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Abstract

Background: Familial hemophagocytic lymphohistiocytosis (FHL) is a rare disease of infancy or early childhood. To clarify
the incidence and subtypes of FHL in Japan, we performed genetic and functional analyses of cytotoxic T lymphocytes
(CTLs) in Japanese patients with FHL.

Design and Methods: Among the Japanese children with hemophagocytic lymphohistiocytosis (HLH) registered at our
laboratory, those with more than one of the following findings were eligible for study entry under a diagnosis of FHL:
positive for known genetic mutations, a family history of HLH, and impaired CTL-mediated cytotoxicity. Mutations of the
newly identified causative gene for FHL5, STXBP2, and the cytotoxicity and degranulation activity of CTLs in FHL patients,
were analyzed.

Results: Among 31 FHL patients who satisfied the above criteria, PRF1 mutation was detected in 17 (FHL2) and UNC13D
mutation was in 10 (FHL3). In 2 other patients, 3 novel mutations of STXBP2 gene were confirmed (FHL5). Finally, the
remaining 2 were classified as having FHL with unknown genetic mutations. In all FHL patients, CTL-mediated cytotoxicity
was low or deficient, and degranulation activity was also low or absent except FHL2 patients. In 2 patients with unknown
genetic mutations, the cytotoxicity and degranulation activity of CTLs appeared to be deficient in one patient and
moderately impaired in the other.

Conclusions: FHL can be diagnosed and classified on the basis of CTL-mediated cytotoxicity, degranulation activity, and
genetic analysis. Based on the data obtained from functional analysis of CTLs, other unknown gene(s) responsible for FHL
remain to be identified.
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Introduction

Hemophagocytic lymphohistiocytosis (HLH) is characterized by

fever and hepatosplenomegaly associated with pancytopenia [1–3].

Histologically, infiltration of lymphocytes and histiocytes with

hemophagocytic activity is evident in the reticuloendothelial system,

bone marrow, and central nervous system [4]. HLH can be classified

as either primary or secondary [5]. Primary HLH, also known as

familial hemophagocytic lymphohistiocytosis (FHL), is inherited as an

autosomal recessive disorder that usually arises during infancy.

The pathogenesis of FHL has been considered to involve

dysfunction of cytotoxic T lymphocyte (CTL) activity, leading to

excessive production of inflammatory cytokines and macrophage

activation [6]. The genetic mutations responsible for FHL have

been identified by various methods. Linkage analysis has indicated

two possible loci: FHL1 (MIM 603552) in 9q21.3-22, and FHL2

(MIM 603553) in 10q21-22 [7,8]. In 1999, a mutation in the

perforin gene (PRF1) was identified as the cause of FHL2 [9–12].

Further genetic mutations of the Munc13-4 gene (UNC13D)

mapped to 17q25 (the cause of FHL3, MIM 608898) and the

syntaxin11 gene (STX11) mapped to 6q24 (the cause of FHL4,

MIM 603552) were subsequently identified [13–15]. These

mutations affect proteins involved in the transport and membrane

fusion, or exocytosis, of perforin contained in cytoplasmic
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granules. Recently, mutations of the Munc18-2 gene (STXBP2),

located in 19q, were detected as a cause of FHL5 [16,17].

Munc18-2 regulates intracellular trafficking and controls the

soluble N-ethylmaleimide-sensitive fusion factor attachment pro-

tein receptor (SNARE) complex.

The molecular mechanisms underlying vesicular membrane

trafficking and regulation of exocytosis have been clarified in recent

years. The final step of vesicle transport is mediated by a bridge

between a vesicle and its target membrane through formation of a

ternary complex between a vesicle-SNARE (v-SNARE), such as a

VAMP, and a target membrane-SNARE (t-SNARE), such as a

syntaxin11 or a member of SNAP23/25/29 [18]. The SNARE

complex is composed of three molecules: VAMP, syntaxin and

SNAP23/25/29. Syntaxin11, in association with SNAP23, localizes

to the endosome and trans-Golgi network [19]; however, the precise

biological functions of the SNARE system are still poorly

understood. Recent evidence suggests that members of the SNARE

family mediate fusion of cytotoxic granules with the surface of

CTLs. Syntaxin11, SNAP23 and VAMP7 are prime candidates for

functioning as SNAREs in this fusion event [20].

It has been considered that clarification of the molecular

abnormalities in FHL might shed light on the mechanisms of

CTL-mediated cytotoxicity. Accordingly, we have been studying

the functional abnormalities of CTLs in Japanese patients with FHL

[21]. Our previous studies have shown that the FHL2 and FHL3

subtypes account for 20–25% of all FHL cases, respectively,

whereas no FHL4 subtype exists; therefore, 45–50% of FHL cases

in Japan harbor still unknown genetic mutations [21,22]. However,

secondary HLH could be involved in patients with unknown genetic

mutations, because both FHL and secondary HLH share similar

clinical and laboratory characteristics. Therefore, in the present

study aimed at clarifying the incidence and subtypes of FHL in

Japanese children by genetic and functional analyses of CTLs, only

patients positive for known genetic mutations, a positive family

history of HLH, or impaired natural killer (NK)/CTL-mediated

cytotoxicity were diagnosed definitively as having FHL.

Materials and Methods

Patients
A total of 87 Japanese children aged ,15 years diagnosed as

having HLH based on the diagnostic criteria of the Histiocyte

Society [23] were registered at our laboratory between January

1994 and December 2009. Among them, 40 were excluded from

analysis because they were diagnosed as having secondary HLH, or

their parents did not provide permission for use of clinical samples.

None of the patients had Chediak-Higashi syndrome, Griscelli

syndrome, or Hermansky-Pudlak syndrome type 2, based on

clinical and laboratory findings, including albinism or the presence

of gigantic granules in lymphocytes or granulocytes. A final total of

31 patients, who met the diagnostic criteria for FHL, and for whom

documented informed consent had been obtained in accordance

with the Declaration of Helsinki, were entered into the study.

Genetic analysis of the STXBP2 gene
For the detection of STXBP2 mutations, genomic DNA was

isolated from a T-cell line established from each patient. Genomic

DNA (5 ng) was subjected to PCR using the primers listed in

Table S1. These primer sets were designed to amplify 19 exons

including the 59-untranslated region and the coding regions with

the exon-intron boundaries of STXBP2. The PCR products were

treated with ExoSAP-IT (GE Healthcare Bio-Sciences, Little

Chalfont, England) by incubation at 37uC for 15 minutes to

inactivate the free primers and dNTPs, and then subjected to

sequencing reactions using forward or reverse primers and

BigDyeH Terminator v3.1 (Applied Biosystems, Foster City, CA).

The DNA fragments were purified using Magnesil (Promega,

Madison, WI), and sequencing was carried out with an ABI 3730

Genetic Analyzer (Applied Biosystems). Sample sequences were

aligned to reference sequences obtained from the UCSC Genome

Bioinformatics website (http://genome.ucsc.edu/index.html) us-

ing the ClustalW program in order to identify nucleotide changes.

Mutations were numbered according to GenBank Reference

Sequence NM_001127396.1; additionally, the A of the ATG

initiator codon was defined as nucleotide +1. To identify splicing

variants generated by c.88-1g.a mutation of STXBP2, total RNA

was extracted from each patient’s T-cell line and reverse

transcriptase PCR (RT-PCR) was performed using the forward

primer on exon 1 (59-TTGGGACACACCCGGAAG-39) and the

reverse primer on exon 5 (59-AAGAAGATATGGGCCGCTTT-

39). The PCR products were directly sequenced using the forward

primer, as described above.

Western blot analysis of MUNC18-2 protein
Expression of Munc18-2 protein encoded by STXBP2 in T-cell

lines established from FHL patients and a healthy individual was

analyzed by Western blotting. CTLs were harvested after 5 days of

stimulation with allogeneic LCL cells. Cell lysates were then

prepared by extraction with 1% NP-40, and the extracts (10 mg

per lane) were analyzed by Western blotting with anti-Munc18-2

rabbit polyclonal antibody (LifeSpan BioSciences, Seattle, WA).

Horseradish peroxidase-labeled anti-rabbit IgG polyclonal anti-

body was used as the secondary antibody with detection by

enhanced chemiluminescence (Amersham Biosciences, Buckin-

ghamshire, UK).

Establishment of alloantigen-specific CTL lines
Alloantigen-specific CD8+ CTL lines were generated as

described previously [24,25]. Briefly, peripheral blood mononu-

clear cells (PBMCs) were obtained from FHL patients and

unrelated healthy individuals. These cells were co-cultured with

a mitomycin C (MMC)-treated B-lymphoblastoid cell line (B-LCL)

established from an HLA-mismatched individual (KI-LCL). Using

cell-isolation immunomagnetic beads (MACS beads) (Miltenyi

Biotec, Auburn, CA), CD8+ T lymphocytes were isolated from

PBMCs that had been stimulated with KI-LCL cells for 6 days.

CD8+ T lymphocytes, cultured in RPMI 1640 medium supple-

mented with 10% human serum and 10 IU/ml interleukin-2

(Roche, Mannheim, Germany), were stimulated with MMC-

treated KI-LCL cells 3 times at 1-week intervals; subsequently,

these lymphocytes were used as CD8+ alloantigen-specific CTL

lines. The alloantigen specificity of the CTL lines was determined

by assay of interferon-c (IFN-c) production in response to

stimulation with KI-LCL cells, as described previously [24,25].

Briefly, 16105 T lymphocytes were co-cultured with or without

16105 MMC-treated B-LCL cells in 0.2 ml of RPMI 1640

medium supplemented with 10% fetal calf serum (FCS) in a flat-

bottomed 96-well plate. In some experiments, an anti-HLA class I

monoclonal antibody (w6/32; American Type Culture Collection,

Manassas, VA) was added to wells at an optimal concentration.

After 24 hours, the supernatant was collected from each well and

assayed for production of IFN-c using an enzyme-linked

immunosorbent assay (ELISA; ENDOGEN, Woburn, MA).

Analysis of CTL-mediated cytotoxicity
The cytotoxic activity of CTLs was measured by a standard

51Cr-release assay, as described previously [21]. Briefly, alloanti-

gen-specific CTLs were incubated with 51Cr-labeled allogeneic
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KI-LCL cells or TA-LCL cells for 5 hours at an effector:target cell

ratio (E/T) of 2.5:1, 5:1, and 10:1. Target cells were also added to

wells containing medium alone and to wells containing 0.2%

Triton X-100 to determine the spontaneous and maximal levels of
51Cr release, respectively. After 5 hours, 0.1 ml of supernatant was

collected from each well. The percentage of specific 51Cr release

was calculated as (cpm experimental release - cpm spontaneous

release)/(cpm maximal release - cpm spontaneous release) 6100,

where cpm indicates counts per minute.

Degranulation analysis by flow cytometry
Degranulation activity was analyzed by flow cytometry using

anti-CD107a antibody (BioLegend, San Diego, CA) as described

previously [16,17]. Briefly, 16105 alloantigen-specific CTLs were

co-cultured with or without 16105 KI-LCL cells in 0.2 ml of

RPMI 1640 medium supplemented with 10% FCS, and then

FITC-conjugated anti-CD107a antibody was added to each well.

After 3 hours, incubated cells were collected and analyzed by flow

cytometry using PE-conjugated anti-CD8 antibody (BD Biosci-

ences, Franklin Lakes, NJ). For analysis of degranulation, the

relative log fluorescence of live cells was measured using a FACS

flow cytometer (BD Biosciences).

The immunofluorescence intensities of CTLs cultured with and

without alloantigen stimulation were measured, and the mean

fluorescence index (MFI) was calculated as (mean value for

stimulated sample – mean value for non-stimulated sample)/mean

value for non-stimulated sample.

Results

Genetic subtypes of FHL patients
Among the 31 patients with FHL, 17 appeared to have PRF1

mutation and lacked expression of perforin protein as measured by

flow cytometry and Western blotting, whereas 10 patients

appeared to have UNC13D mutation and lacked Munc13-4

protein expression as measured by Western blotting. No STX11

Table 1. Genetic mutations of PRF1, UNC13D, STX11, and STXBP2 identified in 31 patients.

UPN Age/Sex PRF1 UNC13D STX11 STXBP2

1 3 mo/F 1090.91delCT/1090.91delCT - - -

2 2 mo/F 1090.91delCT/207delC - - -

3 1 mo/F 1090.91delCT/207delC - - -

4 11 y/F 949G.A (M)/1A.G (N) - - -

5 1 mo/F 1083delG/1491T.A (N) - - -

6 4 mo/F 1289insG/1289insG - - -

7 1 mo/F 1349C.T (M)/1349C.T - - -

8 2 mo/F 1090.91delCT/1246C.T (N) - - -

9 12 y/F 1090.91delCT/1228C.T (M) - - -

10 7 y/F 1349C.T (M)/1349C.T - - -

11 2 mo/M 207delC/1122G.A (M) - - -

12 1 mo/M 1090.91delCT/NT - - -

13 4 mo/F 757G.A (M), 253G.A (M)/853-855delAAG - - -

14 1 mo/F 160C.T (M), 272C.T (M)/853-855delAAG - - -

15 3 mo/F 853-855delAAG/1491T.A (N) - - -

16 5 mo/M 1090-1091delCT/1168C.T (N) - - -

17 1 y/M 1090-1091delCT/1349C.T (M) - - -

18 1 mo/M - 640C.T (M)/- - -

19 6 mo/F - 1596+1g.c (S)/1596+1g.c (S) - -

20 4 mo/F - 766C.T (M)/1545-2a.g (S) - -

21 2 mo/M - 640C.T (M)/1596+1g.c (S) - -

22 5 mo/M - 1596+1g.c (S)/1723insA - -

23 5 mo/M - 1596+1g.c (S)/754-1g.c (S) - -

24 6 mo/M - 754-1g.c (S)/754-1g.c (S) - -

25 11 mo/M - 1596+1g.c (S)/322-1g.a (S) - -

26 1 mo/M - 754-1g.c (S)/2163G.A (N) - -

27 2 mo/F - 322-1g.a (S)/754-1g.c (S) - -

28 2 mo/M - - - 292-294delGCG/88-1g.a

29 2 mo/M - - - 1243-1246delAGTG/1243-
1246delAGTG

30 0 day/M - - - -

31 0 day/F - - - -

UPN, unique patient number; M, male; F, female; -, not detected, NT, not tested.
In parenthesis, M means missense mutation, N means nonsense mutation, and S means splicing abnormality.
doi:10.1371/journal.pone.0014173.t001
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mutations were detected in any of the patients (Table 1). Most of

the data have been reported elsewhere [11,12,14,21,22,26]. For

the remaining 4 patients (UPN28-31), STXBP2 mutation and CTL

function were further analyzed.

STXBP2 analysis and Munc18-2 expression in 4 patients
with non-FHL2/3/4

Genetic analysis of STXBP2 was performed in 4 patients with

non-FHL2/3/4 (UPN28-31). As shown in Fig. 1A, a compound

heterozygous STXBP2 mutation with 292_294delGCG and 88-

1g.a was detected in UPN28, and a homozygous mutation with

1243_1246delAGTG appeared to be present in UPN29. These 3

mutations of STXBP2 are all novel. RT-PCR analysis showed that

2 aberrant cDNAs were produced in UPN28 (Fig. 1B). Sequence

analysis revealed that the large fragment 88-1g.a mutation

caused insertion of the entire intron 2 (243 bp) into the cDNA,

Figure 1. Identification of STXBP2 mutations. (A) Sequencing analysis of 4 patients with non-FHL2/3/4 and detection of 3 novel mutations in 2 of
them: a compound heterozygous mutation of 292_294delGCG resulting in Ala98del at exon 5 (upper panel) and 88-1g.a in intron 2 (lower panel) in
one patient (UPN28), and a homozygous mutation of 1243-1246AGTG resulting in Ser415ArgfsX6 at exon 15 in the other (UPN29). (B) Expression of
STXBP2 cDNA in UPN28 with 88-1g.a mutation. Schematic representation of positions of the primers for RT-PCR and 88-1g.a mutation is shown in
the upper panel, and for RT-PCR products from 88-1G.A mutation of STXBP2 in the lower panel. The expected 350-bp product of STXBP2 exons 1–5
was detected in a healthy control individual, whereas extra larger- and smaller-sized products were detected in UPN28 (arrow). (C) Sequence analysis
revealed that the 88-1g.a mutation retained the entire intron 2 (243 bp) in the cDNA. This insertion is predicted to cause addition of 81 amino acids
to the N-terminal region of the large Sec1 domain of the Munc18-2 protein (upper panel). Sequence analysis of the smaller fragment revealed that
the mutation caused skipping of exon 3 (82 bp), resulting in a frame shift and translational arrest after an additional 20 amino acids (lower panel).
doi:10.1371/journal.pone.0014173.g001

Figure 2. Western blot analysis of Munc18-2 protein expres-
sion. Expression of Munc18-2 protein in each CD8+ T-cell line that had
been stimulated with allogeneic B-LCL cells was analyzed by Western
blotting using anti-Munc18-2 antibody. Munc18-2 protein was abun-
dantly detected at 67 kDa in CTL lines established from healthy control
individuals and 2 non-FHL2/3/4/5 patients (UPN30, and UPN31).
doi:10.1371/journal.pone.0014173.g002

Subtypes of FHL
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while in the small fragment the mutation caused skipping of exon 3

(82 bp), resulting in a frame shift and translational arrest after an

additional 20 amino acids (Fig. 1C).

We analyzed the expression of Munc18-2 protein in CTLs of

these 4 patients using Western blotting. As shown in Fig. 2, the

Munc18-2 protein band at approximately 67 kDa was scarcely

detectable in 2 FHL patients with STXBP2 mutation (UPN28,

UPN29). On the basis of these data, these 2 were diagnosed as

having FHL5. On the other hand, Munc18-2 protein expression

was clearly detected in CTL lines established from the remaining 2

patients (UPN30, UPN31); therefore, these patients were consid-

ered to have FHL with unknown genetic mutations.

Functional analysis of CTL lines established from FHL
patients

Alloantigen-specific CD8+ CTL lines were generated from

healthy individuals, and from patients with FHL2 (UPN8), FHL3

(UPN23), and non-FHL2/3/4 (UPN28-31). The antigen specific-

ities of the T-cell lines were examined by measuring their IFN-c
production in response to stimulation with allogeneic LCL cells. As

shown in Fig. 3, all alloantigen-specific CD8+ T-cell lines generated

by stimulation with allogeneic KI-LCL produced large amounts of

IFN-c in response to stimulation with KI-LCL cells, but not with

TA-LCL cells, which share no HLA antigens with KI-LCL. These

results indicated that T lymphocytes of FHL patients can respond

normally to antigen stimulation and produce inflammatory

cytokines. Their IFN-c production was significantly abrogated by

anti-HLA class I antibody, indicating that the responses of these T-

cell lines were alloantigen-specific and HLA class I-restricted.

Cytotoxic activity mediated by CD8+ alloantigen-specific T-cell

lines generated from healthy individuals (n = 24) and FHL patients

are measured, and the representative data are shown in Fig. 4.

Antigen-specific cytotoxicity mediated by CTLs from FHL2

patients with PRF1 nonsense mutation was entirely deficient,

whereas that of CTLs from FHL3 patients with UNC13D splicing

abnormality was low but still detectable, as we have reported

Figure 3. IFN-c production by alloantigen-specific CD8+ T cell lines. CD8+ T-cell lines were generated from the PBMCs of the patients with
FHL and healthy individuals as controls by stimulation with allogeneic B-LCL (KI-LCL) cells. Responder cells were co-cultured with or without KI-LCL or
TA-LCL, which shared no HLA antigens with KI-LCL, in the presence or absence of anti-HLA class I monoclonal antibody for 24 hours. IFN-c production
was measured by ELISA. All FHL patients showed normal production of IFN-c. The HLA type of KI-LCL is HLA-A01/30, B13/17, Cw6/-, DRB1*0701/
*0701, and that of TA-LCL is HLA-A24/26, B62/-, Cw4/w9, DRB1*0405/*0901. NS indicates PRF1 nonsense mutation.
doi:10.1371/journal.pone.0014173.g003
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previously [14,21]. Cytotoxicity mediated by CTLs generated

from 2 FHL5 patients also appeared to be low but still detectable.

However, the cytotoxicity from 2 patients with unknown genetic

mutations was variable; moderately impaired in one (UPN30), and

deficient in the other (UPN31).

Degranulation analysis of CTL lines established from FHL
patients

Degranulation activity mediated by CTLs established from

healthy individuals and FHL patients are measured, and the

representative data are shown in Fig. 5. The fluorescence

intensities of CTLs cultured with and without alloantigen

stimulation were compared by calculating MFI. Both control

CTLs generated from healthy individuals and perforin-deficient

(FHL2) CTLs showed a marked increase of fluorescence intensity

following alloantigen stimulation, indicating that CTLs with

perforin deficiency had no impairment of degranulation activity;

MFI of CTLs generated from healthy individuals (n = 4) and the

patient with perforin deficiency was 4.1961.15 (mean 6 SD) and

5.90, respectively. On the other hand, the increase of fluorescence

intensity in Munc13-4-deficient (FHL3) CTLs following alloanti-

gen stimulation was relatively slight; i.e. MFI was 1.81. In repeated

experiments, similar degrees of degranulation were detected using

CTLs established from other FHL2 or FHL3 patients. CTLs

established from 2 FHL5 patients also showed a slight but

significant change in fluorescence intensity (MFIs was 1.35).

Notably, the increase of fluorescence intensity by CTLs established

from 2 patients with unknown genetic mutations was also variable;

a slight but significant change in UPN30 (MFI was 1.53), while

completely undetectable even after alloantigen stimulation in

UPN31 (MFI was 0.16).

Clinical and laboratory findings of 2 FHL patients with
unknown genetic mutations

Clinical and laboratory findings of 2 FHL patients with

unknown genetic mutations were analyzed. Both had splenomeg-

aly, deficient NK cell activity and hemophagocytosis in bone

marrow, and had shown onset of the disease at birth. One patient

(UPN30) also showed hydrocephalus as CNS involvement. They

had a positive family history of HLH, i.e. their sibling had shown

severe hemophagocytosis and died in infancy. Both received

immunochemotherapy with or without stem cell transplantation,

but three subsequently died due to disease progression or

complications related to the treatment.

Discussion

We have been performing a continuous nationwide survey of

HLH in Japan [27]. Among 87 young patients with HLH

registered so far, 31 were diagnosed as having FHL. Among these

Figure 4. Cytotoxicity of alloantigen-specific CD8+ T-cell lines. CD8+ T-cell lines were generated from the PBMCs of the patients with FHL and
24 healthy individuals as controls by stimulation with allogeneic B-LCL (KI-LCL) cells. Their cytotoxicity was determined against allogeneic KI-LCL (clear
circles) and against allogeneic TA-LCL (solid circles). All FHL patients showed various degrees of impairment of CTL-mediated cytotoxicity against
allogeneic B-LCLs. NS indicates PRF1 nonsense mutation.
doi:10.1371/journal.pone.0014173.g004

Subtypes of FHL
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31 patients, 17 and 10 patients appeared to have FHL2 and

FHL3, respectively, while no FHL4 patient was detected. In the

present study, we carried out precise genetic characterizations of 4

non-FHL2/3/4 patients. Among these patients, 2 showed

STXBP2 mutations and were diagnosed as having FHL5. These

findings demonstrate that the actual incidence of FHL2 and FHL3

in Japan is approximately 55% and 32%, respectively. FHL5 with

STXBP2 mutation accounts for only 6%, and no FHL4 patients

have yet been found in Japan. Since more than 80% of FHL

patients in Japan have been registered by our laboratory, these

findings reflect the actual epidemiology of FHL in Japan. In a

cohort study using samples from West Asian countries, mutations

of 3 known genes (PRF1, UNC13D, STX11) were identified in 80%

of FHL patients, while STXPB2 mutation accounted for 10% and

the causes remained unknown for the remaining 10% of FHL

cases [17]. These data suggest the presence of other gene

deficiencies responsible for FHL in various ethnic groups.

STXBP2 is a newly identified causative gene for FHL5. zur

Stadt et al. reported 12 patients with 9 kinds of STXBP2 mutations

from Turkey, Saudi Arabia, and Central Europe [16]. Cote et al.

also reported 9 patients from Turkey, Saudi Arabia and Palestine

[17]. Among STXBP2 mutations in FHL5, 1430C.T resulting in

P477L and 1247-1g.c resulting in a splicing effect are the most

frequent mutations in these countries [16,17]. The association

between phenotype and genotype in FHL5 is still obscure. The

former report described that patients with mildly impaired CD107

expression or residual CTL activity showed late onset [16]. The

latter report mentioned that most of the FHL5 patients with

1430C.T showed very early onset and rapid death, whereas all of

the patients with splice site mutation developed their symptoms

several years later [17]. In the present study, 3 novel mutations of

STXBP2 were identified in 2 Japanese patients. Both of these

patients showed onset in early infancy and the cytotoxic activities

of their CTLs and NK cells were low. Further accumulation of

FHL5 patients should make it possible to clarify the relationship

between phenotype and genotype in this disease.

Bryceson et al. [28] demonstrated that syntaxin11 deficiency is

predominantly manifested in the context of NK, rather than CD8+

CTLs. Two recent studies [16,17] have shown that Munc18-2

deficiency is strongly manifested at the level of naive NK cells,

whereas relatively milder defects are evident in CD8+ CTLs.

These studies suggest that NK deficiency is the likely trigger for at

least two types of FHL (FHL4 and FHL5), while perforin and

Munc13-4 deficiencies affect both cell types and thus the trigger

cannot be discriminated. However, the number and cytotoxic

function of NK cells vary depending on a number of factors,

Figure 5. CD107a expression of alloantigen-specific CD8+ T-cell lines. Flow cytometric analysis of CD107a expression was performed using
CD8+ T-cell lines generated from a healthy individual and FHL patients, as detailed in the text. Left panel of each column shows CD107a expression in
CD8+ T cells without any stimulation. Right panel of each column shows CD107a expression in CD8+ T cells stimulated with KI-LCL cells.
doi:10.1371/journal.pone.0014173.g005
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including the nature of the disease, infections, and type of

treatment, as indicated by Bryceson et al. [28]. Therefore

measurements of NK cell activity using whole PBMCs may not

accurately reflect the immune status of the patients [21]. We

therefore established alloantigen-specific CTL lines from patients

with the different subtypes of FHL and compared their cytotoxic

activities. Consequently, CTL lines generated from 2 FHL5

patients showed markedly decreased but detectable cytotoxicity

with a level similar to that in FHL3. In the SNARE systems,

perforin is critical for granzyme delivery, and Munc13-4 is

essential for priming of cytotoxic granules docked at the

immunologic synapse, whereas syntaxin11 regulates membrane

fusion events [29,30]. Via interaction with syntaxins, Munc18

proteins are required for secretory vesicle docking and fusion with

the immunologic synapse [31,32]. A recent report has indicated

that docked vesicles are primed for fusion by Munc13-4 when

Munc18-2 clasps across the zippering 4-helix-assembled trans-

SNARE complex [33]. These findings suggest that at the

immunologic synapse of CTLs, the Munc18-2/syntaxin11 com-

plex could play a role similar to that of Munc13-4 by regulating

granule docking and the initiation of SNARE formation prior to

the priming step. Our data indicating that the cytotoxic activities

of CTLs and NK cells in FHL3 and FHL5 are impaired to a

similar degree appear to support this hypothesis.

Interestingly, the degrees of cytotoxic activity mediated by CTL

lines generated from 2 patients with unknown genetic mutations

appeared to be significantly different, i.e. moderately decreased in

one and undetectable in the other, as is the case for PRF1 nonsense

mutation [21]. A large amount of IFN-c was produced by both of

the CTL lines generated from these patients after stimulation with

allogeneic LCL cells, and this cytokine production was abrogated

by anti-HLA class I antibody, indicating that the antigen-

recognition system mediated via the T-cell receptor/CD3 complex

was intact in both cases. These data also indicate that

immunological synapses are normally formed between CTLs from

these FHL patients and target cells.

A recent study has indicated that CD107a expression mediated

by antigen stimulation is a good candidate marker for the cytotoxic

activity of CTLs and NK cells [34]. The lysosome-associated

membrane protein-1, also known as CD107a, is usually located in

cytotoxic granules in CTLs and NK cells. During the cytotoxic

activity of CTLs and NK cells, these molecules are transported to

the cell surface. Therefore, the level of CD107a expression is well

correlated with degranulation activity in CTLs and NK cells.

Indeed, activated NK cells derived from patients with FHL3

showed a sharply lower frequency and MFI of CD107a staining

compared with healthy control subjects [35]. CD107a assay is

effective tool for rapid identification of patients with FHL3 and

other impaired degranulation. Furthermore, it has been reported

previously that degranulation in Munc18-2-deficient CTLs is

significantly impaired [16], and that transfection of these cells with

the wild-type STXBP2 gene results in recovery of the degranula-

tion activity [17]. In our present study, determination of CD107a

expression by flow cytometry indicated that Munc18-2-deficient

CTLs also showed a significantly reduced level of degranulation

activity. Similarly to cytotoxic activity, the degree of degranulation

mediated by CTL lines generated from 2 patients with unknown

genetic mutations appeared to differ significantly. That is,

degranulation activity was moderately impaired in one patient

and severely impaired in the other. These data also strongly

suggest the presence of two types of FHL with unknown genetic

mutation.

In summary, we have examined the genetic and immunological

abnormalities in Japanese patients with different FHL subtypes,

and our data have clarified the frequency of each FHL subtype in

Japan, as well as strongly suggesting that unknown FHL subtypes

are present. Further investigations to identify the molecular defects

in these FHL patients will be required to clarify the pathogenesis of

FHL. It is also expected that further progress in the study of FHL

may clarify the detailed mechanisms of CTL- and NK cell-

mediated cytotoxicity.

Supporting Information

Table S1 Primer sets for mutation screening of STXBP2.
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