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Abstract

Multiple myeloma (MM) is a malignant tumor of transformed plasma cells. MM pathogenesis is a multistep process.

This cancer can occur de novo (rarely) or it can develop from monoclonal gammopathy of undetermined significance
(most of the cases). MM can be asymptomatic (smoldering myeloma) or clinically active. Malignant plasma cells exploit
intrinsic and extrinsic bone marrow microenvironment-derived growth signals. Upregulation of stress-coping pathways

of small ATP competitive CK1a or CK2 inhibitors.

Non-oncogene addiction

is also instrumental to maintain MM cell growth. The phylogenetically related Ser/Thr kinases CSNKTA1 (CK1a) and
CSNK2 (CK2) have recently gained a growing importance in hematologic malignancies arising both from precursors
and from mature blood cells. In multiple myeloma, CK1a or CK2 sustain oncogenic cascades, such as the PI3K/AKT,
JAK/STAT, and NF-kB, as well as propel stress-related signaling that help in coping with different noxae. Data also
suggest that these kinases modulate the delivery of growth factors and cytokines from the bone marrow stroma.
The "non-oncogene addiction” phenotype generated by the increased activity of CK1a and CK2 in multiple myeloma
contributes to malignant plasma cell proliferation and survival and represents an Achilles” heel for the activity
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Background

Multiple myeloma (MM) is the second most frequent
hematologic malignancy, accounting for about 13% of all
blood cancers [1]. The bulk of the tumor is represented
by transformed plasma cells (PCs), which accumulate
firstly in the bone marrow (BM) in a microenvironmen-
tal niche that supports their growth [2]. Along with the
disease progression, malignant PCs lose their depend-
ency from the BM and gain features of autonomous
growth with widespread dissemination of plasma cell
leukemia [3, 4]. Clinically, MM is characterized by target
organ damage, with anemia, renal insufficiency and bone
resorption/loss with bone pain, hypercalcemia, and
pathological fractures. In addition, MM patients develop
immune-paralysis with hypogammaglobulinemia and
susceptibility to infections [5].
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The molecular and genetic features of MM have lately
been described. MM are divided in cases bearing chromo-
somal translocations affecting the IgH locus (30%); cases
with hyperdiploidy (trisomies) of odd chromosomes 3, 5,
7,9, 11, 15,17, and 19 (40-45%); cases with both the alter-
ations (15%); and cases with other abnormalities (10—15%)
[6, 7]. The genomic analysis of MM cases has revealed a
complex genetic architecture that suggests a continuous
clonal evolution in a Darwinian process and few recurrent
mutations concentrated in clusters of genes, which regu-
late, among others, the translation process, chromatin
modification and gene transcription, including the nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-kB) pathway [6].

Besides intrinsic alterations in MM PCs, an aberrant
BM microenvironment participates in MM pathogen-
esis. The stromal miche surrounding malignant PCs is
able to deliver trophic signals represented by cytokines,
such as interleukin-6 (IL-6) and tumor necrosis factor-
a (TNF-a), growth factors, such as insulin-like growth
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factor-1 (IGF-I) and related proteins, and soluble glyco-
proteins, such as Wnt and Hedgehog. All these signal-
ing cascades inside MM cells shift the milieu towards
osteoclast propelling features and promote aberrant
neoangiogenesis [2, 8]. Therefore, MM cells and bone
marrow stromal cells (BMSCs) depend on a number of
signaling cascades whose regulation is still largely un-
known. MM cells rely also on intracellular pathways
that have the ability to manage a different array of
stresses, including the proteotoxic, replicative, and oxi-
dative stress [9-11]. Thus, molecules acting as “stress
managers” may become essential for the optimal fitness
of malignant PCs. Examples are the transcription factor
IRF4, which is part of a rewired transcriptional program
in malignant PCs as compared to normal counterparts
[12], the kinase ATR [13], and the scavenger enzyme
SOD2 [14].

Mutations as well as hyper-function of certain funda-
mental proteins and cascades may cause tumor promo-
tion and progression. In this context, it is not doubtable
that native or newly generated protein kinases (PK) may
become pivotal players. As a proof of concept that PK
may be central in oncogenesis is the clear evidence of
the lethal consequences for many tumor types caused by
their inhibition. Some examples are the drugs imatinib,
gefitinib, ibrutinib, or fostamatinib, which target a num-
ber of receptor/cytosolic tyrosine kinases and have
proven to be clinically effective therapeutic options for
solid tumors, chronic myeloid leukemia (CML) or
chronic lymphocytic leukemia (CLL), and non-Hodgkin
lymphomas. However, despite the fact that in several B
cell malignancies protein kinases represent valid thera-
peutic targets, this proof of principle is lacking in MM.

In this regard, among protein kinases driving MM
cell survival, recently, the Ser/Thr kinases CKla and
CK2 have been shown to play an important role as
regulators of signal transduction and stress response
[15-17]. We will herein review CKla and CK2 function
in MM and discuss the potential of targeting their
kinase activity as a suitable therapeutic strategy for this
B cell-derived tumor.

Protein kinase CK1a: emerging roles in cancer

CKla belongs to a family of highly conserved mono-
meric Ser/Thr kinases composed by seven members
encoded by different genes (a, B, Y1, v2, y3, §, and ¢),
displaying the highest homology in their kinase domains
(50-90% identical) with similar substrate specificity.
CK1 members regulate membrane biology, molecular
transport, signal transduction, transcription, translation,
and DNA damage response [18, 19]. In the last few
years, CKla, encoded by the CSNKIAI gene, has been
involved in cancer with a role that seems multifaceted.

Page 2 of 10

CKla inhibition, leading to stabilization of B-catenin,
acts as a tumor promoter in the absence of p53 in intes-
tinal epithelial cells, while its inactivation does not turn
into tumor formation as long as p53 is active [20, 21].
Nevertheless, CKla is a tumor promoter in acute mye-
loid leukemia (AML), provided there is an intact p53
[22]. CK1la has been shown to negatively regulate Ras-
induced autophagy in models of Ras-driven transform-
ation by controlling the phosphorylation of FOXO3A on
S318/321 and its subsequent nuclear extrusion [23].

Other reports have involved CKla in tumors. CKla is a
tumor supporter in diffuse large B cell lymphoma
(DLBCL) of activated B cell subtype, inducing the activa-
tion of NF-«B through the regulation of the CBM1 com-
plex (CARD11, BCL10, MALT1) [24]. Mutations of CKl«
have been detected in melanoma, clear cell renal cell car-
cinoma [25, 26], colon cancer [27], esophageal adenocar-
cinoma [28], adult T cell leukemia/lymphoma [29], and
del(5q) myelodisplatic syndromes (MDS) [30]. Schneider
and colleagues demonstrated a prominent role of CKla in
del(5q) MDS. Our group and others have demonstrated
an oncogenic role of CKla in MM [17, 31].

Altogether, a growing body of data points to a potential
role for CKla in carcinogenesis in different tumor types.

Protein kinase CK2: an indispensable molecule for cancer
cell survival
Protein kinase CK2 is a Ser/Thr kinase that regulates
critical cellular processes. It is composed by a tetramer
of two catalytic (a or o’) and two regulatory subunits (f3)
[32]. The substrate specificity is believed to rely on the 3
subunit even though tetramer-independent functions of
the a and P moieties have been recognized. CK2 has
been involved in cell proliferation, apoptosis, transcrip-
tion and translation, adhesion and motility, and stress-
coping [33-35]. CK2 has hundreds of substrates [36],
among which are pivotal oncogenic proteins, like AKT
[37, 38], c-Myc [39], NF-xB [8, 40], and signal trans-
ducer and activator of transcription 3 (STAT3) [16].
Given its multilateral involvement in cell biology, it is
not surprising that high CK2 activity and expression
have been correlated to poor prognosis and resistance to
anti-cancer agents in different types of cancers, includ-
ing breast [41], lung [42], prostate [43], renal [44], blad-
der carcinoma [45], melanoma [46], and hematological
malignancies [47]. CK2 acts as a typical “non-oncogene
addiction” molecule, since cancer cells strongly rely on it
even though it is generally not altered by typical muta-
tions leading to a gain of function phenotype [47, 48].
However, recently, CK2p deletions were identified in
15% of cases of early relapsing DLBCL patients
compared to those of late relapsing [49].

The mechanisms by which CK2 sustains malignant
tumor growth are numerous. CK2 promotes cancer cell
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survival by activating tumor-promoting oncogenes
(such as c-Myc [39] in lymphoma, Ras-ERK [50] in
melanoma [46], AKT [51-54] in bladder, colon, and
blood cancers) or by inhibiting tumor suppressors (such
as PTEN) [53, 55].

CK2 also strongly supports the activity of important sig-
naling cascades, such as the NF-kB, in breast cancer [56]
as well as in multiple myeloma, lymphoma [16] and
leukemia [54], Wnt-B-catenin, [57], Hedgehog in pleural
mesothelioma [58], and STAT3-dependent signaling in
solid and in hematological tumors [34]. CK2 phosphory-
lates NF-kB RelA/p65 on Ser529, increasing p65
transcriptional activity downstream external stimuli [59].
CK2 positively modulates STATs by phosphorylating
Ser727 of STAT3 [16]. This kinase regulates -catenin sta-
bility [60, 61] and Glil function [62]. Besides its role as a
signaling regulator, CK2 is involved in cellular processes
of stress-coping/fitness augmentation. For instance, CK2
regulates the DNA damage response [63, 64], autophagy
[65], and endoplasmic reticulum (ER) stress [15, 66]. A
major role in cell survival is believed to rely on CK2
modulation of caspase activity [67—69].

CK1a and CK2 in multiple myeloma: regulation of signal
transduction

Others and our group demonstrated that CKla is a
pro-growth kinase in MM. In the work by Hu et al
[31], CKla was found to promote survival and prolifer-
ation of MM cell lines and cMyc/KRasV12-transduced
BaF3 cells in xenograft mouse models. CKla inhibition
led to higher interferon-a and TNF-a signaling. More
recently, we demonstrated that CKla is highly
expressed in the vast majority of MM patient PCs (in a
large microarray data set series) compared to that in
healthy PCs [17]. CKla loss of function with a pan-
CK1 inhibitor (D4476) or RNA interference (RNAi) was
accompanied to MM cell apoptosis, cell cycle arrest
and downregulation of B-catenin, and AKT survival sig-
naling, in a mechanism that could involve caspase and
p53 [17]. Of note, CKla inactivation was able to over-
come BMSCs protection. Moreover, CKla inhibition
synergically boosted bortezomib and lenalidomide cyto-
toxicity. Interestingly, lenalidomide treatment of MM
cells determined a deregulation of CKla expression, in
a time- and dose-dependent manner, in a mechanism
similar to that observed in other cell types [70].

CK2 is overexpressed and enzymatically more active in
malignant MM PCs from patients and cell lines compared
to that in healthy controls [71]. CK2 was found localized
in the cytoplasm, in the nucleus, and in a small fraction
also in the ER of malignant PCs [15]. The use of ATP
competitive CK2-specific inhibitors like tBB, K27, and the
newly developed clinically graded CX-4945 (silmitasertib)
caused malignant PCs apoptosis, being less toxic to the
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non-malignant counterparts [8, 15, 16, 71]. From a mo-
lecular standpoint, CK2 inactivation with chemicals or by
RNAIi in MM impacted on two main signaling pathways,
the NF-kB and the JAK-STAT cascades, which are known
to exert fundamental roles in MM pathogenesis. CK2
blockade was associated to an accumulation of the inhibi-
tor of NF-kB (IkBa) at baseline conditions as well as upon
a strong NF-«kB-activating stimulus, such as TNF-a. Con-
sequently, the transcriptional activity of NF-kB was found
substantially compromised. Moreover, CK2 inhibition led
to an impaired phosphorylation of STAT3 on Tyr705 and
Ser727. Growth stimuli, such as IGF-I and IL-6, were not
able to overcome the lower cell survival frequency conse-
quent to CK2 inhibition, suggesting a central role for this
protein kinase downstream manifold signaling pathways.
As a result, myeloma cells with less active CK2 were much
more sensitive to the cytotoxic effect of a chemotherapeu-
tic drug employed in MM, such as melphalan or the new-
generation drug proteasome inhibitor bortezomib.

The role of CKla and CK2 on MM survival signaling
events and on response to drugs is summarized in Fig. 1.

CK1a and CK2 in multiple myeloma: regulation of
homeostatic/stress response pathways

A mechanism accounting for CK2-driven regulation of
multiple signaling cascades is the one described by
Miyata [72, 73]. CK2 phosphorylates the co-chaperone
Cdc37 on Ser13. This phosphorylation enables Cdc37 to
tighten its association with the chaperone Hsp90 and
with a number of client protein kinases, many of which
are important in the signal transduction across different
proliferative and survival pathways. Thus, CK2 exerts a
“mastermind-like” control on many cellular functions.
This role is believed to be exquisitely important in the
context of malignant transformation, where signaling
modules are overexploited by an increased proliferation/
survival/stress-coping need. In particular, in MM, the ER
stress induced unfolded protein response (UPR) aimed
at coping with unfolded protein load in the ER. UPR can
end up in a compensatory response or (if the ER stress
is prolonged/overwhelming) in apoptosis. Analyzing
whether CK2 could impact on the proteotoxic/unfolded
protein stress in MM, we found that a fraction of CK2 is
localized in the ER and when ER stress was elicited by
thapsigargin, the CK2 kinase activity raised [15]. Upon
CK2 inactivation, we observed a number of changes in
the homeostatic molecules regulating the ER stress/UPR:
a decreased expression of the co-chaperone Bip/Grp78
and of the kinase/endoribonuclease IREla (which was
also less phosphorylated), but an activation of the kinase
PERK (which was instead more phosphorylated at
Thr981) and of the downstream eukaryotic initiation fac-
tor 2-elF2a (more phosphorylated on Ser51). Conse-
quently, the UPR output was of a reduced synthesis of
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Bip/Grp78 messenger RNA (mRNA) while there was an
increased expression of ATF6-dependent EDEM mRNA,
suggesting a negative role of CK2 on the ATF6 branch
of the UPR (Fig. 2). More importantly from a therapeutic
standpoint was the observation that the combined in-
activation of CK2 (with a chemical inhibitor) and of
Hsp90 (with 17-AAG) caused a synergistic cytotoxic ef-
fect on MM cells both in vitro and in vivo in mouse
xenograft models. These data in MM reconcile with
others’ data in different tumor cells demonstrating that
CK2 maintains the ER stress response homeostasis [74].
Furthermore, CK2 seems critical for the ubiquitin prote-
asome clearance of proteins in MM and mantle cell
lymphoma (MCL) [16]. When inhibited together with
the proteasome, CK2 was found instrumental for MM
and MCL cell survival as well as for the regulation of
poly-ubiquitylated proteins. Bortezomib and CK2 inhibi-
tors synergized in inducing MM cell death.

It has been demonstrated in some cancer cells that
also CK1, together with CK2 and GSK3p, takes part in
the regulation of Hsp70 and Hsp90, influencing their
binding to the co-chaperones HOP (Hsp70-Hsp90 or-
ganizing protein) and the chaperone-binding ubiquitin
ligase CHIP to determine the cellular protein folding/
degradation balance [75]. The C-terminal phosphoryl-
ation of Hsp70 and Hsp90 in proliferating cancer cells
enhances the assembly with HOP, increasing its protein

folding activity. The non-phosphorylated chaperones
preferentially bind to CHIP, mediating degradation of
client proteins. It has been shown that melanoma, blad-
der, gastric, lung, breast, and pancreas cancer cells con-
tain high levels of HOP, leading to high proliferation.
Moreover, primary human breast tissue showed
increased phosphorylated chaperones, compared to
healthy samples. Even if a clear function of CK2 in UPR
has been demonstrated in MM, given the role of CK1 on
HOP and CHIP co-chaperones in other cancers, it is
likely that also CKla takes part in ER/stress, UPR in
MM. Therefore, further research will have to clarify the
exact role of CKla in Hsp90-Hsp70 co-chaperone
assembly and regulation in MM.

In the paper by Fernandez-Saiz et al. [76], a novel role
for CK2 was discovered in relation to nutrients and
growth factor withdrawal. The proteins telomere main-
tenance 2 (Tel2) and Tel2 interacting protein 1 (Ttil)
were shown to be critical for the stability of PI3K-related
kinase complex mammalian target of rapamycin com-
plex 1 (mTORCI1) by influencing assembly and matur-
ation and were discovered to be targets of the E3-
ubiquitin ligase SCE™™°, In the absence of trophic sig-
nals, SCF*™° targets Tel2 and Ttil, thereby destabiliz-
ing mTORC1 complex. As a result, the feedback
inhibition on the mTORC2 complex is relieved and the
activity of the mTORC2 complex is sustained, allowing
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the cell to maintain the survival state. This SCFfP*%-

dependent ubiquitination was found to be triggered by a
CK2-executed priming phosphorylation of Ser485 on
Tel2 and of Ser828 on Ttil (Fig. 3). In roughly 30% of
MM, SCF™*° was found overexpressed whereas Tel2
and Ttil downexpressed. In these MM cases, AKT was
overactive. Thus, CK2 might be a central regulator of
AKT activity in a subset of MM.

CK2 and CK1a role in bone marrow MM-stroma-delivered
signals

Our group has demonstrated that CK2 is contributory in
supporting pivotal features of the BM microenvironment in
MM [8]. The protective anti-apoptotic signals delivered by
BMSC:s are neutralized by CK2 inactivation. From a cellular
and molecular standpoint, we observed that CK2 maintains
a pro-survival signaling program from BMSCs to MM cells.
Intriguingly, the inhibition of CK2 in BMSCs was accom-
panied by apoptosis of co-cultured MM cells, indicating the
essentiality of the kinase in promoting growth signals from
BMSCs towards MM cells. CK2 silencing in BMSCs caused

a time-dependent inactivation of NF-kB and STAT3 in
BMSCs and in MM cells. Indeed, the expression of IL-6
and TNF-a cytokines, mostly dependent on the activity of
NF-kB and STAT3, was markedly reduced upon CK2
knockdown. An unforeseen result was the downregulation
of the chemokine receptor CXCR4 in MM cells upon CK2
inhibition and consequently of the migratory potential of
MM cells towards a concentration gradient of the respect-
ive ligand CXCL12 or SDFla. The axis CXCL12/CXCR4
has been demonstrated to play an important role in MM
cell homing in the protective BM niche, and inhibitors of
CXCR4 are currently under scrutiny in clinical trials. More-
over, in this study, we provided evidence supporting a role
for CK2 in bone homeostasis, which could be relevant in
MM -associated bone disease. CK2 inhibition caused a rela-
tively small cytotoxicity against human osteoblast cell line
whereas it led to a dramatic reduction of human BM-
derived osteoclast generation. Moreover, the osteoclast-
dependent MM cell survival was reduced upon CK2
inhibition. The role of CK2 on MM-stroma-delivered
signals is summarized in Fig. 4.
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Regarding CKla, this kinase provided a growth advan-
tage in MM plasma cellular clone evolution by impinging
on pivotal signalling cascades important for MM cell sur-
vival. In particular, by inhibiting PCs and bone BM survival
signaling molecules (like f-catenin and AKT), CKla silen-
cing/inhibition determined MM cell apoptosis, even when
co-cultured with BMSCs, overcoming stromal cell protec-
tion [17]. Moreover CK1a inhibition enhanced bortezomib
and lenalidomide cytotoxicity on MM cells grown alone
and/or on stromal cells, pointing to a function of CKla on
chemotherapy resistance. A recent study by Costa et al.
[77] reported a role of CKla in human dendritic cell (DC)
maturation, modulating the mesenchymal stromal cell
(MSC) inhibitory properties on DC evolution. CK1a silen-
cing in MSC blunted the inhibitory effect of MSC on DC
differentiation, increasing the expression of DC maturation
markers (CD80, DC86, CD209) in a mechanism similar to
that exerted by lenalidomide on DC of MM patients. This
could suggest a potential role of CKla in the modulation
of MSC immunomodulatory properties. Further experi-
ments would be necessary to prove this concept.

CK1a and CK2 inhibition as a rational therapeutic approach
in MM

Protein kinases are rational therapeutic targets since
they are druggable with small molecule inhibitors. The
proof-of-concept of the effectiveness of anti-kinase ther-
apy was first shown in chronic myeloid leukemia, in
which the inhibitor imatinib mesylate has successfully
targeted the aberrant kinase activity of BCR-ABL1 [78].
Thereafter, a number of kinase inhibitors have entered
the clinical arena. Recently, the B cell receptor signaling
inhibitors idelalisib (which targets the PI3Kd) and ibruti-
nib (which targets BTK) have shown an unprecedented
clinical activity in B cell neoplasms [79, 80]. Neverthe-
less, in the anti-MM therapeutic armamentarium, kinase
inhibitors are still lacking on the clinical ground.

The protein kinases CKla and CK2 here discussed
have demonstrated to play an important pro-survival
role in MM. Thus, their inhibition could represent a ra-
tional approach in the therapy of this B cell malignancy.
Recently, our group has shown that protein kinase CK2
sustains the growth of many blood cancers, including
MM [71], MCL [16], DLBCL [81], and AML [82]. More-
over, the CK2 inhibitor CX-4945 is now in phase I
clinical trial in solid tumors and relapsed/refractory
MM. Clinical-grade, oral ATP-competitive small mol-
ecule CK2 inhibitors have been described and tested in
preliminary clinical trials in solid tumors and also MM,
even though no results of these trials have been
published. These already available drugs or other com-
pounds in development could be tested in combination
therapies with conventional or novel agents. Indeed,
CK2 inhibitors boost chemotherapy toxicity in cultured
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MM [71] and other hematologic [83-85] and solid
tumor cells [63]. However, CK2 inhibition has proven to
be a rational strategy also in combination with novel
agents under study or already available in the therapy of
MM. In particular, CK2 inhibition combined with the
Hsp90 inhibitors geldanamycin or 17-AAG showed a re-
markable in vitro and in vivo synergistic/cooperative
cytotoxic activity in mouse models of MM [15]. More-
over, the association of the proteasome inhibitor borte-
zomib with K27 or CX-4945 showed a synergistic
cytotoxic effect on MM and MCL cells [16].

Since CK2 inhibition is associated with the impairment
of NF-kB and STATS3 activation and signaling, a rational
use of CK2 inhibitors would be together with NF-xB and
STAT3 inhibitors. In support of this approach, data from
our laboratory have demonstrated that CK2 inhibitors
and STAT3 or IKK inhibitors may cooperate in inducing
cell killing of AML blasts [54]. If this holds true also in
MM, which is a malignancy highly dependent on these
two cascades, remains to be determined.

On the contrary, CKla inhibition remains still an ap-
proach far from applicability in the clinical scenario,
since no selective inhibitors targeting only this isoform
of the CK1 family are available (D4476 is believed to be
a dual CKla/d inhibitor). Nevertheless, the data here
discussed support the idea that targeting CKla might be
beneficial at least in a subset of high-expressing MM pa-
tients. Moreover, it could always be possible to envision
the dual CKla/d inhibition as an alternative approach,
even if more data should be produced in this regard.
Altogether, our in vitro studies indicate that CKla in-
activation may boost bortezomib and lenalidomide cyto-
toxicity. Further research should be pursued to confirm
and extend these data.

Conclusions

In conclusion, CKla and CK2 are two Ser/Thr kinases
whose role in controlling signaling pathways involved in
proliferation, survival and stress resistance in MM has
been robustly established. Moreover, the results highlight
the role of CKla and CK2 in sustaining BMSCs-
delivered growth clues to MM cells suggesting that these
kinases could represent targets to disrupt MM cell in-
trinsic as well as extrinsic survival mechanisms. Even
though most of the data on the role of CKla and CK2
in MM have been generated in preclinical experimental
models, the strategy of inhibition of these two kinases
appears to lay on a strong rationale. It could be antici-
pated that the inhibition of CKla and/or CK2 could co-
operate or synergize with conventional or novel anti-
MM agents. CKla and CK2 might therefore be taken
into consideration for future therapeutic strategies in the
treatment of this hard-to-defeat malignancy.
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yl-1H-imidazol-2-yllbenzamide); DLBCL: Diffuse large B cell lymphoma;

EDEM: ER-degradation-enhancing-a-mannidose-like protein; ER: Endoplasmic
reticulum; ERK: Extracellular signal-regulated kinase; FGF-3: Fibroblast growth

factor 3; GSK3: Glycogen synthase kinase 3; HOP: Hsp70-Hsp90 organizing
protein; IGF-I: Insulin-like growth factor-I; IL-6: Interleukin-6; IRF4: Interferon
regulatory factor 4; MCL: Mantle cell lymphoma; MDS: Myelodisplatic
syndromes; MM: Multiple myeloma; MSC: Mesenchymal stromal cells;

mTORCT: Mammalian target of rapamycin complex 1; NF-kB: Nuclear factor

kappa-light-chain-enhancer of activated B cells; PCs: Plasma cells;
PI3K: Phosphoinositide 3-kinase; PTEN: Phosphatase and tensin homolog;
RNAi: RNA interference; STAT3: Signal transducer and activator of

transcription 3; Tel2: Telomere maintenance 2; TNF-a: Tumor necrosis factor-

a; Tt1: Tel2 interacting protein 1; UPR: Unfolded protein response
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