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Complex time series data exists widely in actual systems, and its forecasting has great practical significance. Simultaneously, the
classical linear model cannot obtain satisfactory performance due to nonlinearity and multicomponent characteristics. Based on
the data-driven mechanism, this paper proposes a deep learning method coupled with Bayesian optimization based on wavelet
decomposition to model the time series data and forecasting its trend. Firstly, the data is decomposed by wavelet transform to
reduce the complexity of the time series data. ,e Gated Recurrent Unit (GRU) network is trained as a submodel for each
decomposition component. ,e hyperparameters of wavelet decomposition and each submodel are optimized with Bayesian
sequence model-based optimization (SMBO) to develop the modeling accuracy. Finally, the results of all submodels are added to
obtain forecasting results. ,e PM2.5 data collected by the US Air Quality Monitoring Station is used for experiments. By
comparing with other networks, it can be found that the proposed method outperforms well in the multisteps forecasting task for
the complex time series.

1. Introduction

Usually, the data we collect in the existing system is complex
time-series data, such as air pollution data [1], i.e., PM2.5,
PM10, and O3. ,e forecasting of these pollution content is
essential for air quality control. As to the PM2.5 forecasting
problem, accurate multisteps forecasting is more meaningful
because it can provide faster response time to control and
manage air quality. ,e data at each moment is the value of
the last moment that changes over time and is affected by
factors such as weather, industrial production, and people’s
lives. Due to the multicomponent and nonlinearity of the
data, the forecasting research is still an open issue, especially
for multistep forecasting.

,e classical method, probability methods [2], is limited
by the prior given knowledge. If the assumedmodel does not
match the actual data distribution, it often fails to provide a
correct forecasting result. ,erefore, mechanism-based
modeling is challenging for PM2.5 data.

On the other hand, the data-driven learning method [3] is
more adaptable for modeling based on the historical data
without requiring prior knowledge. ,erefore, data-driven
learning methods, such as the deep learning method, perform
better in nonlinear complex dynamic forecasting tasks. ,us,
in recent years, data-driven modeling methods have shown
significant advantages in PM2.5 modeling and forecasting.

However, due to the complexity, limited amount, and
the data’s incompleteness, we found that the deep learning
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network forecasting results still need to be improved, es-
pecially for multistep prediction. ,e data-driven learning
methods are often implemented through the iterative
schemes [4–8] and the recursive schemes [9–13], including
the recursive least squares algorithms [14–18] and the
gradient-based search algorithms [19–23].

In this paper, a data-driven model is proposed to the
multisteps ahead forecast. Section 2 discusses the related
work of time series modeling and forecasting and analyzes
probability and learning method’s advantages and disad-
vantages. ,en, Section 3 gives the proposed model’s details,
including the decomposition by wavelet transform, the
Gated Recurrent Unit (GRU) as a submodel, and Bayesian
optimization for the hyperparameters. As a practical ex-
ample, the experiment based on the Beijing PM2.5 is con-
ducted to improve the proposed model.,e results of 2 cases
are shown in Section 4. Finally, the conclusions are discussed
in Section 5.

2. Related Works

Probability methods [24, 25], such as ARIMA, dynamic
regression model, and the autoregressive threshold model,
are quite challenging to get accurate model due to the
difficulty of obtaining the prior knowledge required. While
learning methods, such as the linear regression forecasting
model [26–28], can get the hidden relationship between the
data through adaptive learning.

With the depth of time series forecasting research, the
shallow network based on artificial neural network (ANN)
has been used to solve the nonlinear time series forecasting
problem [29–31]. Ye et al. proposed a self-applicable BP
neural network, which established the relationship between
the aerosol optical depth and the PM2.5 data [32]. Bai et al.
gave a method combined with the autoregressive network
and BP network for nonlinear data modeling [33]. However,
due to the limitation of the network depth, the network
cannot accurately model the complex data for accurate
multisteps forecasting.

Recently, the emergence of recurrent neural network
(RNN) and its higher accuracy in nonlinear time series
forecasting tasks have attracted many researchers’ attention.
For example, the RNNs are used for the forecasting of PM10
and PM2.5 [34]. However, due to the RNN network
structure’s limitations, the effect will be worse for multistep
forecasting. ,e emergence of long short-term memory
(LSTM) solves the multisteps dependency problem of RNN
[35, 36]. Unlike the LSTM, the Gated Recurrent Unit (GRU)
further simplifies the composition of the LSTM while
maintaining the accuracy of the forecasting [37]. For these
deep networks, the hyperparameters determine the per-
formance of the model. However, the hyperparameters se-
lected randomly have resulted in lower performance for
modeling.

On the other hand, due to the complex dynamical
nonlinearity and multiple components with different fre-
quencies [38], deep learning networks’ PM2.5 forecasting
performance still needs to be improved, especially multistep

forecasting. ,erefore, the data decomposition is added to
the forecasting model, and it turns out that this method can
indeed improve the accuracy of forecasting.

As one of the decomposition methods, seasonal trend
decomposition procedure based on loess (STL) [39–41] can
obtain trend, seasonal, and residual components of complex
data. Similarly, empirical mode decomposition (EMD)
[42–44] is also often used to analyze time-series data with
higher complexity. EMD decomposes a time series into
multiple mode functions (IMF), which reflect the frequency
differences of the original data. In our previous research
[45], we propose a multistep forecasting model for atmo-
spheric PM2.5 concentration based on EMD decomposition.
,e obtained IMF components were divided into three
groups according to their frequency characteristics. Also, the
integrated empirical mode decomposition (EEMD) method
is used very frequently. It is an improvement of the EMD
method. ,e modal aliasing problem of the EMD method is
solved. Similar to the EMD method, it decomposes the time
series into multimodal functions. Nguyen et al. proposed a
self-enhancement mechanism based on the EEMD method
[46], which decomposes the time series into multiple in-
trinsic mode functions and divides the intrinsic mode into a
strong and a weak correlation part by K-means. ,ese two
parts are used for multitask learning and multiview learning,
respectively. Finally, the result is obtained through fusion.

,e decomposition methods have been used in many
areas, such as signal processing and system identification.
Many state estimation and parameter identification algo-
rithms have been proposed for linear systems [47–49], bi-
linear systems [50–55], and nonlinear systems [56–58]; its
basic idea is the hierarchical identification principle. ,ese
methods can be used for modeling and prediction of time
series. Unlike the above decomposition methods, wavelet
decomposition [59] can choose an appropriate mother
wavelet function to decompose one-dimensional informa-
tion into multidimensional information. It can set the
number of decomposition layers, which means that the
number of components is controllable. Wavelet decompo-
sition has an excellent performance in processing multiscale
information and can transform the signal into two parts: low
frequency and high frequency. Each frequency is indepen-
dent of the other. Cheng et al. proposed combining wavelet
decomposition with traditional forecasting models (in-
cluding ANN, ARIMA, and SVM) and proposed three
hybrid models for short-term PM2.5 forecasting [60]. Wang
et al. proposed a forecasting network combining wavelet
decomposition and LSTM network to forecast solar radia-
tion intensity in different weather environments and com-
pare it with traditional and single deep learning networks
[61].

In this paper, we propose the model with a wavelet
decomposition, the GRUs group (WD-GRU) based on the
Bayesian optimization for the hyperparameters, and forecast
the multisteps for the Beijing PM2.5 data. Our contributions
focus on the following:

(1) ,e proposed model utilizes the hyperparameters
optimization of the whole model to improve
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performance. Sequence model-based optimization
(SMBO) is utilized to optimize the hyperparameters,
including the number of wavelet layers, the type of
mother wavelet function, the number of neurons in
the first layer of GRU, epoch, the dropout rate, batch-
size, and the type of optimizer.

(2) ,e WD-GRU model is proposed, in which wavelet
decomposition is used to decompose the original
data to reduce the complexity of the time series data.
,en each component is forecasted separately by
GRU, and the result is finally obtained by fusion.
Compared with the model with WD-LSTM [61], the
model proposed here improves the forecasting
performance for the application of PM2.5.

3. Deep Model

,emodel proposed here is amodel with a combined structure
in which wavelet decomposition is used to reduce the data’s
nonlinear complexity. GRUs are used for each component to
forecast, and the final forecasting will be obtained according to
each submodel’s results. And the hyperparameters of the whole
model are optimized through SMBO. We will describe each
part of the proposed model in detail below.

3.1. Decomposition of Time Series Data. In this section, we
decompose the time series data into a limited number of
low-frequency subsequences and high-frequency subse-
quences according to time series data characteristics. ,e
discrete wavelet transform (DWT) algorithm is used to
achieve the above process. It can be found that the subse-
quence obtained after decomposition has a more stable
variance than the original sequence. It can reduce the
complexity of data, which helps increase the forecasting
performance of the time series.

In numerical analysis, the DWT is derived from the
Fourier transform, while the DWT uses the different basic
functions, i.e., not the infinite triangular bases, but the finite-
length and decaying wavelet bases are used. DWT need to
specify a mother wavelet function η(t), such as “db35”; after
translation and amplification of η(t), the corresponding
function ηk,h(t) is obtained by

ηk,h(t) � 2k/2η 2k
t − h􏼐 􏼑. (1)

Moreover, we can calculate the corresponding binary
function ψk,h(t):

ψk,h(t) � 2k/2ψ 2k
t − h􏼐 􏼑, (2)

where k is the scaling factor and k ∈ R; k≠ 0; h is the
translation factor and h ∈ R , and t is the time index. In the
DWT process, ηk,h(t) and ψk,h(t) are called wavelet bases.
For a time series data M(t), the DWT algorithm can be
expressed as

M(t) � 􏽘
m

h�1
ak,hψk,h(t) + 􏽘

n

k�1
􏽘

m

h�1
dk,hηk,h(t), (3)

where ak,h is the low-frequency component with a scaling
factor of k and a translation factor of h and dk,h is the high-
frequency component with a scaling factor of k and a
translation factor of h. m is the length of the original time
series data. n is the number of layers of the wavelet de-
composition. So DWT can decompose time series into low-
frequency subsequences and high-frequency subsequences.
,en a low-pass filter (LPF) and a high-pass filter (HPF) are
used to obtain low-frequency subsequence Ak,h and high-
frequency subsequence Dk,h based on ak,h and dk,h.

Figure 1 shows the wavelet decomposition process in the
actual decomposition task, assuming that M(t) is the time
series being decomposed. In the first layer of the wavelet
decomposition space, the time series M(t) is decomposed
into a low-frequency subsequence A1 and a high-frequency
subsequence D1. We have the process of the DWT as

η1,h(t) � 21/2η(2t − h),

ψ1,h(t) � 21/2ψ(2t − h),

M(t) � 􏽘
m

h�1
a1,hψ1,h(t) + 􏽘

m

h�1
d1,hη1,h(t),

(4)

where A1 is the result of a1,h with the length m through LPF
and D1 is the result of d1,h with the length m through HPF.
,en according to the defined number of decomposition
layers, the approximate subsequence will continue to de-
compose according to the decomposition rules, the low-
frequency subsequence A1 continues to decompose for A2
and D2, and so on. ,at is to say, for the time series M(t),
after the n layer decomposition, the set of An, D1, D2, . . .􏼈

Dn} is finally obtained, and there is a relationship

M(t) � An + D1 + D2 + · · · + Dn. (5)

To further analyze wavelet decomposition, we take the
100-day Beijing PM2.5 hourly data from January 1, 2016, as
an example to perform wavelet decomposition, and the
length of the decomposed discrete sequence is 2,400 hours.

,e db35 mother wavelet function is used, and the
number of decomposition levels is 8. Figure 2(a) shows the
average low-frequency results of each layer decomposition,
and Figure 2(b) shows the high-frequency components of
each layer decomposition. We can see that the low-fre-
quency and high-frequency components have apparent
changes as the number of decomposition layers increases,
and the lines are gradually flat, which shows that the wavelet
decomposition successfully decomposes a complex sequence
into several subsequences with a single frequency.

For an actual signal, the number of layers n is determined
by its length. A signal with the length m can only be
decomposed into log2 m layers at most. ,ere is not a
standard principle to select the level of decomposition layers
and the mother wavelet function. In contrast, they will
determine the decomposition result, and further have an
effect on the forecasting performance. ,erefore, we will use
Bayesian optimization to determine the type of the mother
wavelet function and decomposition layers of our model,
which will be discussed in Section 3.3.
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3.2. Deep Submodel for Wavelet Decomposition Components.
To model each component, we use the GRU network, which
is an improvement in LSTM. Each neuron in the network is a
processing unit that includes an update gate and a reset gate.

,e update gate is to replace the previous state information
with the current state. ,e reset gate controls the degree of
ignoring the last information status, and the GRU unit has
only one timing output.
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Figure 2: 8-layer decomposition results using db35. Left to right: (a) low-frequency components and (b) high-frequency components. In the
first layer, M(t) is decomposed to the line A-1 and the line D-1, and then A-1 is decomposed to the line A-2 and the line D-2, until the last
layer, i.e., the eighth layer; A-7 is decomposed to the line A-8 and the line D-8.
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Figure 1: Schematic of the wavelet decomposition process.
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,e calculation formula in each unit when performing
forward propagation according to this structure is as follows
[62–64]:

zi � σ Czxi + yi−1Uz + bz( 􏼁,

ri � σ Crxi + yi−1Ur + br( 􏼁,

ai � tanh Caxi + Ua yi−1 ∗ ri( 􏼁 + ba( 􏼁,

yi � 1 − zi( 􏼁∗yi−1 + zi ∗ ai,

(6)

where σ is the Sigmoid activation function, xi represents the
input at the time i, zi is the attenuation coefficient of the
updaters, ri is the attenuation coefficient of the reset gate,
yi−1 is the output value at the time i − 1, yi is the output state
vector at a time i, Cz and Uz are the weights of the update
gate, Cr and Ur are the weights of the reset gate, Ca and Ua

are the weights of the candidate ai, bz, br, and ba are offset
vectors, and ∗ is an element-wise multiplication.

,e hidden layer of the GRU network is set to 2 layers,
and the activation function is “relu.” To prevent the training
network from overfitting, we added the dropout in each
layer. Figure 3 shows the construction of each submodel,
where xi, i � 1, 2, . . . , m is the input and yi, i � 1, 2, . . . , m is
the output.

,e model training uses the L1 loss function, which can
obtain better robustness for forecasting the time series data
with noise such as PM 2.5. ,e L1 loss function is selected as

L1(􏽢y, y, θ) � 􏽘
m

i�1
yi(θ) − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (7)

where θ is the weight of the network, y is the forecasting
result, and 􏽢y is the ground truth.

,anks to deep learning research, there are many ways to
update deep networks’ weights based on the loss function,
such as Adadelta, Adam, and Sgd. And the other hyper-
parameters, such as dropout rate, batch-size, and the
number of epochs, will also affect the capability of deep
learning networks. To guarantee performance, we will use
the Bayesian SMBOmethod to select these hyperparameters.
Not only can WD-GRU be used for air quality monitoring
research but it also forms a new network by combining with
other networks, which can be used in other research fields,
such as the research on prediction and management control
of water environment [65–67] and IoT intelligence [68].

3.3. Bayesian Sequence Model-Based Optimization (SMBO).
Hyperparameters are one of the keys to deep learning
models, directly determining the performance of the model.
Due to the deepening of the forecasting model network, the
selection of hyperparameters becomes a difficult problem.
But, the traditional method of selecting parameters is in-
efficient. It cannot be used at all when there are too many
hyperparameters, so the chosen hyperparameters are also
challenging to keep themodel performwell. Here, we use the
Bayesian SMBO algorithm [69, 70] to optimize the hyper-
parameters, including the hyperparameters of the deep
learning model and wavelet decomposition as the number of
decomposition layers.

For SMBO, the key is to give an optimization objective
function. In the parameter space, the Gaussian process is
used to update the posterior distribution of the objective
function to seek a group parameter that maximizes the
objective function. ,e RMSE is used as the objective
function:

g(w) �

���������������

􏽐
m
i�1 yi(w) − 􏽢yi( 􏼁

2

m

􏽳

, (8)

where m is the length of the input series, yi(w) is the
forecasting result by the hyperparameters w, and 􏽢yi is the
ground truth. ,e objective function of SMBO is minimized
as

w
∗

� argmin
w∈W

g(w), (9)

where w∗ is the optimal parameter determined by SMBO; w

is a set of input hyperparameters, including not only the
weight of the network θ, but also the mother wavelet
functions and the level of decomposition layers. W is the
multidimensional hyperparameters space defined for the
optimized model.

,e SMBO algorithm can generally be divided into two
processes: Gaussian process and hyperparameter selection.
In the Gaussian process, the modeling and fitting optimi-
zation of the objective function is achieved, and the posterior
distribution corresponding to the input w is obtained; in the
hyperparameter selection process, the optimal hyper-
parameters are explored at the minimum cost. According to
the objective function g(w), we set the Gaussian distribution
as follows:

g(w) ∼ GP(μ(w), O(w, w′)), (10)

where μ(w) is the average value of g(w) and O(w, w′) is the
covariance matrix of g(w). ,e initial O(w, w′) can be
expressed as

O �

o w1, w1( 􏼁 · · · o w1, wi( 􏼁

⋮ ⋱ ⋮

o wi, w1( 􏼁 · · · o wi, wi( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (11)
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Figure 3: GRU network structure for the submodel.
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In the process of SMBO searching for optimal param-
eters, the covariance matrix of the above Gaussian process
will continuously change during the iterative process. As-
suming that the set of parameters entered in step i + 1 iswi+1,
then the covariance matrix is

O′ �
O o

T

o o wi+1, wi+1( 􏼁

⎡⎣ ⎤⎦, (12)

where o � [o(wi+1, w1), o(wi+1, w2), . . . , o(wi+1, wi)]. ,en
we get the posterior probability of g(w) as

P gi+1|Di+1, wi+1( 􏼁 ∼ N μi+1(w), σ2i+1(w)􏼐 􏼑, (13)

where D is the observation data, μi+1(w) is the mean value of
g(w) at step i + 1, and σ2i+1(w) is the variance of g(w) at step
i + 1.

After obtaining the posterior probability, the next step is
to find the optimal parameters through hyperparameter
selection. ,is search method is complicated and takes a lot
of time, so we use the following upper confidence bound
(UCB) acquisition function to develop the calculation
effectiveness:

wi+1 � argmaxH w|Di( 􏼁 � argmax μ(w) + ζ1/2i+1σi(w),

(14)

where ζ i+1 is a constant, H(w|Di) is the UCB acquisition
function, and wi+1 is the selected hyperparameter of step
i + 1. ,e SMBO algorithm of the network is shown in
Algorithm 1.

3.4. Model Framework with the Optimization of
Hyperparameters. Based on the details introduced in Sec-
tion 3.1–Section 3.3, Figure 4 shows the proposed deep
forecasting model. Firstly, the original time series is
decomposed based on wavelet decomposition to obtain the
corresponding low-frequency subsequences An and high-
frequency subsequences D1, D2, . . . Dn, and then GRU is
trained to learn each component of dynamic characteristics.
,e trained GRU is then used to separately forecast the
subsequences obtained by decomposition and finally achieve
the forecasting.

During the model’s training, the SMBO algorithm op-
timizes hyperparameters based on the forecasting result and
the expected output. Once the optimized parameters have
been obtained, the Bayesian optimization process will stop.
,en the whole model is applied to the forecast.

4. Experiments

4.1. Dataset and Experimental Setup. ,e PM2.5 dataset of
the US State Department [71] is used to verify the proposed
model’s effect, including the average PM2.5 concentration
per hour in Beijing’s atmosphere from 2013 to 2017, totaling
37,704 hours. ,e unit of the data is μg/m3. We use PM2.5
data to train our proposed model and other comparative
models. ,e learning step is set to 24; that is, the model
function is to use the data of 24 hours of the previous day to
forecast the value of 24 hours of the next day. ,e forecast

hourly of one day in advance is of great significance, which
can help people understand the PM2.5 situation of the next
day and plan the next day according to the numerical re-
sponse’s weather conditions.

It is often more reasonable to have enough performance
evaluation indicators in the experimental verification stage.
We use 5 indicators to assess the performance of our models,
including root means square error (RMSE), normalized
mean square error (NRMSE), mean absolute error (MAE),
symmetric mean absolute percentage error (SMAPE), and
Pearson correlation coefficient (R). ,e smaller the first four
indicators are, the more accurate the forecasting is. R rep-
resents the Pearson correlation coefficient; the larger the
value is, the closer the fitted relation between the ground
truth and the forecasted value is. ,e calculation methods of
5 indicators are as follows:

RMSE �

������������

􏽐
m
i�1 yi − 􏽢yi( 􏼁

2

m

􏽳

, (15)

NRMSE �
1

max(y) − min(y)

������������

􏽐
m
i�1 yi − 􏽢yi( 􏼁

2

m
,

􏽳

(16)

MAE �
1
m

􏽘
m
i�1 yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (17)

SMAPE �
1
m

􏽘
m
i�1

􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑/2

, (18)

R �
􏽐

m
i�1 􏽢yi − 􏽢yi􏼐 􏼑 yi − yi( 􏼁

�������������������������

􏽐
m
i�1 􏽢yi − 􏽢yi􏼐 􏼑

2
􏽐

m
i�1 yi − yi( 􏼁

2
􏽱 , (19)

where m is the length of datasets, 􏽢y is the ground truth, y is
the forecasting result, max(y) is the maximum of y, min(y)

is the minimum of y, 􏽢y is the average of the ground truth,
and y represents the average of a forecasted value.

Our experiment was conducted for the experimental
platform using a PC server under Windows 10 operating
system. ,e CPU is Intel (R) i5-6200U CPU, the single-core
operating frequency is 2.30GHz, and the RAM is 8GB. Use
Python 3.7.3 and Keras library to build the WD-GRU
forecasting model, making the program more concise.

4.2. Case 1: Hyperparameter Selection Based on Bayesian
Optimization. ,is case is based on the data set mentioned
in Section 4.1, and the PM2.5 content per hour in Beijing
from March 22, 2016, to April 9, 2016. ,e hourly content is
forecasted, and the forecast period is 24 hours. In this case,
we evaluate the hyperparameters of the WD-GRU fore-
casting model optimized by the Bayesian SMBO algorithm.
To verify the SMBO algorithm’s effectiveness in determining
the number of wavelet decomposition layers and analyze the
effect of decomposition layers on themodel performance, we
compare it with the traditional random search (random
search) hyperparameter selection method.
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Firstly, we define a multidimensional hyperparameter
space for the WD-GRU model. Table 1 shows the multi-
dimensional hyperparameter space. ,e selected hyper-
parameters include decomposition layers, mother wavelet
function, the number of neurons in the first layer, batch-size,
epochs, optimizer, and dropout rate. ,en we optimize the
overall RMSE of the forecasting model; after 100 epochs,
Bayesian optimization gives a set of optimal hyper-
parameters. Table 2 shows the selected parameter set by the
SMBO algorithm from the search space and the parameters
chosen by the random search method in the common deep
learning toolbox.We can find that there is obvious difference
between the two sets of parameters.

We can note that the number of wavelet decomposition
layers selected by SMBO is 8. And the wavelet function given
by SMBO is db35. To verify it is reasonable, in this case, we
conduct experiments on the effect of WD of different layers
with the proposed model. ,is experiment uses the db35
mother wavelet function to decompose the PM2.5 sequence
and then uses the two-layer GRU submodel mentioned in
Section 3.2 for model training. ,e other hyperparameters of

the submodel use SMBO parameters in Table 2. ,en we test
and verify the previously defined test set. ,e specific settings
of the decomposition layers for the test model are as follows:

(1) Mode no. 1: perform 1 layer of WD and train 2
GRUs for A1 and D1, respectively

(2) Mode no. 2: perform 2 layers of WD and train 3
GRUs for A2, D1, and D2, respectively

(3) Mode no. 3: perform 3 layers of WD and train 4
GRUs for A3, D1–D3, respectively

(4) Mode no. 4: perform 4 layers of WD and train 5
GRUs for A4, D1–D4, respectively

(5) Mode no. 5: perform 5 layers of WD and train 6
GRUs for A5, D1–D5, respectively

(6) Mode no. 6: perform 6 layers of WD and train 7
GRUs for A6, D1–D6, respectively

(7) Mode no. 7: perform 7 layers of WD and train 8
GRUs for A7, D1–D7, respectively

(8) Mode no. 8: perform 8 layers of WD and train 9
GRUs for A8, D1–D8, respectively

Input: the dataset D, the RMSE of the proposed model g(w), the hyperparameter space W, the UCB acquisition function H(w|Di),
the number of parameter selections is T, the number of decomposition components l.

Output: Returns the optimal hyperparameter w∗.
(1) D(l)← InitSamples(g(w), D, l)

(2) for i← |D(l)| to T do
(3) Select the hyperparameters w within the hyperparameter space W.
(4) Model the objective function g(w) and calculate the posterior probabilityP(g

(l)
i+1|D

(l)
i , w

(l)
i ).

(5) Use the UCB acquisition function for parameter update w∗← argmaxH(w|D
(l)
i )

(6) Use the w∗ hyperparameter to train the proposed network to obtainyi←g(w∗), and calculate and update g
(l)
min.

(7) D
(l)
i+1←Di ∪ (w

(l)
i+1, g

(l)
i+1)

(8) end for
(9) w∗ � argmin

w∈W
g(w)

(10) return
w∗

ALGORITHM 1: SMBO algorithm.

Bayesian
optimization

The forecasting result

+

–
The expected output

Decomposition

Forecasting GRU 1
training

D1D2DnAn

M(t)

GRU 2
training

GRU n
training

GRU n+1
training

Figure 4: Flowchart of the model for forecasting.
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(9) Mode no. 9: perform 9 layers of WD and train 10
GRUs for A9, D1–D9, respectively

(10) Mode no. 10: perform 10 layers of WD and train 11
GRUs for A10, D1–D10, respectively

Table 3 shows the forecasting results under different
decomposition layers, where red is the best value, and the
training of mode no. 8 uses the hyperparameters determined
by the SMBO algorithm. We found that as the number of
decomposition layers increases, these five indicators show an
overall optimization trend. When the number of decom-
position layers is set to 6, the value of RMSE has decreased
from 48.5712 μg/m3 to 22.0185 μg/m3. Mode no. 8 obtains
the least MAE and NRMSE as 16.2063 and 0.0682 and is very
close to the optimal value of RMSE, SMAPE, and R.

Based on the above experimental results, we conclude that
the number of wavelet decomposition layers determined by
SMBO is the optimal solution in the hyperparameter space.
Simultaneously, we find that the more layers the decomposi-
tion performs, the better the final model’s forecasting effect is.
When the number of decomposition layers reaches a specific
value, the model’s performance will no longer improve. If we
continue to increase the number of decomposition layers, it will
cause the model’s overall performance to decline, for example,
the mode no.10 with 10 levels. We analyzed this phenomenon
and found that when too many decomposition layers are
defined for data, false frequencies appear in the decomposition
results. ,ese are not the original signal’s information, and this
information leads to the deterioration of the forecasting results.

After learning the feasibility of the SMBO, to further
explore the advantages of the SMBO algorithm, we then
use the two sets of hyperparameters in Table 2 to train the
WD-GRU model and conduct the test experiment. Table 4

shows the performance indicators of the two models. We
find that the model trained using the hyperparameters
determined by the SMBO algorithm is significantly better.
RMSE, MAE, NRMSE, SMAPE, and R increased by
4.9129 μg/m3, 2.5653 μg/m3, 0.0206 μg/m3, 0.0349, and
0.035, RMSE reached 21.7300 μg/m3, the R was higher
than 0.9.

In summary, the SMBO algorithm is useful for selecting
the hyperparameters of the proposed model. We verified its
feasibility in the experiment of decomposing layers. And
through comparing the model trained with the random
search hyperparameter method, it is verified that the
hyperparameter set determined by the SMBO algorithm can
make the proposed model obtain a better forecast effect.

4.3. Case 2: Forecasting Performance Verification. To verify
the WD-GRU model’s performance advantages, we choose
five combinationmodels of decompositionmethod and deep
learning methods to compare with the models proposed in
this case. ,e comparison models used include decompo-
sition-ARIMA-GRU-GRU [38], EMD_RNN [43] (EMD
based on GRU), EMDCNN_GRU [45] (EMD and CNN-
based on GRU), WD-RNN [34], and WD-LSTM [61].

Figure 5 shows the forecasting trend curves of these six
models. We use the red curve to represent the WD-GRU
model proposed here. We can see that theWD-GRUmodel is
closest to the ground truth, the forecasting trend curve follows
the original data as a whole, and only a certain deviation
occurs in some places where the trend jump is large.

Table 5 gives the five evaluation indicators; the red value
in the table is the optimal value of each indicator. Figures 6
and 7 show various indicators in the form of a histogram.

Table 2: Hyperparameters selected by Bayesian optimization.

Hyperparameters Type Bayesian optimization Random search
Wavelet decomposition layer Integer 8 10
Mother wavelet function Categorical db35 Sym7
No. 1 hidden units Integer 48 24
Dropout rate Uniform 0.0687 0
Batch-size Integer 5 1
Epochs Integer 350 300
Optimizer Categorical Adadelta Adam

Table 1: Bayesian optimization hyperparameter space.

Hyperparameters Type Min Max
Wavelet decomposition layers Integer 1 15

Mother wavelet function Categorical

{sym2, sym7, sym12, sym18,coif1,
coif5, coif10, coif15, bior1.3, bior2.6,
bior3.5, bior6.8, db3, db9, db13, db18,
db35, db25, rbio1.1, rbio2.6, rbio3.5,

rbio5.5, rbio4.4, rbio6.8’}
No. 1 hidden units Integer {24,36,48}
Dropout rate Uniform 0 0.5
Batch-size Integer {1, 5, 10, 15, 20, 30, 50}

Epochs Integer {100, 150, 200, 250, 300, 350, 400, 450,
500}

Optimizer Categorical {Adadelta, Adam, Sgd}
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,e WD-GRU model’s evaluation indicators are the op-
timal values, among which the RMSE reaches 21.7300μg/m3.
Compared with the EMDCNN_GRU [45] model based on the
EMD decomposition method proposed in our previous study,
the five indicators of RMSE,MAE, NRMSE, SMAPE, and R are

improved by 38.3%, 31.5%, 51.4%, 9.8%, and 17.9%. ,e WD-
GRU model has made significant progress with accuracy.

,e experiments also verify the method selection of the
combined model. For the combined model, the WD, EMD,
and STL decomposition methods are used to decompose the

Table 3: Analysis of forecasting performance under different wavelet decomposition layers.

Combination mode Number of levels Number of GRUs RMSE μg/m3 MAE μg/m3 NRMSE μg/m3 SMAPE R
Mode no. 1 1 2 48.5712 32.8852 0.2176 0.7120 0.5361
Mode no. 2 2 3 48.9235 31.9738 0.1993 0.6746 0.5433
Mode no. 3 3 4 50.5702 32.0177 0.1675 0.6833 0.5562
Mode no. 4 4 5 48.2256 31.9763 0.1450 0.7128 0.6823
Mode no. 5 5 6 30.5029 24.0812 0.0991 0.6417 0.9086
Mode no. 6 6 7 22.0185 16.9521 0.0732 0.5773 0.9311
Mode no. 7 7 8 21.7539 16.3492 0.0704 0.5553 0.9270
Mode no. 8 8 9 21.7300 16.2063 0.0682 0.5637 0.9276
Mode no. 9 9 10 21.7168 16.6134 0.0703 0.5737 0.9329
Mode no. 10 10 11 22.1336 16.9992 0.0717 0.5802 0.9283

Table 4: Performance of models with different hyperparameter.

Hyperparameter optimization method RMSE μg/m3 MAE μg/m3 NRMSE μg/m3 SMAPE R
SMBO 21.7300 16.2063 0.0682 0.5637 0.9276
Random search 26.6429 18.7716 0.0888 0.5986 0.8926
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Decomposition-ARIMA-GRU-GRU
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WD_LSTM

The proposed method

Groundtruth

Figure 5: ,e forecasting of hourly PM2.5 in Beijing from March 22, 2016, to April 9, 2016, by decomposition-ARIMA-GRU-GRU [38],
EMD-RNN [43], EMDCNN_GRU [45], WD-RNN [34], WD-LSTM [61], and the proposed method.

Table 5: Indicators of each model in the same test set.

Model RMSE μg/m3 MAE μg/m3 NRMSE μg/m3 SMAPE R
Decomposition-ARIMA-GRU-GRU [40] 48.6802 33.4266 0.2096 0.7275 0.5302
EMD-RNN [45] 45.6379 35.8550 0.1452 0.8792 0.6988
EMDCNN_GRU [47] 35.2347 23.6723 0.1404 0.6252 0.7868
WD-RNN [36] 29.1949 22.8936 0.0950 0.6689 0.8734
WD-LSTM [72] 26.4335 19.7371 0.0935 0.7742 0.8932
,e proposed method 21.7300 16.2063 0.0682 0.5637 0.9276
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PM2.5 sequence to reduce the complexity of the PM2.5 data,
and then the RNN or GRU is used for forecasting. As toWD-
RNN [34], EMD-RNN [43] in Table 5, the WD-RNN [34]
model outperforms in all indicators. Compared with EMD-
RNN [43], although bothmodels use the same RNNnetwork
as a submodel, the WD-RNN [34] based on wavelet de-
composition improved RMSE by 36.0%, MAE by 36.1%,
NRMSE by 34.6%, SMAPE by 23.9%, and R by 25.0%. So we
can find out that the wavelet decomposition method will
have a good effect on the PM2.5 complex time series.

Simultaneously, we chose the GRU model as the sub-
model, which proved the right choice through experiments.

,e structure of WD-RNN [34], WD-LSTM [61], and the
proposed WD-GRU model in Table 5 differ only in the
selection of submodels. However, we see that the GRU
network’s proposed model as a submodel performs better in
various indicators. Compared with the WD-LSTM [61]
model, the RMSE of the proposed model is reduced by
4.7035 μg/m3. R increased from 0.8932 to 0.9276. Similarly,
in the EMD-RNN [43] and EMDCNN_GRU [45] models,
the effect of the model using the GRU network is also much
better.

,e wavelet decomposition and GRU credit that the
improvement of the proposed model’s indicators and the

RMSE MAE

Decomposition-ARIMA -
GRU-GRU [41] 48.6802 33.4266

EMD-RNN [46] 45.6379 35.8550

EMDCNN_GRU [48] 35.2347 23.6723

WD-RNN [37] 29.1949 22.8936

WD-LSTM [63] 26.4335 19.7371

The proposed method 21.7300 16.2063
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Figure 6: ,e RMSE and MAE of hourly PM2.5 in Beijing from March 22, 2016, to April 9, 2016, by decomposition-ARIMA -GRU-GRU
[38], EMD-RNN [43], EMDCNN_GRU [45], WD-RNN [34], WD-LSTM [61], and the proposed method.

NRMSE SMAPE R

Decomposition-ARIMA -
GRU-GRU [41] 0.2096 0.7275 0.5302

EMD-RNN [46] 0.1452 0.8792 0.6988

EMDCNN_GRU [48] 0.1404 0.6252 0.7868

WD-RNN [37] 0.0950 0.6689 0.8734

WD-LSTM [63] 0.0935 0.7742 0.8932

The proposed method 0.0682 0.5637 0.9276
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Figure 7:,e NRMSE, SMAPE, and R of hourly PM2.5 in Beijing fromMarch 22, 2016, to April 9, 2016, by decomposition-ARIMA -GRU-
GRU [38], EMD-RNN [43], EMDCNN_GRU [45], WD-RNN [34], WD-LSTM [61], and the proposed method.
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selection of hyperparameters during training play a decisive
role in the performance of the resulting model. We use
SMBO to determine the hyperparameters of the proposed
model. ,ese hyperparameters can develop the performance
of the model effectively. ,e data in Table 5 shows that the
WD-LSTM [61] model does not use SMBO to determine the
hyperparameters. Its NRMSE is 0.0935μg/m3. ,e NRMSE
of the proposed model is 0.0682μg/m3. ,erefore, we can
conclude that the degree of improvement is due to the re-
placement of the submodel with the GRU model and the
SMBO method’s credit.

In summary, our proposed WD-GRU model has a
reasonably good effect on the multisteps forecasting task of
PM2.5 concentration in the atmosphere per hour with a
period of 24 hours.

5. Conclusions

,is paper proposes a model combining wavelet decom-
position and GRU network, in which wavelet decomposition
is used to put down the complexity of the series time data.
,en the GRUs are used to obtain component forecasting
separately and finally achieve results through fusion. ,e
Bayesian optimization is used to optimize each submodel’s
hyperparameters, wavelet decomposition layers, and mother
wavelet function.

Experiments have confirmed that, in the multisteps
forecasting of PM2.5 with 24 hours ahead, the model has an
excellent performance. It is worth noting that the model we
proposed is applicable not only in PM2.5 sequences but also
in many similar data-driven forecasting tasks, such as
temperature and humidity forecasting.
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