivered retronasally compared with orthonasal delivery [142]. This finding suggests that
retronasally presented odorants may influence swallowing function [142]. It has recently been reported
that vanillin can activate TRPV1, TRPA1, and TRPV3 channels [159,161,195]. Thus, the vanillin-induced
activation of these channels in the nasopharyngeal mucosa or olfactory epithelium may cause the
observed effects on swallowing. Furthermore, another study investigated the effects of chronic nasal
inhalation (100 µL for 1 min before meals, for 3 months) of black pepper oil in eight pediatric patients
with severe neurological disorders who often received tube feeding [141]. Five of the eight patients
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responded positively to the chronic inhalation of black pepper oil, with increased amounts of oral food
intake and swallowing-related movements [141].

2.1.4. Targeting TRPM8

TRPM8 can be activated by various natural chemical agents, such as menthol, eucalyptol, linalool,
and isopulegol, or by synthetic chemical ligands such as icilin [215]. It is also activated by mildly cool
to noxiously cold temperatures [216–218]. TRPM8 expression has been observed in swallowing-related
regions and ganglia [116,212,219–226]. Animal studies have reported TRPM8 expression on nerve
fibers, epithelial cells, and taste buds in the oral mucosa, nasal mucosa, soft palate, pharynx, larynx,
and epiglottis [219,221–224]. In human biopsy tissue from oropharyngeal regions, TRPM8 expression
has been observed in the afferent nerve fibers that innervate the mucosa of the human tongue, pharynx,
and lingual surface of the epiglottis [227]. The cell bodies of afferent neurons from these regions also
express TRPM8 [116,212,219,222]. In an animal study by our group, we observed that two-thirds of the
TRPM8-immunoreactive SLN afferent neurons in the NPJc were unmyelinated in rats [116].

Effects of TRPM8 Agonists on Swallowing

The application of TRPM8 agonists to swallowing-related regions facilitated the evoking of the
swallowing reflex in our animal study [116]. The acute application of a TRPM8 agonist, menthol, to the
laryngopharynx and associated laryngeal areas evoked a significantly greater number of swallowing
reflexes with shortened inter-swallow intervals compared with vehicle, saline, or distilled water.
These results suggest a facilitated triggering of the swallowing reflex when TRPM8 is activated [116].
Moreover, the topical application of a TRPM8 antagonist prior to applying the menthol solution led to
a significantly reduced number of swallowing reflexes and lengthened intervals between the evoked
reflexes, indicating the specific involvement of TRPM8 in the observed effect. Additionally, different
concentrations of menthol modulated the sensory nerve responses that carry information from the
stimulated regions [116].

A clinical study conducted in institutionalized older patients with mild to moderate swallowing
difficulties revealed that the acute application of menthol solution (100 µm to 10 mM) to the pharyngeal
region led to dose-dependent reductions in the latency to evoke a swallowing [139]. No adverse effects
or unpleasant feelings were reported by patients during or after the application of menthol in this
study [139].

2.1.5. Comparison of the Effects of Different TRP Agonists on Swallowing

The therapeutic effects of the acute ingestion of nectar boluses containing a TRPV1 agonist
(capsaicinoids, 150 µM), a dual TRPV1 and TRPA1 agonist (piperine, 150 µM and 1 mM), and a TRPM8
agonist (menthol, 1 and 10 mM) were compared in patients with oropharyngeal dysphagia associated
with aging, stroke, or neurodegenerative diseases [48]. All of these agonists improved swallowing
safety by reducing the prevalence of penetration and the laryngeal vestibule closure time [48]. Only the
TRPV1 agonist improved the swallowing efficacy by reducing the prevalence of pharyngeal residue
and increasing bolus propulsion speed [48]. The TRPV1 agonist-containing bolus showed the greatest
therapeutic effects for improving swallowing efficacy and safety, while the TRPM8 agonist showed
the weakest therapeutic effects [48]. In our animal study, we also observed that a TRPV1 agonist
(capsaicin) facilitated the triggering of the swallowing reflex at lower concentrations than a TRPM8
agonist (menthol), suggesting the greater efficacy of the TRPV1 agonist [116].

2.1.6. Stepwise Therapy Using Different TRP Agonists

A study of stepwise therapy using TRP agonists was conducted in dysphagic patients with
a history of recurrent pneumonia. In this study, patients received black pepper oil aromatherapy
followed by lozenges containing capsaicin (three times daily for 5 days) and jelly with menthol (one
time daily), in a stepwise manner. When the patients were able to safely swallow the menthol jelly,
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they were provided with food with different textures (e.g., paste or pudding textures, or regular
meals). The stepwise method was effective for decreasing the incidence of pneumonia, presumably by
improving swallowing, leading to reduced aspiration [228].

2.2. Targeting Acid-Sensing Ion Channels (ASICs)

ASICs are members of the degenerin/epithelial sodium channel (DEG/ENaC) family, and allow
the entry of cations (mainly Na+) into ASIC-expressing cells upon activation [229–231]. ASICs are
generally activated by acids. They have several subunits: ASIC1a, ASIC1b ASIC2a, ASIC2b, ASIC3,
and ASIC4 [229–231]. Most of these subunits are expressed in both the central and the peripheral
nervous system, although ASIC1b and ASIC3 are predominantly detected in the peripheral nervous
system [229–231]. The expression of various ASICs has been observed on neurons present in
the trigeminal, vagal, and glossopharyngeal ganglia [232–235]. They are expressed on taste buds
and epithelial cells of the tongue [236,237], as well as on nerve fibers and epithelial cells in the
esophagus [233,238,239]. In our animal study, we observed ASIC3 on epithelial cells and afferent nerve
fibers in the laryngopharynx and associated laryngeal regions innervated by the SLN [117]. Moreover,
in human biopsy tissues of oropharyngeal regions, ASIC3 expression has been observed in the afferent
nerve fibers that innervate the mucosa of the human tongue, pharynx, and lingual surface of the
epiglottis [227]. ASICs are also expressed in human nasal epithelium [240].

Effects of ASIC Agonists on Swallowing

Weak acids (e.g., citric acid) and sour-tasting substances containing weak acids (e.g., lemon juice)
have been studied to investigate their effects on swallowing (Tables 2 and 3). In an animal study, we
observed that the topical acute application of citric acid or acetic acid in the pharyngolaryngeal regions
facilitated the triggering of swallowing reflexes compared with distilled water [134]. Acids can activate
both TRPV1 and ASICs. To understand the specific involvement of ASIC channels in swallowing,
we recently used non-acid/non-proton activators for ASIC3 in an animal study [117]. The topical
application of a natural (agmatine) and a synthetic (guanidine-4-methylquinazoline) non-proton ASIC3
agonist into the laryngopharynx and associated laryngeal regions dose-dependently facilitated the
triggering of swallowing reflexes [117]. This faciliatory effect of ASIC3 was significantly suppressed
by the prior topical application of an ASIC3 antagonist, suggesting the specific involvement of these
channels in the facilitation [117].

In human studies, sour-tasting substances or weak acids have been incorporated into solutions or
boluses and presented to the oral cavity or pharyngolaryngeal regions (Table 3). This experimental
methodology allows the activation of sour taste receptors, ASICs, and other acid-activating channels in
these regions.

Lemon juice, which contains citric acid, has been used in several studies to investigate its
effects on swallowing and on the activity of swallowing-related muscles in healthy individuals and
patients with oropharyngeal dysphagia [150,155,157]. The application of lemon juice on the tongue
increases salivation and the frequency of swallowing in healthy adults, and swallowing frequency is
correlated with the amount of salivation after lemon juice application [150]. In addition, increased
electromyographic activity [155] and an earlier onset of action in the submental and infrahyoid muscles
has been observed in healthy individuals during the ingestion of water mixed with lemon juice [155,157].
Another study mixed lemon juice with barium liquid boluses (1:1) to assess their effects on swallowing
in patients with oropharyngeal dysphagia associated with stroke and neurological diseases [49]. In this
study, the bolus mixed with lemon juice increased the oropharyngeal swallowing efficiency and safety
by significantly reducing the swallowing onset time, pharyngeal delay time (the time required to
trigger the pharyngeal swallow), and frequency of aspiration compared with the bolus without lemon
juice [49]. However, the high proportion of lemon juice in the bolus was tolerable but not pleasant,
according to the patients [49]. Another study mixed lemon juice with liquid barium to assess its effect
on swallowing in healthy subjects and in head and neck cancer patients treated with chemoradiation or
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surgery [144]. Compared with unflavored boluses, the inclusion of lemon juice reduced the pharyngeal
transit time (the time required for the bolus to move through the pharynx) in the healthy control
subjects as well as in the patients treated for head and neck cancer [144]. This effect was consistent
over three evaluation points (at 7–10 days, 1 month, and 3 months) after the patients received cancer
treatment [144]. In a different study, the effects on swallowing of cold (4 ◦C, before delivery) lemon
juice diluted in water (10%) was investigated in healthy individuals and patients with a history of
stroke [149]. The cold lemon juice shortened the inter-swallow interval in heathy individuals under
60 years of age; however, the velocity (speed) and capacity (volume) of swallowing was reduced [149].
In stroke patients, the velocity of swallowing was also reduced, but the inter-swallow intervals were
unaffected [149].

The effects of citric acid on swallowing-related muscle activity and tongue pressure have also
been investigated in healthy adults [147,148,152,154,241]. When solutions containing citric acid are
consumed, both tongue-palate pressure [148,152,241] and submental muscle activity [147,148,154] are
increased in healthy adults. One study reported reduced oral preparation time and increased submental
muscle activity when citric acid-containing gelatin cubes were consumed by healthy individuals [154].
Citric acid solutions also improve swallowing safety in patients with oropharyngeal dysphagia [143].
A study conducted in aged nursing home patients with neurogenic oropharyngeal dysphagia reported
that swallowing a cold citric acid solution (2.7%) significantly reduced aspiration and penetration
compared with water [143].

Citric acid stimulation in peripheral swallowing-related regions has been reported to modify
the activity of the cerebral cortex [145,146,242–244]. When healthy adults swallow a citric acid
solution, blood oxygen level-dependent signals are modified in a range of cortical areas, including
the primary somatosensory cortex, anterior cingulate cortex, insula, supplementary motor area,
inferior frontal gyrus, and inferior parietal gyrus, as measured by functional magnetic resonance
imaging [242]. Furthermore, repeated citric acid swallowing gradually increases the activity in the
primary somatosensory cortex and inferior parietal gyrus [242]. Citric acid delivery to the tongue
of healthy adults also increases the frequency of swallowing and prolongs hemodynamic responses
in cortical swallowing-related areas [145]. During the ingestion of lemon water (lemonade), blood
oxygen level-dependent signals in the prefrontal cortex, cingulate gyrus, and sensory/motor cortex are
increased in healthy adults [243]. In addition, a study was conducted using the acute application to the
tongue of dried filter paper discs with incorporated lemon juice, along with the nasal inhalation of
lemon juice odor using a nebulizer (via a nasal canula inserted into both nares) [146]. This treatment
led to increased cortical motor evoked potentials from the submental muscles induced by transcranial
magnetic stimulation during volitional swallowing in healthy volunteers [146]. These findings suggest
that the activation of chemosensory ion channels and taste and odor receptors in the swallowing and
olfactory areas can excite cortical swallowing-related neuronal networks during swallowing [146]. In a
study of healthy adults, it was reported that the repetitive swallowing of liquid boluses containing
citric acid increases corticobulbar excitability [244].

Although the majority of studies have observed improvements in swallowing behavior with
the application of ASIC agonists, a few studies have reported opposite effects [149,151,153]. A study
in healthy subjects reported that, compared with water, the infusion of acetic acid (10 and 100 mM)
solution to the posterior part of the tongue through a tube prolongs the latency to evoke swallowing (as
observed by laryngeal movement and the subject’s confirmation) [151]. Other studies have observed
reductions in swallowing speed [149,153] and volume [149] when cold (4 ◦C before delivery to the
mouth) lemon juice or citric acid solutions (10%, 50 mL) are consumed by healthy adults [149,153] and
patients with a history of stroke [149]. Differences in experimental designs (e.g., the method of detecting
the precise timing of swallowing onset [151] or the amount of liquid presented for swallowing [149])
may have influenced the findings of these studies.
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3. Neurophysiological and Molecular Mechanisms of Improving Swallowing Function via the
Activation of Chemosensory Ion Channels by Chemical Stimuli

The neural mechanisms of swallowing are complex. The pattern of swallowing is generated
by a neural network called the swallowing central pattern generator (sCPG), which is located in the
brainstem [4,5,16] (Figure 1). It can be divided into two neuronal groups. The dorsal swallowing
group (DSG) includes the NTS and contains the generator neurons involved in the triggering, shaping,
and timing of the sequential or rhythmic swallowing patterns [4,5,16]. The DSG is activated by sensory
inputs from the periphery and by commands from the cerebral cortex [4,5,16]. The ventral swallowing
group (VSG) includes the nucleus ambiguus and its adjacent reticular formations and contains switching
neurons, which distribute the swallowing drive to the various pools of motor neurons (e.g., trigeminal,
facial, glossopharyngeal, vagus, and hypoglossal) involved in swallowing [4,5,16] (Figure 1).

Peripheral sensory inputs are important regulators of swallowing [4,5,65,66,68]. A number of
different cranial nerves carry sensory inputs from peripheral swallowing-related regions. The trigeminal
nerve (V) carries sensory inputs from the oral cavity and anterior part of the tongue. The facial nerve
(VII) carries sensory inputs from the taste buds of the anterior two-thirds of the tongue. The base
of the tongue and pharynx are innervated by the glossopharyngeal nerve (IX). In addition, the
vagus nerve (X) carries sensory inputs from the laryngopharynx, larynx, and esophagus. Of the
swallowing-related regions, the sensory inputs from laryngopharyngeal regions above the vocal cords
innervated by the SLN (a branch of the vagus nerve) are reported to be the most potent for evoking the
swallowing reflex [245,246]. Electrical stimulation of the SLN can readily elicit this reflex [246–249].
Information from the periphery travels to the brainstem sCPG as well as to the cerebral cortex to
modulate swallowing (Figure 1). An increase in sensory inputs in peripheral swallowing-related
regions may reduce the threshold for the sCPG to trigger a swallow response. In an animal study,
we observed that the latency to evoke the swallowing reflex was shorter upon the simultaneous
electrical stimulation of the SLN and pharyngeal branch of the glossopharyngeal nerve, compared
with the independent stimulation of each nerve [248]. Furthermore, the bilateral electrical stimulation
of the SLN has been reported to shorten both the latency to trigger swallowing and the inter-swallow
intervals compared with unilateral SLN stimulation [249]. In another study, we observed that the
number of evoked swallowing reflexes induced by the topical application of TRPV1 or TRPM8
agonists in the laryngopharynx and associated laryngeal regions was markedly reduced after unilateral
SLN transection compared with intact bilateral SLNs [116]. These findings suggest that an acute
spatiotemporal increase in sensory inputs to peripheral swallowing-related regions may reduce the
threshold for the sCPG to trigger the swallow response.

The acute activation of chemosensory ion channels by chemical stimuli applied to peripheral
swallowing-related regions may lead to the prolonged release of neurotransmitters in the sCPG.
Dense TRPV1 channel localization has been observed in the terminal ends of solitary tract afferents
located in the NTS [250–252]. The activation of solitary tract afferent nerves generates excitatory
postsynaptic currents in the postsynaptic neurons as a result of the release of excitatory neurotransmitters
(glutamate) [253–258]. The in vitro activation of TRPV1-positive solitary tract afferent nerves leads to
both synchronous and long-lasting asynchronous release of glutamate in the NTS, while activation
of TRPV1-negative afferents causes only the synchronous release of this neurotransmitter [254–256].
Additionally, the amount of asynchronous release of glutamate can be increased by increasing the
numbers of activated TRPV1-positive solitary tract afferent nerves [253,255]. The solitary tract contains
sensory afferent nerves that innervate peripheral swallowing-related regions, and glutamate is the
major excitatory neurotransmitter that triggers the swallowing [4,5,259]. A direct relationship has
not yet been established between the swallowing and this prolonged release of glutamate in the
NTS by the acute brief activation of TRPV1-positive solitary tract afferent nerves. However, the
topical application of a TRPV1 agonist to peripheral swallowing-related regions triggered repeated
swallowing reflexes in anesthetized animals in our study, suggesting that a possible relationship
exists [116]. In this previous study, a TRPV1 agonist (capsaicin) at an approximately 1000 times lower
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concentration than a TRPM8 agonist (menthol) evoked a large number of swallowing reflexes when
applied to SLN-innervated swallowing-related regions [116]. In human studies, the concentration
of TRPV1 agonists needed to improve swallowing function is also lower than that of TRPA1 or
TRPM8 agonists [48,118,119,139]. The prolonged asynchronous release of glutamate in the NTS by
the activation of TRPV1-positive afferent neurons may be the cause of the greater efficacy of TRPV1
agonists in facilitating swallowing in these human and animal studies. However, there may also be
other reasons. A study using biopsy tissues from human oropharyngeal regions reported significantly
more TRPV1 mRNA than TRPA1 mRNA [178]. Additionally, TRPV1 immunoreactivity was observed
mainly on epithelial cells and subepithelial nerve fibers, whereas TRPA1 immunoreactivity was mainly
observed on subepithelial fibroblast-like cells [178]. The presence of a greater number of TRPV1
channels on epithelial cells and sensory nerve fibers may also contribute to the better therapeutic
efficacy of TRPV1 agonists. The efficacy of activating sensory nerves can vary even among different
agonists of a single chemosensory ion channel. One study reported that the pungency of capsaicin was
higher than that of piperine and other TRPV1 agonists (e.g., resiniferatoxin and olvanil) when applied
to an animal’s eye (evaluated by the eye wipe test). The pungency was correlated with the lipophilicity
of the compounds and their ability to make calcium entry into the sensory neurons [260]. The onset of
depolarization by capsaicin in the sensory neurons was also fast, which may help capsaicin generate
more action potentials in neurons [260–262]. The activation of different subtypes of a channel by
different agonists can also be an underlying reason for the variable potency of different agonists [261].

An acute increase in sensory inputs in the peripheral swallowing-related regions can also increase
the activity in cortical and subcortical swallowing-related neuronal networks. Various cortical and
subcortical areas, including the primary sensorimotor cortex, supplementary motor areas, premotor
cortex, anterior cingulate cortex, insula, basal ganglia, and cerebellum, communicate with the brainstem
sCPG for the execution of swallowing [263–265]. The networks between these areas play an important
role in the integration of sensory inputs and motor execution [263–265] (Figure 1). In patients with
stroke, damage or disruption to swallowing-related neuronal networks in the cortical or subcortical
areas leads to difficulties in swallowing [266–268], thus indicating the importance of these areas in
swallowing. In humans, short trains of electrical stimulation to the pharyngeal region increase blood
oxygen level-dependent signals in the sensorimotor cortex [59,71] and increase the excitability of
the corticobulbar tracts [269,270]. Additionally, short-term pharyngeal electrical stimulation induces
long-term reorganization of the motor cortex in humans [269]. The application of acute chemical stimuli
to swallowing-related regions has also been reported to increase activity in cortical and subcortical
swallowing-related neuronal networks. During the ingestion of citric acid/lemon water (TRPV1 and
ASIC agonists) by healthy adults, there are increased blood oxygen level-dependent signals in cortical
areas, including the primary somatosensory cortex, anterior cingulate cortex, insula, supplementary
motor area, inferior frontal gyrus, and inferior parietal gyrus, as measured by functional magnetic
resonance imaging [242,243]. In addition, cortical motor evoked potentials from the submental
muscles during volitional swallowing in healthy adults are increased by a combination of lemon juice
stimulation on the tongue and nasal inhalation of lemon juice; this effect persists for at least 90 min
following stimuli administration [146]. In patients with oropharyngeal dysphagia associated with
aging, stroke, or neurodegenerative diseases, the latency to evoke a cortical response to pharyngeal
electrical stimulation is reduced during the acute ingestion of TRPA1 agonists [82]. Together, these
findings suggest that acute peripheral chemical stimulation can increase the activity of cortical and
subcortical swallowing-related neuronal networks, leading to the facilitation of swallowing function.
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Figure 1. Possible transduction mechanisms and neurophysiological pathways of improving swallowing
function via the actions of chemical stimuli applied to peripheral swallowing-related regions. Chemical
stimuli applied to peripheral swallowing-related regions can activate chemosensory ion channels
expressed in the epithelial cells and nerve fibers in these regions, causing the entry of ions into these
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structures. The epithelial cells may then release ATP, which can activate purinergic receptors expressed
on nearby intra- or sub-epithelial afferent nerve fibers, thus causing the entry of ions into the nerve
fibers, leading to the generation of action potentials. Action potentials in the nerve fibers may also
be generated by direct ion entry into the nerves through the activation of chemosensory ion channels
by chemical stimuli. The action potentials (sensory inputs) then travel via afferent pathways (the
V, VII, IX, and X nerves) to the DSG of the sCPG, as well as to the sensory cortex and subcortical
swallowing-related regions of the brain. Sensory inputs are then processed by the cortical and
subcortical swallowing-related neuronal networks and the sCPG to execute the motor drive for
swallowing. The motor output is conveyed to the peripheral swallowing-related muscles through
the motor nuclei of the V, VII, IX, X, XII, and C1–C2 nerves. ATP: adenosine triphosphate; DSG:
Dorsal swallowing group; SP: Substance P; sCPG: Swallowing central pattern generator; VSG: Ventral
swallowing group; V: Trigeminal nerve; VII: Facial nerve; IX: Glossopharyngeal nerve; X: Vagus nerve;
XII: Hypoglossal nerve; C1–C2: Cervical nerves 1–2. In the lower part of the figure: Yellow-colored solid
lines indicate afferent pathways. Blue-colored solid lines indicate efferent pathways. Black-colored
solid line indicates connection between sensory and motor cortex. Black-colored broken lines indicate
interconnection among the regions.

Chronic stimulation of peripheral swallowing-related regions by chemical stimuli can also lead
to plastic changes (neuronal reorganization) in cortical and subcortical swallowing-related neuronal
networks. One study reported an increase in the amplitudes and reduction of the latency to evoke
cortical sensorial event-related potentials in response to pharyngeal electrical stimulation in patients
chronically ingested nectar boluses containing a TRPV1 agonist [79]. Another study reported that
repeated citric acid ingestion in one siting gradually increased activity in the primary somatosensory
cortex and inferior parietal gyrus [242]. These findings suggest an improvement in the conduction and
integration of sensory information in cortical and subcortical swallowing-related neuronal networks
by chronic peripheral chemical stimuli.

Plasticity in synaptic transmission within the NTS (where the sCPG is located) by chronic
peripheral chemical stimulation may be possible, although its direct link to swallowing has not yet
been elucidated. Studies have reported short- and long-term plasticity in synaptic transmission within
the NTS and have related them to lung, airway, and arterial chemoreflexes [271,272]. For example,
an animal study reported that chronic exposure to low-oxygen (hypoxic) environments enhances the
information transfer between chemosensory afferents and NTS second-order neurons by increasing
spontaneous presynaptic neurotransmitter release [273]. A similar kind of plasticity may be possible in
NTS swallowing-related networks by chronic peripheral chemical sensory stimulation.

Chemosensory ion channels play integral roles in transducing chemical stimuli to electrical signals
in sensory afferent nerves (Figure 1). Chemical stimuli change the ionic permeability of the channels,
which can lead to the depolarization of sensory nerves. The expression of various chemosensory
ion channels (e.g., TRPs and ASICs) has been observed in peripheral swallowing-related regions,
including oral, nasal, pharyngeal, laryngeal, and esophageal regions. These ion channels are mainly
expressed on afferent nerve fibers and epithelial cells. The activation of chemo-sensing ion channels
can cause the entry of ions (e.g., Ca2+, Na+) into these structures, leading to their excitation (Figure 1).
Because of their superficial localization, epithelial cells are the first cells to be exposed to a stimulus.
Studies have reported increases in cations in epithelial cells when they are activated [223,274,275].
Additionally, epithelial cells can communicate with sensory afferents [223,274,275]. Upon activation
by chemical stimuli, epithelial cells may release neuroactive molecules (e.g., adenosine triphosphate
(ATP)) (Figure 1). Studies suggest that the epithelium, including the nasal, laryngeal, and esophageal
epithelium, can release ATP in response to various stimuli, including chemical stimuli [276–282].
Neuroactive molecules released from epithelial cells can act on the receptors for these molecules (e.g.,
purinergic receptors) that are expressed on nearby intra- or sub-epithelial afferent nerve fibers [223,274]
(Figure 1). Purinergic receptor expression has been observed in intra- and sub-epithelial afferent nerve
fibers in laryngopharyngeal and laryngeal regions [283,284]. These receptors are also expressed in the
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trigeminal, nodose, and petrosal ganglia [285–289]. Thus, afferent nerves can be excited both directly
and indirectly (through activation of epithelial cells) by chemical stimuli (Figure 1). Upon excitement,
the nerves can release neuropeptides (e.g., substance P and calcitonin gene-related peptide), which
may lead to further excitation of the afferent nerves from which they were released, as well as adjacent
nerves (Figure 1). Chemical stimuli in peripheral swallowing-related regions may also lead to increased
substance P levels in saliva. A randomized controlled trial reported that chronic supplementation of
a TRPV1 agonist (capsaicin) in aged patients with oropharyngeal dysphagia increased the salivary
substance P levels as well as improving swallowing function [113]. Increased salivary substance P
levels are also observed following electrical stimulation of the pharynx [290,291]. Increased substance
P levels caused by certain anti-hypertensive drugs (e.g., angiotensin-converting enzyme inhibitors
and beta-blockers) have been suggested to improve swallowing functions and reduce the risk of
pneumonia [292–296]. Increased substance P levels in peripheral swallowing-related regions can excite
the sensory afferent nerves supplying these regions. Studies have reported calcitonin gene-related
peptide- or substance P-expressing nerves fibers in peripheral swallowing-related regions, including
the tongue, pharynx, epiglottis, and larynx [297–301]. The excitation of afferent nerves by chemical
stimuli leads to the generation of action potentials (sensory inputs). These action potentials travel via
the sensory branches of different cranial nerves (V, VII, IX, X) that supply peripheral swallowing-related
regions, to the sCPG, sensory cortex, and subcortical swallowing-related regions (Figure 1) [4,5,16,39,54].
The sensory inputs are then integrated in the cortical and subcortical swallowing-related neuronal
networks and sCPG, to execute the motor drive for swallowing [4,5,16,39,54]. The motor drive
then causes sequence of activation and inhibition among more than 25 pairs of muscles involved in
swallowing [4,5,16].

The activation of chemosensory ion channels on afferent nerve fibers and epithelial cells is
also considered to be responsible for the sensations of irritation, warmth, coolness, and pungency
(termed chemesthesis) [223,225,302]. TRPs are highly involved in chemesthesis because they can
transduce a wide variety of chemical stimuli [223,225,302]. The trigeminal nerves carry the sensory
information to the sCPG and cerebral cortex when a chemical solution is applied to the oral cavity. The
projection of trigeminal primary afferents to the NTS has been reported in many studies [303–307]. As
the chemical solution passes through the pharyngeal, pharyngolaryngeal, and esophageal regions,
the glossopharyngeal and vagus nerves are excited and can carry the sensory information to the sCPG
and cerebral cortex [307–311].

Taste receptors are also activated along with chemosensory ion channels upon the application
of chemical stimuli to swallowing-related regions. Increased sensory inputs through the nerves
that carry taste from swallowing-related regions can excite the sCPG and cortical and subcortical
swallowing-related neuronal networks. Taste buds are present in the regions involved in swallowing,
including the oral, pharyngeal, and laryngeal regions [312–314]. Taste nerves connect to the
NTS [312–315]. The nerves that carry sensation from the laryngopharyngeal regions have been
observed to be less responsive to bitter- and sweet-tasting stimuli [316], but more responsive to
acids [120,122,316,317]. A range of animal and human studies have reported that sour chemical
stimuli (weak acids) facilitate swallowing behavior (Tables 2 and 3). Sour chemical stimuli have
also been found to activate various regions of cortical and subcortical swallowing-related neuronal
networks [145,146,242–244]. Although the transduction mechanisms of sour taste stimuli in taste
receptor cells have not been fully established, various channels, such as epithelial Na+ channels [318],
hyperpolarization-activated cyclic nucleotide-gated channels [319], ASICs [236], polycystic-kidney
disease-like (PKD) ion channels (PKD2L1 and PKD1L3) [320], resting K+ channels, Kir2.1 [321],
proton-selective ion channel (otopetrin 1) [322] have been implicated in sour taste detection [314].

The inhalation of volatile chemical compounds (e.g., black pepper oil, vanillin) has also been
observed to facilitate swallowing function [140,142]. Volatile chemical compounds may activate
chemosensory ion channels present in the epithelial cells and nerve fibers of the nasal cavity, which may
lead to the excitation of branches of the trigeminal nerves that supply the nasal cavity [159]. Volatile
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chemical compounds may also be released during the chewing of different kind of foods, and may pass
to the nasal cavity through the retronasal pathway. Olfactory receptors may also play a role in facilitating
swallowing. Increased sensory inputs through the olfactory nerves upon excitation by odor molecules
may lead to an increase in the excitability of cortical and subcortical swallowing-related neuronal
networks [140]. One study has reported increased insular cortex activity following nasal inhalation of
black pepper oil, which was associated with a facilitation of triggering of the swallowing [140]. Nasal
inhalation of black pepper oil may also directly activate TRPs present in the nasal, pharyngeal, and
laryngeal regions.

Carbonated liquid or boluses have been reported to influence swallowing function in healthy adults
and patients with oropharyngeal dysphagia [244,323–328]. Chemosensory ion channels can be activated
by carbonated liquids that contain dissolved CO2. Carbonated drinks elicit a sensation of tingling and
irritation when applied to the oral cavity [329]. Although there may also be some contributions by
mechanosensitive channels (activated by the bursting of tiny CO2 bubbles) [330,331], recent studies
have reported that the sensation elicited by CO2 is primarily of chemogenic origin [223,302,329,332–334].
During the ingestion of carbonated liquids, CO2 and water can be converted into carbonic acid by the
action of carbonic anhydrase enzymes [302,333,334]. In mammals, various isoforms of this enzyme are
observed in the cell membranes and cytosol of cells [335]. The converted carbonic acid can activate
ASICs, TRPV1, or other acid-activating channels. One study observed that many CO2-sensitive afferent
neurons from the cat cornea are also sensitive to a TRPV1 agonist (capsaicin); however, their activation is
not blocked by a TRPV1 antagonist (capsazepine), suggesting a TRPV1-independent mechanism [336].
Another study reported that the sensations evoked by carbonated water on the human tongue are
partially inhibited by TRPV1 desensitization, suggesting the partial involvement of TRPV1 [332]. In the
rat esophagus, CO2 perfusion-induced hyperemia can be inhibited by a TRPV1 antagonist (capsazepine),
thus supporting a TRPV1-mediated action [238]. CO2 is lipid soluble, and can therefore easily pass
through cell membranes. One study suggested that CO2 is converted to carbonic acid intracellularly,
where acidification subsequently activates TRPA1 [337]. This study observed that a subpopulation
of trigeminal neurons that express TRPA1 are activated by CO2. Additionally, CO2 activates TRPA1
channels, but not TRPV1 channels, that are heterologously expressed in human embryonic kidney
293 cells [337]. In addition to inducing sensations of tingling and irritation, carbonated liquids also
elicit a sour taste sensation [338]. Carbonated liquids are reported to activate taste receptor cells
that express the heteromeric PKD ion channels PKD2L1 and PKD1L3 (members of the TRPP family)
in mammals [320]. Chorda tympani nerve responses to CO2 and citric acid exposure are abolished
in genetically engineered mice in which neurotransmitter release from PKD2L1-expressing taste
receptor cells is blocked [338]. Carbonic anhydrase enzymes may also play a role in the sour taste
detection of carbonated liquids [338,339]. Expression of carbonic anhydrase 4 (an isoform of this
enzyme) has been observed on the extracellular surface of type III sour-sensing taste receptor cells that
co-express PKD2L1 [338,339], suggesting that this enzyme is involved in extracellular acidification.
Carbonated liquids may also activate other acid-sensing ion channels, such as ASICs and acid-sensitive
K+ channels [238,340,341]. In the rat esophagus, CO2 solution-induced hyperemia can also be inhibited
by an ASIC antagonist (amiloride), suggesting the activation of ASICs [238]. Another study observed
the involvement of tandem P-domain K+ channel 1 in increasing chemoafferent discharge from the
carotid sinus nerves caused by increased blood CO2 levels in mice [341]. In addition, the activation of
ASIC1a in the amygdala, caused by reduced pH arising from increased CO2 inhalation in mice, has
also been observed [340]. These findings suggest the possible involvement of various chemosensory
ion channels in the influence of carbonated liquids or boluses on swallowing function, although no
direct link has yet been established.

The unmyelinated nerves of swallowing-related regions may be more activated by the application
of chemical stimuli. In our animal studies, we observed that TRPV1, TRPM8, and ASIC3 are
largely expressed in unmyelinated afferent nerves from the SLN-innervating swallowing-related
regions [116]. The influence of unmyelinated nerves on facilitating the triggering of the swallowing is
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of particular interest. These nerves can be utilized to improve swallowing function in older patients
with oropharyngeal dysphagia, because it has been observed in human studies that the number of
myelinated nerves in the SLN are gradually reduced in the aging process [74,75].

4. Conclusions

Evidence from various studies suggests that the activation of chemosensory ion channels in
peripheral swallowing-related regions may be a potential strategy for the development of new active
pharmacological treatments of oropharyngeal dysphagia. The advantages of this strategy are that it does
not require specific costly equipment and is relatively cheap and easy to conduct, and patient compliance
may also be good. Patients are not required to swallow tablets or capsules; rather, the channel agonists
can be mixed with ingestible boluses. Because patients with oropharyngeal dysphagia often face
difficulties in swallowing tablets or capsules [36,342], this advantage may provide added benefits
in terms of patient compliance. In a considerable number of human studies, low concentrations of
natural agonists of some TRPs (e.g., capsaicin and piperine) have been mixed with ingestible boluses
to improve swallowing functions (Table 3). These natural agonists are phytochemicals found in
culinary herbs and spices, and are advantageous because they may not have serious side effects at
low concentrations. Many phytochemicals and active compounds of various botanicals can activate
TRPs [161], and therefore have the potential to facilitate swallowing. In future studies, phytochemicals
of various botanicals should be investigated in animal and human trials to investigate their potency,
specificity, and dose of action to improve swallowing functions. The TRP family has many members,
but only TRPV1, TRPA1, and TRPM8 channels have so far been targeted in studies of dysphagia
management. The expression of other TRPs (e.g., TRPV2, TRPV4, and TRPM3) has been reported
in swallowing-related regions and ganglia [167,343–345]. Thus, the functional roles of these TRPs
in swallowing processes need to be investigated in future research, as well as whether they can be
targeted for dysphagia management. Along with TRPs, other chemosensory ion channels (e.g., ASICs
and purinergic channels) can also be targeted. Highly potent synthetic agonists of these channels can
be considered in basic research; however, their safety needs to be assured before they can be used in
clinical trials.

To date, several mid-term clinical trials have provided evidence of the development of
neuroplasticity in swallowing-related neuronal networks following chronic supplementation of
some chemosensory ion channel agonists. These trials suggest that both short- and long-term
therapeutic benefits can be achieved using this strategy [79,114,119,136,137]. Chronic agonist
supplementation is well tolerated by patients and no adverse events related to the agonists have been
reported [79,114,137,139]. However, currently, the effect of long-term supplementation is unknown.
Therefore, whether efficacy is retained in long-term agonist supplementation, and the possible
development of adaptation or desensitization, needs to be studied in long-term randomized, controlled,
multi-center trials of large numbers of patients with oropharyngeal dysphagia. Understanding the
maintenance capability of neuroplasticity over time with short- or mid-term supplementation is also
important. Furthermore, patient phenotype is another important issue to be considered. The etiology of
oropharyngeal dysphagia and its accompanying health conditions can vary among patients; therefore,
same treatment strategy may not be effective for every patient phenotype [41,54,114]. Although patient
recruitment may be challenging, clinical trials with large numbers of patients with the same phenotypes
need to be conducted, to understand the effectiveness of different treatment strategies within the same
patient phenotype. Studies combining the peripheral chemosensory ion channel activation strategy
with other promising treatment strategies (e.g., cortical neurostimulation or pharyngeal electrical
stimulation) may also need to be conducted.

In summary, oropharyngeal dysphagia treatment strategies are gradually changing from
compensatory strategies toward strategies that promote the recovery of normal swallowing physiology
and provide neuroplasticity in swallowing-related neuronal networks. Targeting chemosensory ion
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channels in peripheral swallowing-related regions may be a promising pharmacological treatment
strategy for the future management of oropharyngeal dysphagia.
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