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Abstract: Within the non-coding genome landscape, long non-coding RNAs (lncRNAs) and their
secretion within exosomes are a window that could further explain the regulation, the sustaining,
and the spread of lung diseases. We present here a compilation of the current knowledge on
lncRNAs commonly found in Chronic Obstructive Pulmonary Disease (COPD), asthma, Idiopathic
Pulmonary Fibrosis (IPF), or lung cancers. We built interaction networks describing the mechanisms
of action for COPD, asthma, and IPF, as well as private networks for H19, MALAT1, MEG3, FENDRR,
CDKN2B-AS1, TUG1, HOTAIR, and GAS5 lncRNAs in lung cancers. We identified five signaling
pathways targeted by these eight lncRNAs over the lung diseases mentioned above. These lncRNAs
were involved in ten treatment resistances in lung cancers, with HOTAIR being itself described in
seven resistances. Besides, five of them were previously described as promising biomarkers for
the diagnosis and prognosis of asthma, COPD, and lung cancers. Additionally, we describe the
exosomal-based studies on H19, MALAT1, HOTAIR, GAS5, UCA1, lnc-MMP2-2, GAPLINC, TBILA,
AGAP2-AS1, and SOX2-OT. This review concludes on the need for additional studies describing
the lncRNA mechanisms of action and confirming their potential as biomarkers, as well as their
involvement in resistance to treatment, especially in non-cancerous lung diseases.
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1. Introduction

The purpose of this review is to summarize the current knowledge in the field of long non-coding
RNAs (lncRNAs) and exosomal-lncRNAs involved in lung diseases such as Idiopathic Pulmonary Fibrosis
(IPF), Chronic Obstructive Pulmonary Disease (COPD), asthma, and lung cancer. To this aim, we collected
information from RNAseq and microarray data when available. Furthermore, we standardized each gene
and microRNA (miRNA) name to the official gene symbols and miRNA nomenclatures.

The following three significant steps describe the overall methodology used to process the
literature. First, using the PubMed database, we seek for publications related to lncRNAs in each
disease. Secondly, we standardized the gene names using the official gene symbols and the Ensembl
identifier. Finally, we overlapped the standardized gene lists from each disease and identified ten
lncRNAs associated with at least two of the diseases mentioned above. These ten lncRNAs are H19,
MALAT1, MEG3, FENDRR, CDKN2B-AS1, TUG1, HOTAIR, GAS5, LINC00861, and CCDC18-AS1.
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After a brief introduction to the diseases mentioned above, we will cover the selected lncRNAs
one by one. We will describe their known mechanisms of action, their potential as biomarkers, as well
as their involvement in treatment resistances. We will then compile the three steps into interaction
networks and tables. Finally, we will report the current knowledge about exosomal lncRNAs in
lung cancers. Additionally, we listed all the abbreviations and gene definitions in the abbreviation
section with hyperlinks redirecting to Ensembl, NONCODE, or HUGO nomenclature databases for
the lncRNAs, the miRBase database for the miRNAs, and the KEGG database for the pathways.

1.1. Overview of Lung Diseases Covered in the Current Review

1.1.1. Idiopathic Pulmonary Fibrosis (Ipf)

Idiopathic pulmonary fibrosis is a progressive fibrosing lung disease of unknown aetiology. It is
associated with a high morbidity/mortality rate of 3–5 years without specific anti-fibrotic therapy [1–4].
The prevalence of IPF in Europe ranged from 1.25 to 23.4 cases per 100,000 while being between 14
and 27.9 cases per 100,000 in the USA. The prevalence appears to increase along with age and to be
higher among males than females [5].

Despite new anti-fibrotic therapies reducing its evolution, IPF is still challenging to manage.
The main particularity of IPF is its sole lung involvement with typical fibroblastic activation.
Nevertheless, the physiopathology is still not well known and needs further translational studies.
Additionally, the diagnostic approach remains challenging and requires a multidisciplinary
approach, including respiratory specialists, radiologists, pathologists, and thoracic surgeons.
Besides, the radiological images can be nonspecific, which often requires a lung biopsy to produce an
accurate diagnosis. Subsequently, clinicians are urging for specific biomarkers to diagnose the IPF at
an early stage to identify patients with a high risk of a rapid flare-up [6,7].

1.1.2. Chronic Obstructive Pulmonary Disease (Copd)

COPD is a chronic inflammatory obstructive lung disease, which will probably become the
third leading cause of death in 2030, according to the World Health Organization (WHO). It is
linked to smoking habits and is characterized by an airflow limitation, which interferes with normal
breathing and reduces the potential of physical activity. In 2010, the scientific community estimated
the prevalence of COPD at 384 million cases, with a global incidence of 11.7% at a 95% confidence
interval (CI) 8.4–15.0% [8].

The clinicians establish the diagnosis of COPD with the spirometry. This simple test measures how
deeply a person can breathe and how fast air can move into and out of the lungs. COPD symptoms
associate chronic cough, sputum production, dyspnea, and a history of exposure to risk factors for the
disease. The current treatment strategy uses bronchodilators and inhaled corticosteroids in case of a
frequent exacerbation. However, for the most severe cases, it remains challenging to reduce the acute
exacerbations and airflow limitation, leading to a significant decrease in the patient’s quality of life.
New biomarkers are, therefore, required to detect patients with a high risk of frequent exacerbations,
develop specific targeted therapies (GOLD guidelines), and improve the global outcome of COPD
patients [9].

1.1.3. Asthma

Asthma is not a single disease, but a complex chronic inflammatory disease of the airways.
Indeed, several subtypes of bronchial asthma, also called phenotypes, have different therapeutic
and prognostic implications. According to the Global Initiative for Asthma (GINA), it affects all age
groups of about 5% to 10% of the world population. Asthma is specifically characterized by a transient
obstruction of the respiratory tract, secondary to bronchoconstriction, or bronchial inflammation.
Inflammatory phenotypes can now classify asthmatic patients and allow personalized therapies,
thus urging for the identification of biomarkers linked to the widely prevalent disease [10].

http://www.ensembl.org/
http://www.noncode.org/
https://www.genenames.org/
http://www.mirbase.org/
https://www.genome.jp/kegg/
https://goldcopd.org/
https://ginasthma.org/
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1.1.4. Lung Cancer

Lung cancer is still the leading cause of cancer-related death in the world despite new therapeutic
progress like checkpoint inhibitors. Its prevalence varies worldwide due to tobacco habits, air quality,
race/ethnicity, gender, age, and education/income [11]. In 2018, the WHO reported 2.09 million
cases of lung cancers around the world. The two main categories of lung cancer are small-cell lung
carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). According to cancer.org, about 13% of
all lung cancers are SCLC, and 84% are NSCLC. The overall survival rate at five years is still <20%
despite new specific anti-tumoral therapies as checkpoint inhibitors. Precisely, the survival rate for
the extensive stage of SCLC reaches seven months, whereas it is up to 11 months for the widespread
disease of NSCLC. These poor survival rates are mainly due to late-stage diagnosis [12].

Subsequently, a new comprehensive approach of the molecular mechanisms is crucial to identify
new therapeutic targets for the patients. Finding new biomarkers is, therefore, one of the primary
objectives to detect lung cancer at the earliest stages. Lung cancer-derived exosomes are known to
represent the cell of origin in many aspects. They need to be intensively studied to better understand
cell-cell communication and cancer proliferation.

1.2. Exosomes

Exosomes are nanovesicles of about 30–150 nm, which are generated within late endosomes/
multivesicular bodies (MVBs). They are released to the extracellular microenvironment through MVB
fusion to the plasma membrane and exocytosis [13,14]. These vesicles contain many components
of the parental cell, including cell-surface proteins, lipids, metabolites, and genetic material
(DNA, mRNA, non-coding RNAs including miRNAs and lncRNA) [15,16]. The secretion of exosomes
into biological fluids (e.g., bronchoalveolar lavage fluid, saliva, sputum, plasma) confer them promising
diagnostic/prognostic value. In a recent study, the characterization of miRNAs content of exosomes
from the sputum of patients with IPF enabled to identify a unique signature of 3 altered miRNAs
hsa-miR-142-3p, hsa-miR-33a-5p, and hsa-let-7d-5p [17]. Furthermore, the study of the functional
properties of exosomes in the context of lung diseases could open new avenues of therapeutic
approaches [18,19]. Depending on their composition, exosomes can maintain cellular homeostasis [20],
or alter the functional properties of the recipient cell and impact the progression of the disease [21–24].
Microenvironment plays an important role in the composition of exosomes. For example, the exposure
of lung microenvironment to noxious stimuli (e.g., cigarette smoke (CS), allergens, infections, air
pollutants) induces the release of airway exosomes enriched with pro-inflammatory/pro-fibrotic
components which participate in the progression of lung diseases [21–24]. Importantly, with the
new RNA technologies combined with the recent efforts to define stable reference genes, we are
now able to identify better the differentially expressed exosomal-lncRNAs that are involved in lung
diseases [25–27].

1.2.1. Exosomes Are Essential Actors of Intercellular Communication

By the presence of specific surface components as well as the packaging of proteins,
lipids, and genetic material, exosomes are bio-effector units that can regulate the properties of
target cells. Distinct mechanisms associated with exosome uptake are involved in intercellular
communication [28–30]. As described in Figure 1, exosomes can transfer the information to target
cells via a receptor-mediated mechanism without the delivery of their content. For instance, the high
level of Intercellular Adhesion Molecule 1 on exosomes, from mature dendritic cells (DCs), is critical
for efficient naive T-cell priming [31]. Furthermore, DC-derived exosomes can carry functional major
histocompatibility complex class I and class II molecules that can be loaded with specific peptides to
activate viral-specific peripheral CD8+ T cells [31,32]. The other mechanisms involved in intercellular
communication are the delivery of exosomal cargo to target cells through macropinocytosis [33–35],
clathrin-dependent endocytosis [33], or membrane fusion [36].

https://www.cancer.org
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000434
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000091
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000065
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Figure 1. Exosomes in intercellular communication. Exosomes are nanovesicles (30–150 nm),
which originate from the endosomal pathway by the formation of the early endosomes, late endosomes,
and, ultimately, multivesicular bodies (MVBs). These vesicles are released to the extracellular
microenvironment through MVB fusion to the plasma membrane and exocytosis. Exosomes contain
many components of donor cells, including cell-surface proteins, lipids, metabolites, and genetic
material, which confer them functional properties. Exosomes can transfer information to the target cell
by (1) interacting with the cell surface, via a receptor-mediated mechanism, or by delivering its content
to the target cell through (2) endocytosis, macropinocytosis or (3) through a direct fusion of exosomal
membrane with the plasma membrane.

1.2.2. Exosomes Are Playing an Essential Role in Lung Diseases

In a physiological context, various cell types from the lung microenvironment participate in the
regulation of lung homeostasis via the secretion of exosomes presenting anti-inflammatory/anti-fibrotic
properties [20,37–39]. Noxious stimuli exposure (e.g., CS, allergens, infections, air pollutants)
can impact nucleic acid cargo (miRNAs, lncRNAs) of lung-derived exosomes and alter their
protective properties. Indeed, CS exposure induces the alteration of the composition of bronchial
epithelial-derived exosomes composition, with an upregulation of hsa-miR-21 and hsa-miR-210 [22,23],
which in turn dysregulates several cellular processes associated with the progression of the COPD.
In the asthma context, several studies have reported an alteration of inflammatory-related exosomal
miRNAs from airway biofluids (BALF, and sputum supernatants) [21,24]. In conclusion, lung exosomes
released in the pathological context present an alteration of their composition, which in turn may
impact the progression of lung diseases.

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000077
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000286
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1.3. Long Non-Coding Rnas

Thanks to an international effort through the FANTOM (fantom.gsc.riken.jp) and the ENCODE
(encodeproject.org) projects, we know that the non-coding sequences cover 98% of the human
genome and that the transcribed part alone covers 90%. Within these RNA sequences that lack
protein-coding capacities, lncRNAs are any expressed RNAs of more than 200 nt in length [40,41].
The current classification of lncRNAs gathers five categories, according to their original genomic
location in regards to their corresponding protein-coding gene. These five categories are • intergenic,
• intronic, • sense, • antisense, and • bidirectional [42]. According to the NONCODE (noncode.org)
database file “NONCODEv5_human_hg38_lncRNA.gtf”, 172,216 lncRNA transcripts can theoretically
be found in humans [43]. From our literature screening in January 2020, we found hundreds of them
potentially associated with COPD, asthma, IPF, or lung cancer. This review focuses on the lncRNAs
commonly found between these four lung diseases. While we will summarize their mechanisms of
action regarding these diseases, additional studies may also help to understand the full picture of
lncRNAs [42,44–47].

1.3.1. Transcript-Regulating LncRNAs

Under the mRNA transcript degradation process, mature miRNAs bind to the Argonaute RISC
Catalytic Components 1 to 4 (AGO1-4). This complex will then target an mRNA 3’UTR leading to
the degradation of the mRNA. However, transcript-regulating lncRNAs (treg-lncRNAs) can prevent
such mRNA degradation. The lncRNA can act as an RNA decoy for a miRNA, leading to a • miRNA
sequestration, • miRNA degradation, or a • translational repression of the mRNA [48]. The miRNA
sequestration and the miRNA degradation are part of the competing endogenous RNA (ceRNA)
network, which aims at circumventing miRNAs from their original targets [49]. The sequestration
controls the miRNA abundance in the cell and inhibits its activity [41]. This process also called “miRNA
sponge”, happens just before a miRNA could regulate its target mRNAs through a physical binding
between the lncRNA and the miRNA. More precisely, the miRNA binding site, located in the 3’UTR of
the lncRNA, does not allow for the degradation of the lncRNA, as it would occur for protein-coding
transcripts. Instead, mismatched nucleotides in the lncRNA binding site lead to sequestration of
the miRNA by the lncRNA. Subsequently, a sufficient amount of lncRNAs would act as a “sponge,”
disabling the mRNA regulation by the sequestrated miRNA [41]. Furthermore, one lncRNA can have
multiple miRNA targets, and circular lncRNAs can also regulate the miRNA activity [47]. Interestingly,
lncRNAs may be involved in positive feedback loops while targeting miRNAs. For example, a recent
study by Qu et al. describes the upregulation of lncRNA ZEB1-AS1 observed in NSCLC cells. ZEB1-AS1
can sequester the miRNA hsa-miR-409-3p, which leads to an increase in the mRNA and protein levels
of ZEB1. In return, ZEB1 binds the promoter region of ZEB1-AS1 and activates its expression [50].

NAT-lncRNAs Specific Regulation: Few mechanisms may be specific to Natural Antisense
transcripts (NATs). NATs are RNA sequences that are complementary to and overlap with either
protein-coding or non-coding transcripts [42,51]. Cis-NATs are transcribed from the same genomic
locus and have a perfect complementarity with their target mRNA transcript. Trans-NATs are
transcribed from a different genomic locus and have an imperfect complementarity with their target
mRNA transcript [42]. The NATs may act on the transcription through transcriptional interference,
RNA masking, and RNA “A to I” editing [42]. NATs may also regulate the abundance of mRNAs by
• suppressing the translation through polysome displacing, • promoting the mRNA decay through
3’UTR binding, or • modulating the mRNA stability and increasing its expression level through the
formation of sense or antisense pairs [44]. While the majority of the studies described their actions in
cis, no study invalidates a possible operation in trans.

http://fantom.gsc.riken.jp
https:/www.encodeproject.org
http://www.noncode.org
https://www.ncbi.nlm.nih.gov/gene/?term=(Human)+AND+(Argonaute+RISC)
http://www.ensembl.org/id/ENSG00000237036
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0001639
http://www.ensembl.org/id/ENSG00000148516
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1.3.2. Epigenetics-Regulating LncRNAs

Epigenetics-regulating lncRNAs (epi-lncRNAs) are lncRNAs that may guide the polycomb
chromatin domains until polynucleosome compaction [42,52]. The Polycomb group of proteins
was identified as a transcriptional-repressive complex, named the Polycomb Repressive Complex
(PRC). Essential members of the PRC are the PRC1 and PRC2. The PRC1 contains the CBX7 protein,
and the PRC2 contains the EZH1, EZH2, EED, and the SUZ12 subunits. Importantly, the PRC2 is highly
conserved between plants and animals and can create polycomb chromatin domains with the PRC1
to help polynucleosome compaction [53]. Indeed, PRC1’s CBX7 and PRC2’s EZH2-SUZ12 can tether
epi-lncRNAs, which in return will guide the polycomb chromatin domain through its repressive action.
Then, PRC2’s EZH2 and EZH1 trimethylates the histone 3 at lysine 27 (H3K27me3), which will become
an anchor site for the PRC1. Once the PRC1 is attached, it mono-ubiquitinates the H2A on K119
(H2AK119Ub), eventually leading to the repression of the targeted gene [42,53]. However, the PRC2
may tether many types of RNA without a precise binding site. In consequence, assigning only
the lncRNAs to the recruitment of the PRC2 may be premature [54]. Moreover, epi-lncRNAs may
regulate gene expressions independently [47]. For example, HOTAIR can repress a limited number of
genes through H3K27me3 without the involvement of the PRC2 complex [55]. Hence, these recent
observations point up the need for a better understanding of the epigenetics modulation triggered
by epi-lncRNAs.

Besides, the lncRNAs are generally expressed at low levels when compared to protein-coding
genes [56,57]. This low expression underlines a fine regulation of their target mRNA, which could
dramatically impact the behavior of the receiving cell during intercellular communication.
However, the mechanisms are not clear enough to understand how an epi-lncRNAs, which acts
in the nucleus, can reach its targets in another cell through vesicle transportation.

2. LncRNAs and Their Exosomes in Lung Diseases

From a PubMed screening, done in January 2020, we found associations only between lung
cancers and both lncRNAs and exosomes. Therefore, our strategy was first to build a list of the most
published lncRNAs found in at least two lung diseases within asthma, COPD, IPF, and lung cancers.
Importantly, this information comes from either the main text, the figures, or the gene expression
datasets that were available. After overlapping the official gene symbols, we found the ten following
lncRNAs in at least two diseases: H19, MALAT1, MEG3, FENDRR, CDKN2B-AS1, TUG1, HOTAIR,
GAS5, LINC00861, and CCDC18-AS1. Interestingly, we did not find publications reporting LINC00861
and CCDC18-AS1 in lung cancers.

Hereafter we will describe the ten lncRNAs in their associated disease. We will then summarize
the eight lncRNAs found in lung cancers into interaction networks and tables listing their promising
clinical interests. Figures 2–4 summarize these lncRNAs and their known actions in the COPD, IPF,
and asthma, respectively. Dedicated networks will then cover each of these lncRNAs in lung cancers.
Tables 1 and 2 respectively provide the downstream targets of the eight lncRNAs and their possible
use as biomarkers in the lung diseases mentioned above. Table 3 provides lung cancer treatment
resistances associated with the eight lncRNAs. Moreover, from this list, only H19, MALAT1, HOTAIR,
and GAS5 were associated with exosomes and lung cancers in our PubMed search. Therefore, we will
also shortly describe results on exosomes for six additional lncRNAs that were related to only lung
cancers. These lncRNAs are UCA1, lnc-MMP2-2, GAPLINC, TBILA, AGAP2-AS1, and SOX2-OT.

http://www.ensembl.org/id/ENSG00000100307
http://www.ensembl.org/id/ENSG00000108799
http://www.ensembl.org/id/ENSG00000106462
http://www.ensembl.org/id/ENSG00000074266
http://www.ensembl.org/id/ENSG00000178691
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Table 1. Downstream targets of the 8 lncRNAs described in lung diseases.

Disease LncRNA Expression Location Action Targeted Pathway Downstream Targets References

Asthma

CDKN2B-AS1 up BA-E & BA-R Pro-inflammatory - TNF, IL17A [58]

GAS5 up Severe asthma CD4+T-cells Treg/Th17 balance - FOXP3, RORC [59]

BEAS-2B and primary human ASM cell cultures Glucocorticoid activity - - [60]

MALAT1 up blood of highly-expressed IgE eosinophilic asthma Inhibits pathway T-cell receptor - [61]

Severe asthma CD4+T-cells Treg/Th17 balance - FOXP3, RORC [59]

MEG3 up Severe asthma CD4+T-cells Pro-inflammatory Th17 cell differentiation IL17A, IL22, RORC [59]

TUG1 up ASM of Sprague Dawley rats Promotes cell proliferation and migration - Fgf1 [62]

IPF

CDKN2B-AS1 down peripheral blood Activates cell cycle arrest P53 CDKN2A, TP53 [63]

FENDRR down fibrotic human lung cells and mouse primary lung fibroblasts Inhibits fibroblast activation & reduces pulmonary fibrosis TGFB / SMAD3 ACO1 [64]

H19 up human pulmonary fibrotic tissues Induces fibrosis TGFB / SMAD3 TGB1, SMAD3 [65]

MEG3 up pulmonary epithelial cells from IPF lung tissue Promotes cell migration - TP63, KRT14, STAT3, YAP1, TP73, SOX2, HES1, HEY1 [66]

COPD

CDKN2B-AS1 down plasma of AECOPD Anti-inflammatory - TNF, IL1B, IL17A, CXCL8 [67]

H19 up Quadriceps of FFMI patients with COPD Susceptibility to low FFMI - MYOD1 [68]

HOTAIR up CS-exposed male BALB/c mice & HBE cells treated with CSE - - IL6, CXCL8, CDH2, VIM, ACTA2, CDH1 [69]

MEG3 up lung from COPD & CSE-treated 16HBE cells Induces apoptosis and inflammation Apoptosis IL1B, IL6, TNF [70]

TUG1 up sputum and lung from COPD smokers & non-smokers Inhibits inflammation and airway remodelling - DUSP6 [71]

TGFB1 treated BEAS-2B and HFL1 cells Inhibits cell proliferation - ACTA2, FN1 [72]

SCLC HOTAIR up H69 and H446 cell lines Activates the pathway NF-κB HOXA1 [73]

NSCLC

H19 up CDK-4/hTERT-immortalized HBEC Associated with pathway activation WNT / β-catenin WNT2, WNT5A, WNT6, WNT10A, FOXN1, TCF7 [74]

MALAT1 up

Tumor tissues and H1299 cell line Associated with pathway activation WNT / β-catenin - [75,76]

H1299 and H520 cell lines Activates the pathway PTEN / PI3K / AKT BCL2, MMP9, PIK3CA, STAT3 [77,78]

Tumor tissues & A549 and H1299 cell lines Regulates the pathway AKT / MTOR - [79]

CDKN2B-AS1 down Peripheral blood of IPF Regulates the pathway P53 - [63]

HOTAIR up 95C, 95D and YTMLC-90 cell lines Regulates the pathway WNT / β-catenin RB1, E2F1 [80]

A549, H460, H1299, NCI-H460 and HCC-827 cell lines Activates the pathway Apoptosis pULK1 [81]

GAS5 down Tumor tissues & A549, NCI-H1299, H460, SK-MES-1, H157, and H358 cell lines Regulates the pathway PTEN / PI3K / AKT PTEN [82]

TUG1 down Tumor tissues & SPC-A1, NCI-H520, NCI-H520 and NCI-H1299 cell lines Regulates the pathway PTEN / PI3K / AKT PTEN [83]

https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04660
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04659
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04115
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04350
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04350
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04210
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04064
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04310
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04310
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04151
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04150
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04115
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04310
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04210
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04151
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04151
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Table 2. Potential biomarkers from the eight lncRNAs observed in lung diseases.

Disease Location LncRNA Type Value Relevancy References

Asthma CD4+T-cells GAS5 / MEG3 expression upregulated Up in asthmatic patients vs. healthy patients [59]

peripheral whole blood MALAT1 expression upregulated Up in highly-expressed IgE eosinophilic asthmatic (EA) patients vs. healthy patients [61]

plasma CDKN2B-AS1 expression upregulated Up in patients with bronchial asthma vs. healthy patients [58]

COPD plasma CDKN2B-AS1 expression downregulated Down in patients with acute exacerbations of COPD vs. stable COPD or healthy patients [67]

sputum & lung TUG1 expression upregulated Up in COPD patients with or without smoking history [71]

IPF peripheral whole blood CDKN2B-AS1 expression downregulated
Down in IPF patients, vs. healthy controls

May promote the occurrence of lung cancers [63]

Lung
cancers constitutive DNA H19 polymorphism rs217727 C >T Associated with increased risk of lung cancer in meta-analysis [84]

MEG3 rs4081134 G >A Genotype [AA] associated with lung cancer risk in chinese northeast population [85]

LUAD

serum TUG1 expression upregulated Up in LUAD patients vs. healthy patients [86]

tumor CDKN2B-AS1 expression upregulated Up in cell lines & positively correlated with the differentiation grade and the TNM stages [87]

tumor FENDRR expression downregulated
Strongly associated with High TNM 1 stage in LUAD patients vs. healthy patients.

Predicts LUAD cancer vs. healthy state when associated with LINC00312 [88]

NSCLC

plasma H19 expression upregulated Up in NSCLC vs. begnin lung disease [89]

serum MALAT1 expression downregulated Down in patients with NSCLC vs. healthy patients [90–93]

tumor

CDKN2B-AS1 expression upregulated Correlated with poor patient OS [94]

GAS5 expression downregulated Down in male subjects vs. corresponding ANCTs. [95]

H19 expression upregulated Up in stage III and IV vs. stage I and II & negatively correlated with OS [96,97]

HOTAIR expression upregulated

Up in patients with stage III and IV vs. stage I and II.
Positively correlated with greater tumor size,

lymph node metastasis or lymph-vascular invasion,
short disease free interval, and reduced OS. [98–100]

MALAT1 expression upregulated

Associated with a poor prognosis and short OS.
Associated with age, tumour size & TNM stage,

when combined to SOX9 [76,79,101–105]

MEG3 expression downregulated Associated with short-term survival [106]

TUG1 expression downregulated Associated with a high TNM stage and a poor patient outcome [105,107,108]

SCC sputum H19 / HOTAIR expression - Diagnosis of SCC vs. LUAD [109]
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Table 3. Lung cancer treatment resistances associated to the eight lncRNAs described in lung diseases.

Disease Treatment LncRNA Expression Relevancy References

LUAD

Gefitinib GAS5 down Overexpression increases sensitivity to treatment [110]

Ionizing radiation Overexpression increases radiosensitivity [111]

Cisplatine
HOTAIR up

Repression increases sensitivity to treatment [112,113]

Erlotinib Repression of PDK1 and HOTAIR-mediated EZH2
gene expression increases sensitivity to treatment [114]

Atractylenolide 1

SCLC
Cisplatine

HOTAIR up Repression increases sensitivity to treatment [115]
Adriamycin

Etoposide

NSCLC

Cisplatine

FENDRR down Negatively correlated with treatment response [116]

GAS5 down Could regulate chemo-resistance to treatment [82]

H19 up Negatively correlated with treatment response [96]

MALAT1 up
Increases resistance to treatment through positive

feedback loop with SOX9 [76]

MEG3 down Overexpression increases sensitivity to treatment [117–119]

TUG1 down Overexpression increases sensitivity to treatment [83]

Crizotinib HOTAIR up Repression increases sensitivity to treatment [81]

Paclitaxel CDKN2B-AS1 up Inhibits sensitivity to treatment [87]

Vincristine MEG3 down Overexpression increases sensitivity to treatment [117,120]

OSCC Cisplatine CDKN2B-AS1 up Associated with Midkine to treatment resistance [121]
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Figure 2. The selected eight lncRNAs in Idiopathic Pulmonary Fibrosis (IPF): A network of lncRNA-miRNA-Protein interactions. Upregulated molecules are in green.
Downregulated molecules are in red. Up or down-regulated molecules are in purple. Shape definitions are in grey. Gray arrows target the activated molecules. T-ended
lines target the inhibited molecules. Square-ended lines represent a binding between molecules. Dashed-dot lines represent an association with unknown interaction.
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Figure 3. The selected eight lncRNAs in Asthma: A network of lncRNA-miRNA-Protein interactions. Upregulated molecules are in green. Downregulated molecules
are in red. Up or down-regulated molecules are in purple. Shape definitions are in grey. Gray arrows target the activated molecules. T-ended lines target the inhibited
molecules. Square-ended lines represent a binding between molecules. Dashed-dot lines represent an association with unknown interaction.
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Figure 4. The selected eight lncRNAs in Chronic Obstructive Pulmonary Disease (COPD): A network of lncRNA-miRNA-Protein interactions. Upregulated molecules
are in green. Downregulated molecules are in red. Up or down-regulated molecules are in purple. Shape definitions are in grey. Gray arrows target the activated
molecules. T-ended lines target the inhibited molecules. Square-ended lines represent a binding between molecules. Dashed-dot lines represent an association with
unknown interaction.
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2.1. H19

H19 Imprinted Maternally Expressed Transcript (H19) is an RNA gene localized on the
cytogenetic band 11p15.5, in an imprinted region and is close to the IGF2 gene. H19 is
maternally-imprinted, whereas IGF2 is paternally-imprinted. H19 gene has 12 transcripts, 3 retained
introns, and 9 lncRNAs [122–124]. Interestingly, in human adrenocortical carcinoma cell lines (NCI-H295R),
the induction of H19 gene expression comes along with a decrease of IGF2 expression, suggesting a direct
mRNA expression regulation [125].

2.1.1. H19 and IPF

In human pulmonary fibrotic tissues from IPF patients, H19 is upregulated and induces fibrosis
using the TGFB/SMAD3 signaling pathway, through hsa-miR-140 sequestration. Indeed, the hsa-miR-140
can repress the mRNA and protein expressions of TGFB1 and phospho-SMAD3 [65]. Moreover, in TGFB1
induced fibroblasts, H19 upregulation releases COL1A1 expression through hsa-miR-196a (hsa-miR-196a-1
or hsa-miR-196a-2) sequestration, thus leading to increase cell proliferation and migration [126].

2.1.2. H19 and Asthma

Austin et al. found H19 downregulated in airway smooth muscle (ASM) cells from non-severe
asthma when compared to healthy patients. Please refer to their microarray experiment in supplemental
Table 10 [127]. However, the authors did not focus on H19 in their study, which requires further efforts
to assess its clinical impact and mechanism of action.

2.1.3. H19 and COPD

H19 is upregulated in the quadriceps of the low fat-free mass index (FFMI) COPD patients when
compared to normal FFMI. H19 hosts the hsa-miR-675, a miRNA also upregulated in low FFMI COPD
patients. The increase of H19 expression may be the consequence of an altered methylation of its
region. Besides, H19 expression is associated with the downregulation of MYOD1 and hsa-miR-519a
(hsa-miR-519a-1 or hsa-miR-519a-2) in male patients with severe COPD [68]. Subsequently, we can
suspect that H19 sequester hsa-miR-519a following demethylation, thus contributing to increase the
susceptibility to a low FFMI for the COPD patients.

2.1.4. H19 and Lung Cancer

Several studies described H19 as upregulated in NSCLC cells and tumors tissues. They demonstrated
that H19 induces cell proliferation, migration, viability, invasion, and epithelial-mesenchymal transition
(EMT) while decreasing apoptosis [128–134]. H19 uses the following mechanisms, as summarized in
Figure 5.

http://www.ensembl.org/id/ENSG00000130600
http://www.ensembl.org/id/ENSG00000167244
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04350
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000456
http://www.ensembl.org/id/ENSG00000105329
http://www.ensembl.org/id/ENSG00000166949
http://www.ensembl.org/id/ENSG00000108821
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000238
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000279
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0005416
http://www.ensembl.org/id/ENSG00000129152
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003178
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003182
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Figure 5. H19 in lung cancers: A network of lncRNA-miRNA-Protein interactions. Upregulated molecules are in green. Downregulated molecules are in red. Shape
definitions are in grey. Gray arrows target the activated molecules. T-ended lines target the inhibited molecules. Square-ended lines represent a binding between
molecules. Dashed-dot lines represent an association with unknown interaction.
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� Regulators of H19: In NSCLC tumor tissues, FOXF2 can bind the promoter of H19 and can
increase its expression, causing a PTEN downregulation [135]. Additionally, H19 may be a direct
transcriptional target of and is induced by MYC in NSCLC tumor tissues. Indeed, MYC binds to H19
promoter’s E-boxes to facilitate histone acetylation and transcriptional initiation. Furthermore, MYC can
downregulate the expression of IGF2 independently [136,137]. Besides, Shahdoust et al. found H19
among the seven most differentially expressed lncRNAs in the human airway epithelium of cigarette
smokers when compared to non-smokers [138]. Similar results, obtained in cdk-4/hTERT-immortalized
human bronchial epithelial cells (HBEC), described the H19 upregulation following prolonged CSC
exposure. Interestingly, the same authors also found a general diminution of H4K16ac and H4K20me3
and an overall increase of H3K27me3 levels [74]. Nevertheless, H19 methylation status remains low,
as RIOX2 can remove methyl groups from H3K9me3 on the H19 promoter, leading to de-repress
H19 transcription [139]. Importantly, Liu et al. suggested that H19 demethylation may precede the
methylations that silence tumor suppressor genes such as p16-CDKN2A, MGMT, DAPK, E-cadherin
(CDH1), and CDH13 [74]. Moreover, the histone alterations coincided with a decreased DNMT1 and an
increased DNMT3B expressions, as well as the activation of the WNT/β-catenin signaling pathway
during prolonged CSC exposure [74]. Indeed, the authors found that WNT ligands, such as WNT2,
WNT5A, WNT6, and WNT10A, and the Wnt signaling targets FOXN1 and TCF7, were up-regulated [74].

� H19 regulated genes: In NSCLC tumor tissues, H19 decreases the expression of CDH1
by inducing its promoter methylation and also increases CDH2 and VIM expressions [134,140].
Moreover, in human NSCLC cell lines (A549), H19 may regulate metastasis through the modulation
of cell proliferation and cell adhesion proteins, including MACC1, EGFR, β-catenin (CTNNB1),
ERK1 (MAPK3) and ERK2 (MAPK1) [141].

� H19 recruits the PRC2: In NSCLC tumor tissues, H19 can recruit EZH2 to repress PTEN
expression, thus increasing cell proliferation [135].

� H19 as ceRNA: Among its known functions, H19 was reported as a heavy miRNA regulator.
Indeed, H19 can sequester: • hsa-miR-107, to release the expression of NF1 in NSCLC tumor
tissues [128] • hsa-miR-200a, to release the expression of ZEB1 and ZEB2 in NSCLC tumor tissues [130]
• hsa-miR-29b-3p and hsa-miR-17, to release the expression of STAT3 in NSCLC tumor tissues
[131,132] • hsa-miR-196b to release the expression of LIN28B and induce cell growth in NSCLC
tumor tissues [142] • hsa-miR-138 (MIR138-1, MI0000476 or MIR138-2, MI0000455) to release the
expression of PDK1 in NSCLC tumor tissues [129] • hsa-miR-484 to release the expression of ROCK2
and increase the levels of phosphorylated JUN as well as the mesenchymal markers N-cadherin
(CDH2), vimentin (VIM), ZEB1 and SNAI1 while decreasing the level of the epithelial marker CDH1
in NSCLC tumor tissues and cell lines [133,134,143]. A similar observation can be made with the
downregulation of hsa-miRNA-203 (hsa-miRNA-203a or hsa-miRNA-203b), which was associated
with VIM and SNAI1 upregulation and CDH1 downregulation in NSCLC tumor tissues [143].

� H19 as a miRNA regulator: In NSCLC tumor tissues, H19 induces hsa-miR-675-5p expression,
which, in turn, increases the expression of BCL2 and decreases the expression of TP53 as well
as BAX [144–146]. Xu et al. hypothesized H19 as an epigenetic regulator of hsa-miR-6515-3p,
which contributes to metastasis [147]. H19 expression was also positively correlated to hsa-miR-21
expression [97].

� H19 at the clinical level: H19 upregulation in NSCLC tumor tissues was associated with
advanced tumor–node–metastasis (TNM) stages and negatively correlated with patient Overall
Survival (OS) [96,97]. H19 expression was also higher in stage III and IV NSCLC, while hsa-miR-21
expression was higher in stage I and II NSCLC when compared to non-tumor lung tissues [97].
Besides, plasma levels of H19 were significantly increased in NSCLC patients when compared to
patients with benign lung disease [89]. Additionally, a nucleotide polymorphism, the H19-rs217727
C>T, was found significantly associated with an increased risk of lung cancer [84]. Consequently,
with further efforts to confirm these results in large independent cohorts, H19 would make a great
biomarker to diagnose or to assess a genetic predisposition to lung cancers.
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� H19 behavior against treatment: Wang et al. found a negative correlation between the H19
upregulation in NSCLC tumor tissues and the Cisplatin (DDP) response [96].

� Exosomal H19: Tumor-released lncRNA H19 (exo-H19) can promote gefitinib resistance via
packaging into exosomes in NSCLCs. While the experiments were on gefitinib-resistant NSCLC cell
lines, the authors assessed the expression of H19 in both gefitinib-resistant and parental sensitive cells.
H19 expression was increased in gefitinib-resistant NSCLC cells and was described as secreted through
the incorporation into exosomes, which was mediated by HNRNPA2B1. Moreover, exosome-mediated
transfer of H19 conferred gefitinib resistance to the recipient NSCLC cells [148].

2.2. MEG3

Maternally Expressed 3 (MEG3) is a maternally expressed imprinted RNA gene localized on
the cytogenetic band 14q32.2, in the DLK1-DIO3 imprinted region. MEG3 gene has 50 transcripts,
all identified as lncRNAs. MEG3 is expressed in many tissues under normal conditions and interacts
with TP53 [149].

2.2.1. MEG3 and IPF

In pulmonary epithelial cells from IPF lung tissue, MEG3 upregulation promotes migration with
an upregulation of TP63, keratin 14 (KRT14), STAT3, and YAP1 as well as a downregulation of TP73,
SOX2, HES1, and HEY1 [66].

2.2.2. MEG3 and Asthma

In CD4+T-cells of asthmatic patients, MEG3 is upregulated when compared to healthy patients.
Moreover, it displays pro-inflammatory properties linked to the increase of Th17 associated cytokines
IL17A and IL22. It acts through hsa-miR-17 sequestration, which in turn releases the expression of
RORγt (RORC), leading to an increase of Treg/TH17 [59].

2.2.3. MEG3 and COPD

In lung tissues from COPD patients and cigarette smoke extract (CSE)-treated 16HBE cells,
MEG3 is upregulated [70,72]. It induces apoptosis and inflammation by releasing inflammatory
cytokines IL1β (IL1B), IL6 and TNFα (TNF) expression through hsa-miR-218 (hsa-miR-218-1 or
hsa-miR-218-2) sequestration [70].

2.2.4. MEG3 and Lung Cancer

Downregulated MEG3 can regulate cell proliferation, EMT, and apoptosis in NSCLC tumor tissues
from patients with an advanced pathological stage, as well as in cell lines. Importantly, MEG3 was
more downregulated in stages III+IV when compared to stages I+II, and it also increases cell
viability and proliferation, while reducing the expression of autophagy [120]. Conversely, MEG3 was
significantly less methylated in the tumor of smoker patients with clinical early-stage NSCLC,
as compared to non-cancerous tissue. This MEG3 demethylated region (DMR) was associated with
a hypermethylated DIO3 and two hypomethylated (DLK1 and RTL1) [150]. Subsequently, the low
MEG3 expression observed in NSCLC patients with an advanced pathological stage may be due to a
deletion of the MEG3-DMR locus or could be due to the deletion of a transcription factor binding
MEG3 promoter [150–152]. MEG3 uses the following mechanisms, as summarized in Figure 6.
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� Regulators of MEG3: MEG3 promoter methylation was reported in 96% of NSCLC tumor
tissues, which mainly contributes to its downregulation [153,154]. Alternatively, phosphorylated RB1
has been described to activate DNMT1, which in turn, will also decrease the methylation of the MEG3
locus [155].

� MEG3 regulated genes: Two studies realized in NSCLC tumor tissues described MEG3 as an
activator of TP53 by decreasing the levels of MDM2 [149,153]. Additionally, MEG3 can decrease BCL2
expression by promoting BAX, and also decrease MAP1LC3A expression [156,157]. Besides, Su et al.
described MEG3 as inversely correlated with PCNA [153].

� MEG3 recruits the PRC2: In NSCLC cell lines, MEG3 contributes to the recruitment of PRC2’s
EZH2, through a possible interaction with JARID2. This PRC2 recruitment will eventually repress the
expression of CDH1, ZEB family (ZEB1 and ZEB2), and hsa-miR-200 family ( MIR200A, MIR200B,
and MIR200C ), which will lead to a decreased EMT [158].

� MEG3 as ceRNA: Among its known functions, MEG3 was reported as a heavy miRNA
regulator. Indeed, MEG3 can sequester: • hsa-miR-650 to release the expression of SLC34A2, in NSCLC
cell line (H1299) [159] • hsa-miR-7-5p to release the expression of BRCA1, in NSCLC tumor tissues
and BEAS-2B, A549, and HCC823 cell lines [156] • hsa-miR-21-5p to release the expression of SOX7,
in DDP-resistant NSCLC tumor tissues and A549 and H1299 cell lines [117] • hsa-miR-3163 to release
the expression of SKP2 that will, in turn, promotes the ubiquitination-associated degradation of p27
(CDKN1B), in NSCLC tumor tissues and A549 cell lines [153] • hsa-miR-205-5p to release the expression
of LRP1. hsa-miR-205-5p may also be involved in the inhibition of TP53, p21 (CDKN1A), and caspase-3
(CASP3) expressions, in NSCLC tumor tissues and MEG3-knockdown NSCLC cell lines [154,157,160].
Moreover, using lncRNA-miRNA-mRNA regulatory network modules, Li et al. showed the following
interactions in LUAD tumors from The Cancer Genome Atlas (TCGA). MEG3 and MIAT may interact
with hsa-miR-106 (hsa-miR-106a or hsa-miR-106b), which then would regulate the expression of
MAPK9. For a full overview of the Lung Adenocarcinoma (LUAD) miRNAs-lncRNAs-mRNAs
network, please report to Li et al. Figure 2 [161].

� MEG3 at the clinical level: MEG3 low-expression in NSCLC tumor tissues was associated
with short-term survival in two independent public datasets [106]. Besides, MEG3 genotype rs4081134
SNP (AA) was associated with a lung cancer risk in Chinese patients [85]. While being promising,
these findings should, however, be confirmed in additional large independent cohorts to classify MEG3
as a reliable biomarker.

� MEG3 behavior against treatment: MEG3 can promote NSCLC cell lines sensitivity
(A549 and H292) to Vincristine, by inhibiting autophagy. Indeed, autophagy level was higher in resistant
cells, and the overexpression of MEG3 significantly reduced the expression of autophagy-related proteins
LC3-I (MAP1LC3A), and LC3-II (MAP1LC3B) were [120]. The overexpression of MEG3 can also increase
the DDP-sensitivity of NSCLC cell lines (A549 and H1299) [117] and xenografts [118] by decreasing TP53,
CTNNB1, survivin (BIRC5), therefore targeting the WNT/β-catenin signaling pathway [118], and Bcl-xl
(BCL2L1) [119]. Furthermore, in Xu et al., the authors showed that Paclitaxel (PTX) could upregulate
MEG3 and TP53, thus inhibiting cell proliferation and promoting the death of A549 cells [162].

� Exosomal MEG3: From the PubMed screening, we found no studies on MEG3 associated
with lung diseases and exosomes. However, three recent studies could describe exosomal MEG3 in
high-grade serous carcinoma [163], cervical cancer [164], and Hunner-type interstitial cystitis [165].
These studies underline that MEG3 may be involved in intercellular communication, especially in
cancers, and therefore further research on this topic is needed to assess its relevance in lung diseases.
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2.3. MALAT1

Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is an RNA gene localized
on the cytogenetic band 11q13.1. MALAT1 gene has 17 transcripts, all identified as lncRNAs. MALAT1
may also act as a transcriptional regulator for numerous genes and is involved in the cell cycle
regulation and pre-mRNA splicing [166].

2.3.1. MALAT1 and Asthma

In Zhu et al. RNA sequencing data, MALAT1 was observed as upregulated in the blood of
highly-expressed IgE eosinophilic asthmatic (EA) patients when compared to healthy patients [61].
The authors denoted the T cell receptor signaling as one of the main pathways impaired in EA patients.
Moreover, Qiu et al. heatmap (Figure 2A) displays MALAT1 as upregulated in CD4+ cells from
asthmatic patients when compared to healthy patients [59].

2.3.2. MALAT1 and COPD

MALAT1 was found the most abundant lncRNA in whole blood cells from former and current
smokers with COPD [167].

2.3.3. MALAT1 and Lung Cancer

MALAT1 has been described as upregulated in NSCLC tumor tissues and cell lines, and it
regulates cell proliferation, migration, invasion, EMT and apoptosis, but also mesenchymal-epithelial
transition (MET) [77,79,101,102,168–178]. It is worth underlining that Ghafouri-Fard et al. summarized
the studies of MALAT1 to a broader range of cancers in the Table 1 of their review [179]. MALAT1 uses
the following mechanisms, as summarized in Figure 7.

� Regulators of MALAT1: TDP-43 (TARDBP) can upregulate MALAT1 expression through direct
interaction in NSCLC cell lines (A549 and YTLMC-9) [169]. Moreover, in the tumor tissues of NSCLC
female patients, ESR2 can upregulate MALAT1 expression by binding to estrogen-response-element
I and II on the proximal 2-kb region of MALAT1 promoter [172]. Additionally, in the NSCLC cell
line (A549), Oct3/4 (POU5F1) and SP1 can increase MALAT1 expression by physically binding its
promoter [178,180]. Furthermore, in NSCLC cell lines (SPC-A1 and H1299) in vitro and in vivo, TFAP2C
and ZEB1 can upregulate MALAT1 expression, leading to the sequestration of miR-200b, which, in turn,
increases of E2F3 and ZEB1, creating, therefore, a positive feedback loop [181]. Some miRNAs may
also regulate MALAT1. Indeed, hsa-miR-142-3p can inhibit MALAT1 and WNT/β-catenin signaling
pathway in NSCLC tumor tissues and H1299 cell lines [75]. Moreover, hsa-miR-101-3p can inhibit
MALAT1, BCL2, MMP9, PI3K (PIK3CA) expressions in NSCLC cell lines (H1299 and H520) [77].

� MALAT1 regulated genes: In NSCLC cell lines (A549 and H1299), MALAT1 can repress TP53
expression at the pre-mRNA level by binding a responsive region in the TP53 P1 promoter, leading to
the downregulation of CDKN1A and FAS expressions [170]. In NSCLC cell lines (PC-9 and A549),
MALAT1 also decreases cleaved-PARP1, cleaved-CASP3, and upregulates phospho-STAT3 [171],
which in turn upregulates MDR1 (ABCB1) and MRP1 (ABCC1) [182]. Moreover, MALAT1 is involved
in the upregulation of BCL2, MMP9, PIK3CA expressions, thus activating the PI3K/AKT signaling
pathway in NSCLC tumor tissues and H1299 cell lines [77]. Furthermore, in NSCLC tumor tissues and
cell lines (A549 and H1299), MALAT1 can upregulate VIM and downregulate CDH1 and is involved
in the phosphorylation of AKT1, RPS6KB1, and MTOR [79,102]. Besides, in NSCLC tumor tissues
and cell lines (A549, H661, and H460), MALAT1 can upregulate CXCL5, which in turn upregulates
p-MAPK8 and down-regulates p-MAP2K1/2, p-MAPK3/1 proteins [176,183].
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� MALAT1 as ceRNA: Among its known functions, MALAT1 was reported as a heavy miRNA
regulator. Indeed, MALAT1 can sequester: • hsa-miR-145 to release the expressions of NEDD9 in
the tumor tissues of NSCLC female patients [172], and KLF4 in NSCLC tumor tissues and cell lines
(A549 and H1299) [184] • hsa-miR-204 to release the expression of SNAI2 in NSCLC tumor tissues
and cell lines (A549, H1299, H460, and H446) [185] • hsa-miR-124-1 to release the expression of
STAT3 and PI3K/AKT signaling pathway, in NSCLC cell lines (A549, H23, H522, H1299, H460) [78]
• hsa-miR-206 and impact the AKT/MTOR signaling pathway in NSCLC tumor tissues and cell
lines (A549 and H1299) [79] • hsa-miR-200b to release E2F3 and ZEB1 expressions, thus creating a
positive feedback loop as ZEB1 can upregulate MALAT1 in NSCLC cell lines (SPC-A1 and H1299)
in vitro and in vivo [181] • hsa-miR-200a-3p to release PD-L1 (CD274) expression in NSCLC tumor
tissues and cell lines (A549 and CAL-12T) [186] • hsa-miR-429 to release Cyclin D1 (CCND1), MMP9,
VIM, and CDH2 expression while repressing CDH1 expression in NSCLC tumor tissues [187] •
hsa-miR-197-3p to release the Catenin-δ1 (CTNND1) expression in NSCLC tumor tissues and cell
lines (A549, H1299, H460 and SPC-A-1) [188] • hsa-miR-101-3p to release the expressions of MCL1 in
NSCLC tumor tissues and cell lines ((A549, H1299, H469, SPC-A1) [103], and SOX9 in NSCLC tumor
tissues and cell lines (A549, H1299, HCC827, and H358) [76]. Moreover, in NSCLC tumor tissues and
cell lines (A549, H1299, HCC827, and H358), SOX9 could activate MALAT1 expression by binding
MALAT1 promoter on a specific site (5’-TCATTGTGT-3’), thus creating a positive feedback loop which
dramatically increases MALAT1 downstream effects. Besides, SOX9 contributes to the upregulation of
CTNNB1, a downstream target of MYC, thus activating the WNT/β-catenin signaling pathway [76].

� MALAT1 at the clinical level: Several studies described a high MALAT1 level associated
with a poor prognosis and short OS in NSCLC tumor tissues [76,79,101–103,105]. Besides, MALAT1
level was low in the serum of patients with NSCLC; however, it still lacks some specificity [90–93].
Furthermore, both MALAT1 and SOX9 expressions were associated with age, tumor size, and TNM
stage, making these two genes potential candidates for prognosis tools [76,79,104].

� MALAT1 behavior against treatment: High MALAT1 expression was associated with a DDP
chemo-resistance in NSCLC tumor tissues [76,103,184,188] and cell lines [182]. Interestingly, a feedback
loop between MALAT1 and SOX9 may amplify this resistance [76]

� Exosomal MALAT1: Exosomal MALAT1 (exo-MALAT1) was described as upregulated in
the serum of 77 NSCLC patients, and its expression was related to tumor stage and lymphatic
metastasis [174]. While being a potential new biomarker for tumor stage diagnosis, further studies
should be conducted on larger cohorts to confirm the predictive power of exo-MALAT1.

2.4. FENDRR

FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) is an RNA gene localized
on the cytogenetic band 16q24.1. FENDRR gene has 14 transcripts, all identified as lncRNAs. This gene
is transcribed bidirectionally with FOXF1 on the opposite strand. FENDRR may bind the polycomb
repressive complex 2 (PRC2) to promote the methylation of its targeted genes.

2.4.1. FENDRR and IPF

FENDRR levels were low in fibrotic human lung cells and mouse primary lung fibroblasts.
Interestingly, Huang et al. hypothesized that the TGFB1/SMAD3 signaling pathway might cause these
low levels. Besides, FENDRR may inhibit fibroblast activation and reduces pulmonary fibrosis by
capturing ACO1, thus reducing the iron levels, and by sequestrating the profibrotic hsa-miR-214 [64].

2.4.2. FENDRR and Lung Cancer

Several studies described FENDRR as downregulated in NSCLC tumor tissues and cell lines.
They also found FENDRR within the top three lncRNA sharing high connectivity with differentially
expressed protein-coding genes. Besides, network prediction algorithms associated FENDRR with
vasculature development, cell surface receptor-linked signal transduction, cell proliferation, EMT,
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stemness, metastasis, and apoptosis [88,116,189–194]. FENDRR uses the following mechanisms,
as summarized in Figure 8.
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Figure 8. FENDRR in lung cancers: A network of lncRNA-miRNA-Protein interactions. Upregulated
molecules are in green. Downregulated molecules are in red. Shape definitions are in grey. Gray
arrows target the activated molecules. T-ended lines target the inhibited molecules. Square-ended
lines represent a binding between molecules. Dashed-dot lines represent an association with unknown
interaction.

� Regulators of FENDRR: Two studies described FENDRR as hypermethylated through a
presumable involvement of EZH2. This hypermethylation could explain its downregulation in NSCLC
tumor tissues and cell lines (Calu-1 and H1975) [193,194].

� FENDRR regulated genes: In NSCLC tumor tissues, FENDRR can specifically bind to the
3’UTR of ABCB1, thus blocking HuR (ELAVL1) binding to ABCB1 3’UTR, and therefore resulting
in the decrease of ABCB1 expression [195]. Besides, Xu et al. found a negative correlation between
FENDRR and ABCC10 expressions in NSCLC tumor tissues and cell lines (A549) [116].

� FENDRR as ceRNA: In NSCLC tumor tissues, cell lines (H1650, HCC827, A549, and H1975)
and xenografts, FENDRR could also act as a miRNA regulator. Indeed, FENDRR can sequester
hsa-miR-761 to release the expression of the metalloproteinase inhibitor TIMP2 [189,196]. Additionally,
Liu et al. associated FENDRR to prognostic-significant ceRNA networks using TCGA-LUAD data.
They also listed seven other molecules associated with these ceRNA networks; three mRNAs, EPAS1,
FOXF1, and EDNRB, and four miRNAs, hsa-miR-148a, hsa-miR-195, hsa-miR-196b, and hsa-miR-301b).
For an exhaustive overview of their FENDRR centered lncRNA–miRNA–mRNA ceRNA network,
please refer to Figure 5 of their study [197].

� FENDRR at the clinical level: FENDRR low-expression in tumor tissues is strongly associated
with TNM 1 stage in LUAD patients. Furthermore, when associated with LINC00312, FENDRR showed
a diagnostic value in detecting these LUAD patients [88]. Nevertheless, to confirm the diagnostic
power of FENDRR on the TNM 1 stage of LUAD patients, additional studies should be conducted on
a broader spectrum of lung cancers, including different cancer subtypes and TNM stages.
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� FENDRR behavior against treatment: The low expression of FENDRR observed in NSCLC
tumor tissues was correlated with chemo-resistance to DDP [116]. However, additional studies are
required to confirm this result.

� Exosomal FENDRR: From the PubMed search, we found no studies associating FENDRR
to exosomes. However, FENDRR is an important lncRNA that controls the occurrence of
metastasis. Indeed, low FENDRR expression was associated with distant metastasis and allowed the
downregulation of the metalloproteinase inhibitor TIMP2 by the lack of competition with hsa-miR-761.
Therefore, the metalloproteinase can degrade the extracellular matrix (ECM) and facilitates tumor
metastasis [196]. It would, therefore, be interesting to seek for FENDRR in the extracellular vesicles of
lung cancer associated with distant metastasis.

2.5. TUG1

Taurine Up-Regulated 1 (TUG1) is an RNA gene localized on cytogenetic band 22q12.2. TUG1 gene
has 20 transcripts, all identified as lncRNAs. TUG1 interacts with the PRCs to regulate the transcription
and may also act as a ceRNA targeting miRNAs.

2.5.1. TUG1 and Asthma

In ASM of Sprague Dawley rats, rat TUG1 was described upregulated and release rat Fgf1 through
rno-miR-590-5p sequestration, thus leading the increase of cell proliferation and migration [62].

2.5.2. TUG1 and COPD

Gu et al. found TUG1 as upregulated, in sputum and lung tissues from COPD patients with
or without a smoking history. They also demonstrated that TUG1 releases the expression of DUSP6
through the sequestration of hsa-miR-145-5p, thus contributing to the inhibition of inflammation and
airway remodeling [71]. Besides, in TGFB1 treated BEAS-2B and HFL1 cells, TUG1 could block cell
proliferation through the inhibition of αSMA (ACTA2) and fibronectin 1 (FN1) expressions [72].

2.5.3. TUG1 and Lung Cancer

TUG1 was the only lncRNA described as downregulated in NSCLC tumor tissues and
upregulated in Small Cell lung cancer (SCLC) tissues and the serum of LUAD patients.
Interestingly, TUG1 downregulation was significant in the tumor tissues of male donors only and was
associated with Squamous Cell Carcinoma (SCC) and LUAD tumor subtypes. This decrease was, however,
strongly and significantly correlated to GAS5 decrease in Female donors and combined tumors when
compared to adjacent non-cancerous tissues (ANCTs) [95]. Furthermore, few studies described TUG1
associated with cell proliferation, migration, invasion, apoptosis, and autophagy [198–200]. It is worth
underlining that Ghaforui-Fard et al. summarized the studies of TUG1 to a broader range of cancers in
Table 1 of their review [198]. TUG1 uses the following mechanisms, as summarized in Figure 9.

� Regulators of TUG1: Zhang et al. found that TP53 can regulate TUG1 expression in NSCLC
tumor tissues and SPC-A1 cell line in vitro and in vivo [105,107]. This result requires, however,
an independent validation. � TUG1 regulated genes: In NSCLC tumor tissues, TUG1 has been
described to trans-downregulate the expression of Homeobox B7 (HOXB7), CELF1, and EZH2
(PRC2 subunit). Moreover, TUG1 decrease was also significantly associated with the differential
expression of the following target genes. In both LUAD and SCC, TUG1 downregulation was associated
with the downregulation of ELAVL1, PTBP1, IGF2BP1, IGF2BP2, IGF2BP3, PUM2, TNRC6A, DGCR8,
FMR1, FXR1, FUS, MOV10, ZC3H7B, EWSR1, FUS-mutant, SRSF1, U2AF2, UPF1, and TARDBP [95].
It was otherwise associated with the upregulation of HNRNPC [95]. Conversely, in SCLCs, TUG1 may
silence LIMK2 and BAX expression by interacting with EZH2 [86,105,107,108,198–200].
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Figure 9. TUG1 in lung cancers: A network of lncRNA-miRNA-Protein interactions. Upregulated
molecules are in green. Downregulated molecules are in red. Shape definitions are in grey. Gray
arrows target the activated molecules. T-ended lines target the inhibited molecules. Square-ended
lines represent a binding between molecules. Dashed-dot lines represent an association with unknown
interaction.

� TUG1 recruits the PRC2: In NSCLC tumor tissues, TUG1 can regulate CELF1 through
PRC2 binding [108], and may also recruit EZH2, which will then trimethylates H3K27 and repress
HOXB7 [95].

� TUG1 as ceRNA: In NSCLC tumor tissues, cell lines (SPC-A1, NCI-H520, NCI-H520,
NCI-H1299) and xenograft, Guo et al. found that TUG1 can sequester hsa-miR-221, thus releasing the
expression of PTEN [83].

� TUG1 at the clinical level: On the one hand, TUG1 was upregulated in the serum of LUAD
patients when compared to healthy serums [86,198]. On the other hand, TUG1 low expression in NSCLC
tumor tissues was associated with a high TNM stage and a poor patient outcome [105,107,108,198].

� TUG1 behavior against treatment: The low expression of TUG1 observed in NSCLC cells was
associated with chemo-resistance to DDP. When overexpressed, TUG1 promoted the sensitivity of
NSCLC cells to DDP, leading to apoptosis, in vitro, and in vivo [83].
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� Exosomal TUG1: From the PubMed search, we found no studies associating TUG1 with lung
diseases and exosomes. However, two recent studies mentioned exosomal TUG1, in MCF-7 cells,
the levels of TUG1 were moderately elevated in exosomes when compared to cells [201], and TUG1
was up-regulated in the serum exosomes of colorectal cancer (CRC) patients [202]. Besides, Guo et al.
described TUG1 as ceRNA to hsa-miR-221, which enables PTEN expression [83]. Together, these results
suggest that TUG1 may be involved in intercellular communication to synchronize cellular proliferation.
Therefore, further research on this topic is needed to assess its relevance in lung cancers.

2.6. CDKN2B-AS1, ANRIL

CDKN2B Antisense RNA 1 (CDKN2B-AS1), also called ANRIL, is an RNA gene localized on
cytogenetic band 9p21.3. CDKN2B-AS1 gene has 28 transcripts, all identified as lncRNAs and with
some of which can turn into circular RNAs [203]. CDKN2B-AS1 is known to bind CBX7 (PRC1 subunit)
and SUZ12 (PRC2 subunit) to repress the transcription of p15 (CDKN2B) [42,204,205].

2.6.1. CDKN2B-AS1 and IPF

In the peripheral blood of IPF patients, CDKN2B-AS1 is downregulated when compared to
healthy controls. The adjacent gene, CDKN2A, is transcribed simultaneously with CDKN2B-AS1 and
is also downregulated in IPF patients. Importantly, Du et al. described that both CDKN2B-AS1 and
CDKN2A might regulate the TP53 signaling pathway [63]. Indeed, the CDKN2A protein is known
to stabilize TP53 in NSCLC [206], and the authors found the p53-signaling pathway as the top target
gene-associated pathway in IPF patients.

2.6.2. CDKN2B-AS1 and Asthma

In their study on bronchial asthma at exacerbation (BA-E) and bronchial asthma at remission
(BA-R), Ye et al. described CDKN2B-AS1 as upregulated in the plasma of patients with both types of
bronchial asthma when compared to healthy subjects. Moreover, CDKN2B-AS1 is upregulated in BA-E
patients when compared to BA-R patients. These authors also found a negative correlation between
CDKN2B-AS1 and hsa-miR-125a in all patients, suggesting miRNA sequestration. In Tables 2 and 3
from the same study, the authors found CDKN2B-AS1 negatively correlated with FEV_1/FVC in BA-E
patients, and positively correlated with pro-inflammatory cytokines, such as TNF in BA-E patients and
IL17A in both BA-E and BA-R patients [58].

2.6.3. CDKN2B-AS1 and COPD

Ge et al. described CDKN2B-AS1 as downregulated in the plasma from acute exacerbations
of COPD (AECOPD) when compared to stable COPD or healthy patients. These authors also
found a negative correlation between the expression of CDKN2B-AS1 and inflammatory cytokines
such as TNF, IL1B, IL17A, and Leukotriene B4 (LTB4) in both AECOPD and stable COPD patients.
Furthermore, they found another negative correlation between CDKN2B and IL8 (CXCL8) only in
AECOPD patients [67].

2.6.4. CDKN2B-AS1 and Lung Cancer

CDKN2B-AS1 was described as upregulated in NSCLC tumor tissues and cell lines and was
among the top three lncRNAs with high connectivity with differentially expressed protein-coding
genes [87,88,207]. CDKN2B-AS1 high expression is also known to promote cell proliferation,
cell migration, and to be involved in apoptosis [208,209]. CDKN2B-AS1 uses the following mechanisms,
as summarized in Figure 10.
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� Regulators of CDKN2B-AS1: In NSCLC tumor tissues and cell lines (A549, SPC-A1,
and NCI-H1975), MYC can upregulate CDKN2B-AS1 by physically interacting with the c-Myc-responsive
element (E-box) of CDKN2B-AS1 promoter [87,208]. Besides, Midkine (MDK) was described as often
upregulated in the tumor microenvironment of SCC tumor tissues and cell lines (SCC4, OSCC3, HSC3,
and CAL27). The authors also found that MDK can upregulate the CDKN2B-AS1 expression [121].

� CDKN2B-AS1 regulated genes: In NSCLC tumor tissues, Alsibai et al. found a strong positive
correlation between the expressions of CDKN2B-AS1 and the tumor suppressors p15-CDKN2B and
p14-CDKN2A, but not p16-CDKN2A. Interestingly, expressed CDKN2B-AS1 can stabilize the PRC
complexes to repress the expression of p15, p14, and p16, leading to activate the cell cycle [207].
Few additional studies described the ability of CDKN2B-AS1 to decrease the expression of PARP1,
cleaved-PARP1, and cleaved-CASP3, and to increase BCL2 and CASP3 expressions [87,121].

� CDKN2B-AS1 recruits the PRC2: CDKN2B-AS1 can also silence KLF2 and CDKN1A
transcription by binding with EZH2 in NSCLC tumors tissues and cell lines (PC9, SPC-A1, NCI-H1975,
H1299, H358 and (H520) [209].

� CDKN2B-AS1 at the clinical level: Lin et al. found a positive correlation between
CDKN2B-AS1 high-expression and the differentiation grade and TNM stages in LUAD [87].
CDKN2B-AS1 high-expression in NSCLC tumor tissues was also associated with poor patient OS [94].
Intriguing results from Du et al. suggested that a low CDKN2B-AS1 expression in the peripheral
blood of IPF patients may promote the occurrence of lung cancers by regulating the P53 signaling
pathway [63]. However, further investigations should be conducted on IPF patients that developed
lung cancer to confirm this hypothesis. Interestingly, CDKN2B-AS1 SNPs were strongly associated
with the risk of developing a LUAD [210–214].
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� CDKN2B-AS1 behavior against treatment: CDKN2B-AS1 high expression increases PTX
resistance of A549 cells [87]. Interestingly, Zhang et al. showed that cancer-associated fibroblasts (CAFs)
contribute to the high level of MDK in the tumor micro-environment of Oral Squamous Cell Carcinoma
(OSCC) tissues, thus promoting a DDP resistance via a high expression of CDKN2B-AS1 [121].

� Exosomal CDKN2B-AS1: From the PubMed search, we did not find studies associating
CDKN2B-AS1 with lung diseases and exosomes. Moreover, only one recent study mentioned
exosomal CDKN2B-AS1 as significantly higher in the urine of BC patients when compared to healthy
subjects [215]. However, CDKN2B-AS1 is an important lncRNA that can decrease the expression levels
of PARP1, which plays a crucial role in DNA repair [87,121]. Since the alteration of the DNA repair
mechanism is part of the hallmark of cancers, it would be interesting to seek for CDKN2B-AS1 in the
extracellular vesicles of early-stage lung tumors.

2.7. HOTAIR

HOX Transcript Antisense RNA (HOTAIR) is an RNA gene localized on the cytogenetic band
12q13.13. HOTAIR gene has five transcripts, all identified as lncRNAs.

2.7.1. HOTAIR and COPD

In Male BALB/c mice exposed for four days with CS as well as human bronchial epithelial
(HBE) cells treated with CSE, STAT3 activation led to the upregulation of HOTAIR and EZH2.
Additionally, the levels of inflammatory factors, IL6 and CXCL8, as well as the EMT markers, CDH2,
VIM, and ACTA2, increased, while CDH1 levels decreased. Nevertheless, these results shall be
confirmed in COPD patients [69].

2.7.2. HOTAIR and Lung Cancer

In Nakagawa et al.’s study on NSCLC tumor tissues, 22.1% of the patients showed at least
a two-fold increased expression of HOTAIR. This increase was more frequent in patients with an
advanced stage of the tumor than in patients with other stages [98]. Furthermore, HOTAIR expression
could upregulate cell migration and anchorage-independent cell growth [87,98,146]. Under hypoxic
conditions, HOTAIR also enhances cell proliferation, migration, invasion, EMT, the formation of
cancer stem cells (CSCs), and inhibits G0/G1 cell-cycle arrest and cell apoptosis [73,112,216–218].
More generally, the HOX cluster-embedded lncRNAs (HOX-lncRNAs) plays a significant role in the
regulation of their adjacent coding genes and several HOX-lncRNAs, including HOTTIP, HOXA11-AS,
HOTAIRM1, HOXA-AS3, HOXA10-AS, HOTAIR, and HAGLR, which are dysregulated in lung
cancer [218]. HOTAIR uses the following mechanisms, as summarized in Figure 11.

� Regulators of HOTAIR: In the NSCLC cell line A549, HOTAIR was described as upregulated
by hypoxia and CSE [216,217], and is a direct target of HIF-1α (HIF1A), which acts through
interaction with putative hypoxia-responsive elements (HREs) in the upstream region of HOTAIR [216].
Besides, pro-inflammatory IL6 can activate STAT3 in an autocrine path, and STAT3 will then increase
HOTAIR expression by interacting with its promoter [217]. In NSCLC tumor tissues and A549
cell line, Caveolin 1 (CAV1) was described to upregulate HOTAIR [219]. Interestingly, a specific
negative regulation loop involves HOTAIR and TP53 in NSCLC tumor tissues. Indeed, two TP53
binding sites were found on HOTAIR’s promoter and can suppress HOTAIR transcription after TP53
binding. HOTAIR can, in turn, modify the promoter of TP53 by increasing H3K27me3 leading to TP53
repression [220].
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� HOTAIR regulated genes: In SCLC cell lines (H69 and H446), HOTAIR can activate the
NF-κB signaling pathway through the methylation of HOXA1 [73]. Indeed, HOTAIR regulates the
HOXA1 methylation level by decreasing DNMT1 and DNMT3B expression [115]. In an NSCLC cell
line (PC9), HOTAIR is involved in cellular growth with p65 (RELA), DNMT1, and EZH2. Moreover,
HOTAIR can inhibit JUN and CDKN1A [221]. Furthermore, in NSCLC tumors tissues and PC9 cell
line, HOTAIR can activate WNT3A, CTNNB1, APC, ABCC1, and ABCB1, and can also promote the
expression of 14-3-3σ (SFN) [222,223]. In NSCLC tumor tissues and A459 cell line, HOTAIR would also
upregulate CSC-related biomarkers such as NANOG, POU5F1, SOX2, MYC, CTNNB1, and KLF4 [113].
In NSCLC tumor tissues and cell lines (A549, PC9, H1299, and H520), Besides, HOTAIR was associated
with LSH (HELLS) to regulate the FOXA1 to FOXA2 ratio and promote cell migration and invasion.
Importantly, HELLS regulates this ratio by binding to the promoter of FOXA1, not FOXA2 [224].
Additionally, in Lung cancer cell lines (A549, H460, H1299, NCI-H460, HCC-827), HOTAIR regulates
the expression of BECN1, phospho-ULK1, and the LC3II/I (MAP1LC3A / MAP1LC3B) ratio [81].

� HOTAIR recruits the PRC2: Fang et al. recently described a negative feedback regulator
loop involving HOTAIR in SCLC cell lines (NCI-H69 and NCI-H446). Indeed, HOTAIR may
upregulate EZH2 and H3K27me3 levels, which in turn can repress HOTAIR, leading to change
HOXA1 methylation [225]. Interestingly, both HOTAIR 5’ and 3’ ends may be involved in the cell
cycle dysregulation. Indeed, in NSCLC cell lines (95C, 95D, and YTMLC-90), Liu et al. demonstrated
that RB1 and E2F1 are both regulated by HOTAIR5’ via the PRC2 (EZH2, SUZ12, and EED) complex
and by HOTAIR3’ via the LSD1/ CoREST/ REST complex. Both complexes may, therefore, act on
the WNT/β-catenin signaling pathway and promote EMT when coupled with histone H3 lysine 27
methylation and lysine 4 demethylation [80].

� HOTAIR as ceRNA: Among its known functions, HOTAIR was reported as a miRNA regulator.
Indeed, HOTAIR can sequester: • hsa-miR-214-3p to release the expression of PDPK1, in NSCLC cell
lines (A549 and PC9 cells) [226] • hsa-miR-217 to release the expression of DACH1, in NSCLC cell
lines (H23, H292, H1299, and A549) [227] • hsa-miR-326 to release the expression of SP1, in NSCLC
tumor tissues and A549 cell line [228], and PHOX2A in NSCLC cell lines (A549, 95D, NCI-H460,
HLamp, and H838) [229]. HOTAIR may also sequester hsa-miR-613 in NSCLC tumor tissues and cell
lines (H1299, H23, H292, and A549) [230], and hsa-miR-221 in NSCLC tumor tissues and cell lines
(A549, H322, and H1299) [100].

� HOTAIR at the clinical level: HOTAIR high expression in NSCLC tumor tissues coincides
with greater tumor size, advanced TNM stage, lymph node metastasis or lymph-vascular invasion,
and short disease-free interval [98]. Its expression was also related to a reduced OS in NSCLC tumor
tissues [99]. Furthermore, the expressions of HOTAIR in patients with stage I and II were lower than
those with stage III and IV NSCLC tumors [100]. Besides, both H19 and HOTAIR were identified
as non-invasive diagnostic biomarkers in the sputum of lung cancer patients [109]. The diagnosis
of head-and-neck squamous cell carcinoma (HNSCC) can also be improved by combining the high
expression of HOTAIR to the high expression of CASC9 [231]. Altogether, these encouraging results
underline the potential of HOTAIR as a diagnostic biomarker.

� HOTAIR behavior against treatment: HOTAIR high-expression contributes to DDP resistance
via CDKN1A downregulation in LUAD tumor tissues, and experimental downregulated HOTAIR
in A549 cells promoted DDP sensitivity [112,113]. It also contributes to Atractylenolide 1 and
Erlotinib resistances by activating PDK1 and EZH2, in LUAD cells, in vitro and in vivo [114].
Besides, the downregulation of HOTAIR can increase the SCLC cell lines’ sensitivity to DDP,
Adriamycin, and Etoposide, through decreasing DNMT1 and DNMT3B expressions, leading to the
reduction of HOXA1 methylation [115]. Furthermore, the downregulation of HOTAIR can increase
NSCLC cell lines sensitivity (A549, H460, H1299, NCI-H460, HCC-827) to Crizotinib through the
inhibition of ULK1-phosphorylation. This sensitivity leads to the suppression of tumor growth and
triggers the cell cycle arrest and the apoptosis signaling pathway [81].
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� Exosomal HOTAIR: Exosomal HOTAIR (exo-HOTAIR) appeared in the exosomes from
bronchoalveolar lavage (BAL) of smokers, NSCLC, and healthy patients, but without significant
differences between the three conditions [232]. However, in a recent letter to editors, Zhang et al.
found exo-HOTAIR more expressed in the blood samples from LCC patients when compared to
LUAD or SCC patients. Moreover, these authors described that A549 and H1299 cells treated with
exo-HOTAIR increased the level of cellular HOTAIR. The authors concluded that exo-HOTAIR
promotes proliferation, migration, and invasion of the cells through the sequestration of hsa-miR-203
(hsa-mir-203a or hsa-mir-203b) [233]. Interestingly, this interaction between hsa-miR-203 and HOTAIR
was also reported with similar effects in renal cell carcinoma cells. In this study, Dasgupta et al.
described that the sequestration of hsa-miR-203 decreases CDH1, PTEN, CDKN1A, and CDKN1B
levels, while it increases the expression of VIM [234].

2.8. GAS5

Growth Arrest Specific 5 (GAS5) is an RNA gene localized on the cytogenetic band 1q25.1.
GAS5 gene has 31 transcripts, 20 identified as retained introns, and 11 identified as lncRNAs. GAS5 can
bind the DNA binding domain of the glucocorticoid receptor, which disable it from regulating the
transcription of its target genes.

2.8.1. GAS5 and Asthma

In Qiu et al. study, the heatmap Figure 2A displays an upregulated GAS5 in CD4+T-cells from
patients with severe asthma vs. healthy patients, with a fold change greater than 2 [59]. These results
add to Keenan et al. previous observations in bronchial epithelial cells (BEAS-2B) and primary human
airway smooth muscle (ASM) cultures. Indeed, pro-inflammatory mediators, TNF, and IL1α (IL1A)
were observed to promote GAS5 upregulation in ASM and BEAS-2B cells, which in turn can modulate
glucocorticoid activity and thus may mediate glucocorticoid insensitivity [60].

2.8.2. GAS5 and Lung Cancer

GAS5 expression levels are low in lung cancers. Interestingly, this decrease in NSCLC is significant
in male donors only [95]. GAS5 is involved in cellular proliferation, metastasis, and autophagy.
GAS5 uses the following mechanisms, as summarized in Figure 12.

� GAS5 regulated genes: In NSCLC tumor tissues, GAS5 decrease correlates strongly and
significantly to the decrease of FAS-AS1 and THRIL in male donors and combined tumors, as well
as the increase of NEAT1 in male donors and combined tumors. GAS5 decrease also correlates
with TUG1 increase in female donors and combined tumors, and with PVT1 increase in female
donors when compared to ANCTs. GAS5 expression is also associated with the upregulation of
IGF2BP2 and the downregulation of FXR1 [95]. Moreover, GAS5 downregulates the expression
of TNRC6A, ZC3H7B, and UPF1, while it can upregulate the expression of EIF4A3, TIA1, TIAL1,
and HNRNPC [95]. Besides, in NSCLC tumor tissues and cell lines (A549, H1299, H1975, HCC827),
GAS5 can deregulate the expression of phospho-EGFR, phospho-MAPK1, phospho-AKT1, and IGF1R.
Interestingly, GAS5 overexpression inversely correlates with the activation of the EGFR pathway [110].

� GAS5 as ceRNA: Among its known functions, GAS5 can act as a miRNA regulator.
Indeed, GAS5 may sequester hsa-miR-21-5p in NSCLC tumor tissues and the cell lines (NCI-H460,
A549, NCI-H1299, H460, SK-MES-1, H157, and H358) [82,111]. GAS5 may also sequester
hsa-miR-205-5p in the NSCLC cell lines (A549, H460, 95D, H1299, SPC-A-1, and H522) [235].
Both hsa-miR-21-5p and hsa-miR-205-5p sequestration would release the expression of PTEN [82,111,
235]. Additionally, GAS5 suspected of sequestering hsa-miR-135b-5p in NSCLC tumor tissues and cell
lines (A549 and H1975) [236]. It is also suspected to sequester hsa-miR-23a in NSCLC tumor tissues
and cell lines (A549, H838, H157, and HCC827) [237].
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� GAS5 at the clinical level: Esfandi et al. emphasized the GAS5 low expression in tumor tissues
as a promising biomarker for the diagnosis of the NSCLCs [95].

� GAS5 behavior against treatment: GAS5 may regulate chemo-resistance to DDP of
NSCLC tumor tissues and cell lines (H460 and H157), through the PTEN signaling pathway [82].
Besides, GAS5 low expression contributes to resistance to gefitinib to LUAD cell lines and tumor
tissues [110]. Furthermore, its low expression can promote the resistance to ionizing radiation in
NSCLC cell lines [111] and tumor tissues [236].

� Exosomal GAS5: In Cheng et al. study on urethane-induced lung cancer mouse model,
lung cancer-derived exosomal GAS5 (exo-GAS5) affects the proliferation, apoptosis, and tube formation
of human umbilical vein endothelial cells (HUVECs). The overexpression of GAS5 leads to an increase
of exo-GAS5, upregulates PTEN expression, and inhibits the phosphorylation of PI3K/AKT, through
hsa-miR-29b-3p sequestration [238]. Furthermore, exo-GAS5 expression was lower in the serum of 64
NSCLC patients when compared to healthy controls. This low expression of exo-GAS5 was associated
with larger tumor size and advanced TNM [239]. While being a potential new biomarker for the
diagnosis of Stage I NSCLCs, further studies should be conducted on larger cohorts to confirm the
predictive power of exo-GAS5.

3. Additional LncRNAs Not Yet Described in Lung Cancer Studies

3.1. LINC00861

Long Intergenic Non-Protein Coding RNA 861 (LINC00861) is an RNA gene localized on the
cytogenetic band 8q24.13. LINC00861 gene has 9 transcripts, all identified as lncRNAs.

3.1.1. LINC00861 in Asthma

In RNAseq available data, LINC00861 transcript 201 (LINC00861-201) was found upregulated in
eosinophilic asthma and eosinophilic asthma with high Igg patients vs. healthy patients [61].
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3.1.2. LINC00861 in COPD

In COPD smokers, LINC00861 expression is lower than in non-smoking COPD or healthy
patients. LINC00861 and the uncharacterized LOC101928100 RNA gene were co-expressed with RORA,
while the authors observed an upregulation of hsa-miR-218-5p. The authors hypothesized that the
LINC00861/LOC101928100 upregulation releases the expression of RORA through the sequestration
of both hsa-miR-218-5p and hsa-miR-15a [240].

3.2. CCDC18-AS1, RP4-717I23.3

CCDC18-AS1 is an RNA gene localized on the cytogenetic band 1p22.1. CCDC18-AS1 gene has
32 transcripts, all identified as lncRNAs.

3.2.1. CCDC18-AS1 in Asthma

In asthma and severe asthma when compared to healthy controls, CCDC18-AS1 was upregulated,
as shown by Figure 2B of Chen et al. study [241].

3.2.2. CCDC18-AS1 in COPD

In PBMCs of COPD smokers, CCDC18-AS1 transcripts (CCDC18-AS1-220 and CCDC18-AS1-214)
are upregulated when compared with COPD nonsmokers [242].

4. Additional Interesting Exosomal-LncRNAs Described with Lung Cancer

4.1. Exo-UCA1

Urothelial Cancer-Associated 1 (UCA1) is an RNA gene localized on the cytogenetic band 19p13.12.
UCA1 has 45 known transcripts, all of them described as lncRNAs. UCA1 can promote cell proliferation
and resistance to gefitinib-induced cell apoptosis. It can also sequester miR-143 to release FOSL2
expression, leading to gefitinib resistance of epidermal growth factor receptor-positive (EGFR+)
NSCLCs [243].

exo-UCA1 behavior against in lung cancer treatment Kwok et al. demonstrated that the transfer
of extracellular Vesicle-Associated-RNAs could induce drug resistance in ALK-Translocated lung
Adenocarcinoma [244]. Moreover, exo-UCA1 levels are high in both gefitinib-resistant NSCLC cells
and their secreted exosomes [243].

4.2. Exo-lncMMP2-2

Wu et al. recently described exosomal lnc-MMP2-2-1_dup1 could regulate migration and invasion
of lung cancer cells to the vasculature by promoting MMP2 expression [245].

4.3. Exo-GAPLINC

Gastric Adenocarcinoma Associated, Positive CD44 Regulator, Long Intergenic Non-Coding RNA
(GAPLINC) is an RNA gene localized on the cytogenetic band 18p11.31. GAPLINC has four transcripts,
all described as lncRNAs. Exosomal GAPLINC (exo-GAPLINC), was described to promote erlotinib
resistance in NSCLCs [246]. Erlotinib is a tyrosine kinase inhibitor that is effective in patients with or
without EGFR mutations but appears to be more effective in patients with EGFR mutations.
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4.4. Exo-TBILA and Exo-AGAP2-AS1

TGF-Beta Induced lncRNA (TBILA) is an RNA gene localized on the cytogenetic band 3q13.2.
AGAP2 Antisense RNA 1 (AGAP2-AS1) is an RNA gene localized on the cytogenetic band 12q14.1.
Both TBILA and AGAP2-AS1 have a unique transcript identified as a lncRNA. Both exosomal
TBILA (exo-TBILA) and exosomal AGAP2-AS1 (exo-AGAP2-AS1) expression are higher in the serum
of NSCLC patients than in exosomes-depleted serum (EDS) from NSCLC patients or serum of
healthy patients. Importantly, these two lncRNAs are very stable in the bloodstream, which makes
them promising biomarkers. Moreover, they have only one known transcript each, which reduces
potential screening errors. TBILA can discriminate all NSCLC patients, while AGAP2-AS1 is better
as distinguishing SCC patients from healthy controls. Additionally, the authors mentioned that the
combination of TBILA/AGAP2-AS1 with Cyfra21 (KRT19), a protein widely used in clinical practices,
could distinguish all NSCLC patients from healthy controls in their study [247].

4.5. Exo-SOX2-OT

SOX2 Overlapping Transcript (SOX2-OT) is an RNA gene localized on the cytogenetic band
3q26.33. SOX2-OT has 104 known transcripts, all identified as lncRNAs Exosomal SOX2-OT
(exo-SOX2-OT) was significantly upregulated in Lung Squamous Cell Carcinoma (LSCC) patients
when compared to non-LSCC patients. Exo-SOX2-OT levels in plasma correlated with tumor size
and TNM stages, and might also reflect SOX2-OT expression in tumors [248]. Nevertheless, with 104
known transcripts, all identified as lncRNAs, further studies should identify which transcripts are
useful for diagnosis.

5. Concluding Remarks and Future Perspectives

LncRNAs are promising molecules for the better understanding of protein-gene regulations
and subsequent pathways that define lung diseases. In the current review, we attempted to cover
well-described lncRNAs associated with at least two lung diseases within asthma, IPF, COPD, and
lung cancers. First, we searched into the PubMed database for publications related to lncRNAs in each
of the four lung diseases. Secondly, we built and described the networks of molecular interactions of
the lncRNAs H19, MALAT1, MEG3, FENDRR, CDKN2B-AS1, TUG1, HOTAIR, and GAS5, within each
disease. Thirdly, we reported the clinical relevance of each of these lncRNAs, focusing on the biomarker
and the treatment response aspects. Finally, we covered ten additional lncRNAs that were described
only in lung cancers under their exosomal form.

Based on the literature covered here, it is evident that the interaction networks are far more
complex than those presented here. Indeed, these networks are an extension of the following
signaling pathways found in common for different diseases or lncRNAs: • The WNT/β-catenin
signaling pathway, has been associated with H19, MALAT1, and HOTAIR in NSCLC [74–76,80] •
FENDRR and H19 are upstream regulators of the fibrosis and associated with the TGFB/SMAD3
signaling pathway in IPF [64,65] • MEG3 and HOTAIR target the apoptosis pathway in COPD and
NSCLC, respectively [70,81]. • GAS5, TUG1, H19, and MALAT1 are upstream regulators of the
PTEN/PI3K/AKT signaling pathway in NSCLC [77,78,82,83,111,135,235] • ANRIL (CDKN2B-AS1)
is an upstream regulator of the P53 signaling pathway in both IPF and NSCLC [63]. Hence, all these
studies on lncRNAs increased the list of upstream regulators of crucial cancer signaling pathways.

http://www.ensembl.org/id/ENSG00000261488
http://www.ensembl.org/id/ENSG00000255737
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These lncRNAs have, therefore, the potential to sustain the tumor state of a cell. They were
otherwise previously described as oncogenes and tumor-suppressors in lung cancers. In this context,
H19, HOTAIR, MALAT1, and CDKN2B-AS1 are oncogenic lncRNAs [87,176,249–251], while MEG3,
FENDRR, and GAS5 are tumor suppressor lncRNAs [116,154,252–255]. Intriguingly, TUG1 can be one
or the other regarding lung cancer subtype. TUG1 would, therefore, act as an oncogene in SCLCs and
many human cancers, but would act as a tumor-suppressor in NSCLCs [256]. Therefore, such versatile
behavior suggests either a tumor-specific mechanism of action or the presence of an upstream regulator
with a tumor-dependent expression.

Moreover, we can link these interaction networks to the hallmarks of cancer. Due to their
implication in multiple steps of the cancer progression, we can group the eight lncRNAs according to
Hanahan and Weinberg’s classification [257] under the following hallmarks:

� Genome instability and mutation: MALAT1 and CDKN2B-AS1 may be key players of the
“Genome instability and mutation” hallmark since they can decrease the expression levels of
PARP1 [87,121,171]. H19 may also contribute to the “Genome instability and mutation” as well
as the “Evading growth suppressors” hallmarks. CSC exposure induces an overall increase of
H3K27me3 levels, which would repress many genes [74]. However, RIOX2 may demethylate H19
before the DNA-repair gene MGMT and the cyclin-dependent kinase inhibitor p16-CDKN2A are
methylated [74,139]. Subsequently, a decreased level of MGMT would lead to chromosomal alterations,
while a decrease in p16-CDKN2A would lead to inhibit the cell cycle arrest in G1 and G2 phases.

� Activating invasion and metastasis: FENDRR may be a key player of the “Activating invasion
and metastasis” hallmark. The low FENDRR expression observed in NSCLC tumor tissues allows the
ECM degradation by the metalloproteinases and thus facilitates the metastasis. Indeed, under normal
conditions, FENDRR is supposed to sequester hsa-miR-761, which will permit the increase of the
metalloproteinase inhibitor TIMP2, leading to the degradation of the extracellular matrix [196].

� Resisting cell death: MALAT1, MEG3, and CDKN2B-AS1 may be key actors of the
“Resisting cell death” hallmark. CDKN2B-AS1 decreases cleaved-CASP3 while increasing BCL2
and CASP3 expression [87,121]. High levels of MEG3 reduces CASP3 through hsa-miR-205-5
sequestration [154,157,160]. These high levels can also decrease the expression of BIRC5 [118].
MALAT1 can also decrease cleaved-CASP3 levels [171]. Subsequently, in NSCLCs, cleaved-CASP3 is
decreased, while BCL2, BIRC5, and CASP3 is increased, which leads to escape apoptosis.

� Sustaining and proliferative signaling: GAS5, TUG1, MALAT1, H19, and HOTAIR may be
key actors of the “Sustaining and proliferative signaling” hallmark in NSCLCs. High GAS5 and
low HOTAIR levels combined with EGFR inhibitors, increase the sensitivity to treatment [110,114].
GAS5, TUG1, H19, and MALAT1 are upstream regulators of the PTEN/PI3K/AKT signaling pathway.
H19 recruits EZH2 to repress PTEN expression [135]. MALAT1 is involved in the upregulation of
PIK3CA [77] and phospho-STAT3 [171], and in the phosphorylation of AKT1 and MTOR [79,102].
Finally, TUG1 and GAS5 can release PTEN expression, respectively, through hsa-miR-221 and
hsa-miR-21-5p, hsa-miR-205-5p sequestration [82,83,111,235]. Subsequently, in NSCLCs, PTEN is
downregulated, while PIK3CA, phospho-STAT3, phospho-AKT1, and phospho-MTOR are increased,
thus enhancing the cellular proliferation.

The eight lncRNAs may provide an interesting angle to circumvent the treatment resistances
observed in lung cancers. Throughout the review, we listed treatment resistance to Cisplatin,
Vincristine, Paclitaxel, Erlotinib, Atractylenolide 1, Adriamycin, Etoposide, Crizotinib, Gefitinib,
and ionizing radiations. Surprisingly, HOTAIR alone was involved in the resistance to Crizotinib,
Cisplatin, Erlotinib, and Atractylenolide 1 in NSCLC cells [81,112–114], and to Cisplatin, Adriamycin,
and Etoposide in SCLC cells [115]. Although these results require confirmation, HOTAIR could be
a promising target for future treatments. These results also underline the importance of studying
lncRNAs in lung cancer.
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The lncRNAs described here may be promising non-invasive biomarkers for the diagnosis or
prognosis of asthma, COPD, and lung cancers. Indeed, GAS5, MEG3, MALAT1, or CDKN2B-AS1 may
be used to diagnose asthma [58,59,61]. TUG1 could be used to diagnose the COPD, and in association
with CDKN2B-AS1, it could also help predict acute exacerbations in COPD patients [67,71]. In IPF
patients, CDKN2B-AS1 is again a new biomarker that could predict the occurrence of lung cancers [63].
In lung cancers, MALAT1 and H19 are interesting for the diagnosis of NSCLCs [89–93]. TUG1 is also a
promising biomarker for diagnosis of LUAD [86], whereas H19 or HOTAIR can help discriminate SCC
from LUAD [109]. Nevertheless, while being very encouraging results, most of these studies lack some
confirmation from additional studies in large independent cohorts. Furthermore, the majority of these
lncRNAs studied as individual biomarkers may help define better the classification of lung diseases.
For example, using machine learning algorithms on previously established biomarkers combined with
these lncRNAs, new disease subtypes may be revealed.

Accumulative pieces of evidence display lncRNAs as communication entities to regulate their
micro-environment, thus being potentially involved in a local disease spread. While non-cancerous
diseases have received some attention, such as osteoarthritis or chronic inflammatory diseases
including rheumatoid arthritis, systemic lupus erythematosus, and psoriasis [258], we mentioned
the lack of studies covering exosomal-lncRNAs in asthma, COPD, and IPF. Hence, further efforts
are needed to identify exosomal-lncRNAs in these three lung diseases. Conversely, the studies
on exosomal-lncRNAs in lung focused on cancers. Although we did not find any shreds of
evidence that exosomes transport MEG3, FENDRR, TUG1, and CDKN2B-AS1 in lung cancers,
the mechanisms of action of these lncRNAs strongly suggest their involvement in cancer invasion.
First, these lncRNAs may trigger important hallmarks of cancers, such as “Genome instability and
mutation” for CDKN2B-AS1 [87,121], “Activating invasion and metastasis” for FENDRR [196],
“Resisting cell death” for MEG3 and CDKN2B-AS1 [118,154,157,160,207], and “Sustaining and
proliferative signaling” for TUG1 [83]. Secondly, previous studies in other cancers found an
exosomal expression of MEG3, TUG1, and CDKN2B-AS1 [163–165,201,202,215]. These findings
suggest that MEG3, TUG1, and CDKN2B-AS1 may also be involved in lung cancer intercellular
communication. Surprisingly, FENDRR remains unassociated with exosomes in any diseases.
Nevertheless, its implication in invasion and metastasis [196] suggests a late expression during the
tumor progression, which could explain the lack of literature.

Altogether, throughout these numerous studies, we first underlined the importance of describing
the lncRNAs mechanisms of action. By continuously seeking their putative regulators and downstream
targets, new diagnostic tools and further treatments may arise. This review also compiled knowledge
on exosomal-lncRNAs in lung diseases, and emphasize the essential position of some lncRNAs in
the transcription regulation. Hence, we would be thrilled to read more investigations, in lung cancer,
on exosomal MEG3, FENDRR, TUG1, and CDKN2B-AS1 or treatment resistance involving HOTAIR.
We would be even more thrilled to read investigations on exosomal-lncRNAs in asthma, COPD,
and IPF. Here, we highlighted eight well-described members of the lncRNAs’ ocean. While these
lncRNAs may trigger new research interests, it is of prime importance to identify all of them and to
describe their mechanisms of action to better understand lung diseases.
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Abbreviations

The following abbreviations are used in this manuscript:

General

Abbreviation Full name
AECOPD acute exacerbations of COPD
ANCT Adjacent Non-Cancerous Tissue
ASM Airway Smooth Muscle
BA-E Bronchial asthma at exacerbation
BA-R Bronchial asthma at remission
BEAS-2B Bronchial epithelial cells
ceRNA competing endogenous RNA
CDK Cyclin Dependent Kinase
COPD Chronic Obstructive Pulmonary Disease
CS Cigarette Smoke
CSC Cancer Stem Cell
CSE Cigarette Smoke Extract
DDP Cisplatine
EMT Epithelial Mesenchymal Transition
FEV_1 Forced expiratory volume in 1 second
FFMI Fat-free mass index
FVC Forced vital capacity
GINA Global Initiative for Asthma
H3K9me3 H3 lysine 9 tri-methylation
H3K27me3 H3 lysine 27 tri-methylation
HBE Human Bronchial Epithelial cells
HRE Hypoxia-Responsive Element
HNSCC head-and-neck squamous cell carcinoma
IPF Idiopathic Pulmonary Fibrosis
LD linear dichroism
LDL low-density lipoprotein
LSCC Lung Squamous Cell Carcinoma
lncRNA long non-coding RNA
LTB4 Leukotriene B4
LUAD Lung Adenocarcinoma
MET Mesenchymal Epithelial Transition
NAT Natural Antisense transcripts
NSCLC Non Small Cell Lung Cancer
OS Overall Survival
OSCC Oral Squamous Cell Carcinoma
PRC Polycomb Repressive Complex
PTX Paclitaxel
SCC Squamous Cell Carcinoma
SCLC Small Cell Lung Cancer
SNP Single Nucleotide polymorphism
TCGA The Cancer Genome Atlas
TNM Tumor-Node–Metastasis:
TNM T: Extent of the primary tumor,
TNM N: lymph node involvement,
TNM M: metastatic disease
WHO World Health Organization
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Signaling Pathway

Signaling Pathway KEGG ID
AKT/MTOR signaling pathway hsa04150
Apoptosis signaling pathway hsa04210
EGFR pathway hsa01521
NF-κB signaling pathway hsa04064
PTEN/PI3K/AKT signaling pathway hsa04151
TGFB/SMAD3 signaling pathway hsa04350
T-cell receptor signaling pathway hsa04660
Th17 cell differentiation hsa04659
P53 signaling pathway hsa04115
WNT/β-catenin signaling pathway hsa04310

miRNAs

Mirbase ID HGNC symbol Mirbase accession
hsa-miR-101-3p MIR101-1 MIMAT0000099
hsa-miR-106a MIR106A MI0000113
hsa-miR-106b MIR106B MI0000734
hsa-miR-107 MIR107 MI0000114
hsa-miR-124-1 MIR124-1 MI0000443
hsa-miR-125a MIR125A MI0000469
hsa-miR-135b-5p MIR135B MIMAT0000758
hsa-miR-140 MIR140 MI0000456
hsa-miR-142-3p MIR142 MIMAT0000434
hsa-miR-145 MIR145 MI0000461
hsa-miR-145-5p MIR145 MIMAT0000437
hsa-miR-148a MIR148A MI0000253
hsa-miR-15a MIR15A MI0000069
hsa-miR-195 MIR195 MI0000489
hsa-miR-196b MIR196B MI0001150
hsa-miR-197-3p MIR197 MIMAT0000227
hsa-miR-17 MIR17 MI0000071
hsa-miR-196a-1 MIR196A1 MI0000238
hsa-miR-196a-2 MIR196A2 MI0000279
hsa-miR-200 MIR200 family hsa-miR-200 family
hsa-miR-200a MIR200A MI0000737
hsa-miR-200a-3p MIR200A MIMAT0000682
hsa-miR-200b MIR200B MI0000342
hsa-miR-200c MIR200C MI0000650
hsa-miR-203a MIR203A MI0000283
hsa-miR-203b MIR203B MI0017343
hsa-miR-204 MIR204 MI0000284
hsa-miR-205-5p MIR205 MIMAT0000266
hsa-miR-206 MIR206 MI0000490
hsa-miR-21 MIR21 MI0000077
hsa-miR-21-5p MIR21 MIMAT0000076
hsa-miR-210 MIR210 MI0000286
hsa-miR-214 MIR214 MI0000290
hsa-miR-214-3p MIR214 MIMAT0000271
hsa-miR-217 MIR217 MI0000293
hsa-miR-218-1 MIR218-1 MI0000294
hsa-miR-218-5p MIR218-1 MIMAT0000275

https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04150
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04210
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa01521
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04064
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04151
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04350
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04660
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04659
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04115
https://www.genome.jp/dbget-bin/www_bget?pathway:hsa04310
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000099
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000113
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000734
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000114
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000443
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000469
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000758
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000456
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000434
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000461
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000437
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000253
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000069
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000489
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0001150
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000227
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000071
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000238
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000279
http://www.mirbase.org/textsearch.shtml?q=hsa-miR-200
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000737
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000682
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000342
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000650
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000283
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0017343
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000284
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000266
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000490
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000077
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000076
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000286
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000290
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000271
http://www.mirbase.org/cgi-bin/mature.pl?acc=MI0000293
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000294
http://www.mirbase.org/cgi-bin/mature.pl?acc=MIMAT0000275
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Mirbase ID HGNC symbol Mirbase accession
hsa-miR-218-2 MIR218-2 MI0000295
hsa-miR-221 MIR221 MI0000298
hsa-miR-23a MIR23A MI0000079
hsa-miR-29b-3p MIR29B1 MIMAT0000100
hsa-miR-301b MIR301B MI0005568
hsa-miR-3163 MIR3163 MI0014193
hsa-miR-326 MIR326 MI0000808
hsa-miR-33a-5p MIR33A MIMAT0000091
hsa-miR-409-3p MIR409 MIMAT0001639
hsa-miR-429 MIR429 MI0001641
hsa-miR-484 MIR484 MI0002468
hsa-miR-519a-1 MIR519A1 MI0003178
hsa-miR-519a-2 MIR519A2 MI0003182
hsa-miR-590-5p MIR590 MIMAT0003258
hsa-miR-613 MIR613 MI0003626
hsa-miR-650 MIR650 MI0003665
hsa-miR-675 MIR675 MI0005416
hsa-miR-675-5p MIR675 MIMAT0004284
hsa-miR-6515-3p MIR6515 MIMAT0025487
hsa-miR-7-5p MIR7-1 MIMAT0000252
hsa-miR-761 MIR761 MI0003941
hsa-let-7 MIRLET7 family hsa-let-7 family
hsa-let-7d-5p MIRLET7D MIMAT0000065

lncRNAs

HGNC symbol Alias Full name Type Accession ID
AGAP2-AS1 AGAP2 Antisense RNA 1 NAT ENSG00000255737
CCDC18-AS1 CCDC18 Antisense RNA 1 NAT ENSG00000223745
CDKN2B-AS1 ANRIL CDKN2B Antisense RNA 1 NAT ENSG00000240498
FAS-AS1 FAS Antisense RNA 1 NAT HGNC:37128
FENDRR FOXF1 adjacent non-coding

developmental regulatory RNA NAT ENSG00000268388
GAPLINC RP11-838N2.4 Gastric adenocarcinoma associated,

positive CD44 regulator, lincRNA lincRNA ENSG00000266835
GAS5 Growth Arrest Specific 5 NAT ENSG00000234741

H19
H19 Imprinted Maternally
Expressed Transcript

NAT, ENSG00000130600

lincRNA

HAGLR
HOXD Antisense
Growth-Associated lncRNA

NAT ENSG00000224189

HOTAIR HOX Transcript Antisense RNA NAT ENSG00000228630
HOTAIRM1 HOXA Transcript Antisense RNA,

Myeloid-Specific 1 NAT ENSG00000233429

HOTTIP
HOXA Distal Transcript Antisense
RNA

NAT ENSG00000243766

HOXA-AS3 HOXA Cluster Antisense RNA 3 NAT ENSG00000254369
HOXA10-AS HOXA10 Antisense RNA NAT ENSG00000253187
HOXA11-AS HOXA11 Antisense RNA NAT ENSG00000240990

LINC00312
Long Intergenic Non-Protein
Coding RNA 312

lincRNA HGNC:6662
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http://www.ensembl.org/id/ENSG00000255737
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HGNC symbol Alias Full name Type Accession ID

LINC00861
Long Intergenic Non-Protein
Coding RNA 861

lincRNA ENSG00000245164

- lnc-MMP2-2 lnc-MMP2-2-1_dup1 lincRNA NONHSAT142627
MEG3 Maternally Expressed 3 NAT ENSG00000214548

MALAT1
Metastasis Associated LUAD
Transcript 1

NAT ENSG00000251562

NEAT1
Nuclear Paraspeckle Assembly
Transcript 1

lincRNA ENSG00000245532

PVT1 Pvt1 Oncogene NAT ENSG00000249859
THRIL TNF And HNRNPL Related

Immunoregulatory lncRNA lincRNA ENSG00000280634
TUG1 Taurine Up-Regulated 1 lincRNA ENSG00000253352
TBILA TGF-Beta Induced LncRNA lincRNA ENSG00000261488
SOX2-OT SOX2 Overlapping Transcript NAT ENSG00000242808
UCA1 Urothelial Cancer Associated 1 lincRNA ENSG00000214049
ZEB1-AS1 ZEB1 Antisense RNA 1 NAT ENSG00000237036

Genes

HGNC symbol Alias Full name Accession ID
ABCB1 MDR1 ATP Binding Cassette Subfamily B Member 1 ENSG00000085563
ABCC1 MRP1 ATP Binding Cassette Subfamily C Member 1 ENSG00000103222
ABCC10 ATP binding cassette subfamily C member 10 ENSG00000124574
ACO1 IRP1 aconitase 1 ENSG00000122729
ACTA2 αSMA Actin α 2, Smooth Muscle ENSG00000107796
AGO1 Argonaute RISC Catalytic Components 1 ENSG00000092847
AGO2 Argonaute RISC Catalytic Components 2 ENSG00000123908
AGO3 Argonaute RISC Catalytic Components 3 ENSG00000126070
AGO4 Argonaute RISC Catalytic Components 4 ENSG00000134698
AKT1 Akt AKT Serine/Threonine Kinase 1 ENSG00000142208
APC APC Regulator Of WNT Signaling Pathway ENSG00000134982
BAX BCL2 associated X, apoptosis regulator ENSG00000087088
BCL2 Bcl-2 BCL2 apoptosis regulator ENSG00000171791
BCL2L1 Bcl-xl BCL2 Like 1 ENSG00000171552
BECN1 Beclin1 ENSG00000126581
BIRC5 survivin Baculoviral IAP Repeat Containing 5 ENSG00000089685
BRCA1 BRCA1 DNA Repair Associated ENSG00000012048
CASC9 Cancer Susceptibility 9 ENSG00000249395
CASP3 caspase-3 Caspase 3 ENSG00000164305
CAV1 CAV-1 Caveolin 1 ENSG00000105974
CCND1 Cyclin D1 ENSG00000110092
CELF1 CUGBP Elav-Like Family Member 1 ENSG00000149187
CD274 PD-L1 CD274 Molecule ENSG00000120217
CDH1 E-cadherin Cadherin 1 ENSG00000039068
CDH13 Cadherin 13 ENSG00000140945
CDH2 N-cadherin Cadherin 2 ENSG00000170558
CDKN1A p21 CDK Inhibitor 1A ENSG00000124762
CDKN1B p27 CDK Inhibitor 1B ENSG00000111276
CDKN2A p14, p16, p19 CDK Inhibitor 2A ENSG00000147889
CDKN2B p15 CDK Inhibitor 2B ENSG00000147883
COL1A1 Collagen type I α 1 chain ENSG00000108821
CBX7 Chromobox 7 ENSG00000100307
CTNNB1 β-catenin Catenin β 1 ENSG00000168036
CTNND1 Catenin δ 1 ENSG00000198561

http://www.ensembl.org/id/ENSG00000245164
http://www.noncode.org/show_rna.php?id=NONHSAT142627
http://www.ensembl.org/id/ENSG00000214548
http://www.ensembl.org/id/ENSG00000251562
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http://www.ensembl.org/id/ENSG00000253352
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CXCL5 C-X-C Motif Chemokine Ligand 5 ENSG00000163735
CXCL8 IL8 C-X-C Motif Chemokine Ligand 8 ENSG00000169429
DACH1 Dachshund Family Transcription Factor 1 ENSG00000276644
DAPK1 DAPK Death Associated Protein Kinase 1 ENSG00000196730
DGCR8 DGCR8 Microprocessor Complex Subunit ENSG00000128191
DLK1 δ Like Non-Canonical Notch Ligand 1 ENSG00000185559
DIO3 Iodothyronine Deiodinase 3 ENSG00000197406
DNMT1 DNA Methyltransferase 1 ENSG00000130816
DNMT3B DNMT3b DNA Methyltransferase 3 β ENSG00000088305
DUSP6 Dual Specificity Phosphatase 6 ENSG00000139318
E2F1 E2F Transcription Factor 1 ENSG00000101412
E2F3 E2F Transcription Factor 1 ENSG00000112242
EDNRB Endothelin Receptor Type B ENSG00000136160
EED Embryonic Ectoderm Development ENSG00000074266
EGFR Epidermal Growth Factor Receptor ENSG00000146648
EIF4A3 eIF4AIII Eukaryotic Translation Initiation Factor 4A3 ENSG00000141543
ELAVL1 HuR ELAV Like RNA Binding Protein 1 ENSG00000066044
EPAS1 Endothelial PAS Domain Protein 1 ENSG00000116016
ESR2 ERβ Estrogen Receptor 2 ENSG00000140009
EWSR1 EWS RNA Binding Protein 1 ENSG00000182944
EZH1 Enhancer Of Zeste 1 PRC2 Subunit ENSG00000108799
EZH2 Enhancer Of Zeste 2 PRC2 Subunit ENSG00000106462
FAS Fas Cell Surface Death Receptor ENSG00000026103
Fgf1 Fibroblast growth factor 1 ENSRNOG00000013867
FMR1 FMRP FMRP Translational Regulator 1 ENSG00000102081
FXR1 FMR1 Autosomal Homolog 1 ENSG00000114416
FN1 Fibronectin 1 ENSG00000115414
FOXA1 FoxA1 Forkhead Box A1 ENSG00000129514
FOXA2 FoxA2 Forkhead Box A2 ENSG00000125798
FOXF1 Forkhead Box F1 ENSG00000103241
FOXF2 Forkhead Box F2 ENSG00000137273
FOXN1 Forkhead Box N1 ENSG00000109101
FOXP3 Forkhead Box P3 ENSG00000049768
FUS FUS RNA Binding Protein ENSG00000089280
HELLS LSH Helicase, Lymphoid Specific ENSG00000119969
HES1 hes family bHLH transcription factor 1 ENSG00000114315
HEY1 hes related family bHLH transcription factor

with YRPW motif 1 ENSG00000164683
HIF1A HIF-1α Hypoxia Inducible Factor 1 Subunit α ENSG00000100644
HOXA1 Homeobox A1 ENSG00000105991
HOXA10 Homeobox A10 ENSG00000253293
HOXA11 Homeobox A11 ENSG00000005073
HOXB7 Homeobox B7 ENSG00000260027

HNRNPA2B1 hnRNPA2B1
Heterogeneous Nuclear Ribonucleoprotein
A2/B1

ENSG00000122566

HNRNPC Heterogeneous Nuclear Ribonucleoprotein C ENSG00000092199
HNRNPL Heterogeneous Nuclear Ribonucleoprotein L ENSG00000104824
IGF1R IGF-IR Insulin Like Growth Factor 1 Receptor ENSG00000140443
IGF2 Insulin Like Growth Factor 2 ENSG00000167244
IGF2BP1 IGF2 MRNA Binding Protein 1 ENSG00000159217
IGF2BP2 IGF2 MRNA Binding Protein 2 ENSG00000073792
IGF2BP3 IGF2 MRNA Binding Protein 3 ENSG00000136231
IL1A IL1α Interleukin 1 α ENSG00000115008
IL1B IL1β inflammatory cytokines Interleukin 1 β ENSG00000125538
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IL6 Interleukin 6 ENSG00000136244
IL17A IL17 Interleukin 17A ENSG00000112115
IL22 Interleukin 22 ENSG00000127318

JARID2
Jumonji And AT-Rich Interaction Domain
Containing 2

ENSG00000008083

JUN c-Jun
Jun Proto-Oncogene, AP-1 Transcription
Factor Subunit

ENSG00000177606

KDM1A LSD1 Lysine Demethylase 1A ENSG00000004487
KLF2 Kruppel Like Factor 2 ENSG00000127528
KLF4 Kruppel Like Factor 4 ENSG00000136826
KRT14 Keratin 14 ENSG00000186847
KRT19 Cyfra21-1 Keratin 19 ENSG00000171345
LIMK2 LIMK2b LIM Domain Kinase 2 ENSG00000182541
LIN28B Lin-28 Homolog B ENSG00000187772
LRP1 LDL receptor-related protein-1 ENSG00000123384
MACC1 MET Transcriptional Regulator MACC1 ENSG00000183742

MAP1LC3A LC3I
Microtubule Associated Protein 1 Light Chain
3 α

ENSG00000101460

MAP1LC3B LC3II
Microtubule Associated Protein 1 Light Chain
3 β

ENSG00000140941

MAPK1
ERK, ERK2,
MAPK

Mitogen-Activated Protein Kinase 1 ENSG00000100030

MAPK3 ERK1 Mitogen-Activated Protein Kinase 3 ENSG00000102882
MAPK8 JNK Mitogen-Activated Protein Kinase 8 ENSG00000107643
MAPK9 Mitogen-Activated Protein Kinase 9 ENSG00000050748
MAP2K1 MEK1 Mitogen-Activated Protein Kinase Kinase 1 ENSG00000169032
MAP2K2 MEK2 Mitogen-Activated Protein Kinase Kinase 2 ENSG00000126934

MCL1
MCL1 Apoptosis Regulator, BCL2 Family
Member

ENSG00000143384

MDM2 MDM2 Proto-Oncogene ENSG00000135679
MDK MK Midkine ENSG00000110492
MIAT Myocardial Infarction Associated Transcript ENSG00000225783
MGMT O-6-Methylguanine-DNA Methyltransferase MGMT
MMP2 MMP-2 Matrix Metallopeptidase 2 ENSG00000087245
MMP9 MMP-9 Matrix Metallopeptidase 9 ENSG00000100985
MOV10 Mov10 RISC Complex RNA Helicase ENSG00000155363
MTOR mTOR Mechanistic Target Of Rapamycin Kinase ENSG00000198793

MYC c-myc
MYC Proto-Oncogene, BHLH Transcription
Factor

ENSG00000136997

MYOD1 MYOD Myogenic differentiation 1 ENSG00000129152
NANOG Nanog Nanog Homeobox ENSG00000111704
NEDD9 Neural Precursor Cell Expressed,

Developmentally Down-Regulated 9 ENSG00000111859
NF1 Neurofibromin 1 ENSG00000196712
NFKB1 NF-κB Nuclear Factor Kappa B Subunit 1 ENSG00000109320
PARP1 PARP Poly(ADP-Ribose) Polymerase 1 ENSG00000143799
PCNA Proliferating Cell Nuclear Antigen ENSG00000132646
PDK1 Pyruvate Dehydrogenase Kinase 1 ENSG00000152256

PDPK1
3-Phosphoinositide Dependent Protein
Kinase 1

ENSG00000140992

PHOX2A Phox2a Paired Like Homeobox 2A ENSG00000165462
PIK3CA PI3K Phosphatidylinositol-4,5-Bisphosphate

3-Kinase Catalytic Subunit α ENSG00000121879
POU5F1 Oct3, Oct4 POU Class 5 Homeobox 1 ENSG00000204531

http://www.ensembl.org/id/ENSG00000136244
http://www.ensembl.org/id/ENSG00000112115
http://www.ensembl.org/id/ENSG00000127318
http://www.ensembl.org/id/ENSG00000008083
http://www.ensembl.org/id/ENSG00000177606
http://www.ensembl.org/id/ENSG00000004487
http://www.ensembl.org/id/ENSG00000127528
http://www.ensembl.org/id/ENSG00000136826
http://www.ensembl.org/id/ENSG00000186847
http://www.ensembl.org/id/ENSG00000171345
http://www.ensembl.org/id/ENSG00000182541
http://www.ensembl.org/id/ENSG00000187772
http://www.ensembl.org/id/ENSG00000123384
http://www.ensembl.org/id/ENSG00000183742
http://www.ensembl.org/id/ENSG00000101460
http://www.ensembl.org/id/ENSG00000140941
http://www.ensembl.org/id/ENSG00000100030
http://www.ensembl.org/id/ENSG00000102882
http://www.ensembl.org/id/ENSG00000107643
http://www.ensembl.org/id/ENSG00000050748
http://www.ensembl.org/id/ENSG00000169032
http://www.ensembl.org/id/ENSG00000126934
http://www.ensembl.org/id/ENSG00000143384
http://www.ensembl.org/id/ENSG00000135679
http://www.ensembl.org/id/ENSG00000110492
http://www.ensembl.org/id/ENSG00000225783
http://www.ensembl.org/id/ENSG00000170430
http://www.ensembl.org/id/ENSG00000087245
http://www.ensembl.org/id/ENSG00000100985
http://www.ensembl.org/id/ENSG00000155363
http://www.ensembl.org/id/ENSG00000198793
http://www.ensembl.org/id/ENSG00000136997
http://www.ensembl.org/id/ENSG00000129152
http://www.ensembl.org/id/ENSG00000111704
http://www.ensembl.org/id/ENSG00000111859
http://www.ensembl.org/id/ENSG00000196712
http://www.ensembl.org/id/ENSG00000109320
http://www.ensembl.org/id/ENSG00000143799
http://www.ensembl.org/id/ENSG00000132646
http://www.ensembl.org/id/ENSG00000152256
http://www.ensembl.org/id/ENSG00000140992
http://www.ensembl.org/id/ENSG00000165462
http://www.ensembl.org/id/ENSG00000121879
http://www.ensembl.org/id/ENSG00000204531


Int. J. Mol. Sci. 2020, 21, 0 42 of 56

HGNC symbol Alias Full name Accession ID
PRC1 Polycomb Repressive Complex 1
PRC2 Polycomb Repressive Complex 2
PTBP1 PTB Polypyrimidine Tract Binding Protein 1 ENSG00000011304
PTEN Phosphatase And Tensin Homolog ENSG00000171862
PUM2 Pumilio RNA Binding Family Member 2 ENSG00000055917
RB1 Rb RB Transcriptional Corepressor 1 ENSG00000139687
RELA p65 RELA Proto-Oncogene, NF-KB Subunit ENSG00000173039
REST RE1 Silencing Transcription Factor ENSG00000084093
RCOR1 CoREST REST Corepressor 1 ENSG00000089902
RIOX2 mdig Ribosomal Oxygenase 2 ENSG00000170854
RORA RAR Related Orphan Receptor A ENSG00000069667
ROCK2 Rho Associated Coiled-Coil

Containing Protein Kinase 2 ENSG00000134318
RORC RORγt RAR related orphan receptor C ENSG00000143365
RPS6KB1 S6K1 Ribosomal Protein S6 Kinase B1 ENSG00000108443
RTL1 Retrotransposon Gag Like 1 ENSG00000254656
SFN 14-3-3σ Stratifin ENSG00000175793
SKP2 S-Phase Kinase Associated Protein 2 ENSG00000145604
SLC34A2 Solute Carrier Family 34 Member 2 ENSG00000157765
SMAD3 SMAD family member 3 ENSG00000166949
SNAI1 Snail Family Transcriptional Repressor 1 ENSG00000124216
SNAI2 SLUG Snail Family Transcriptional Repressor 2 ENSG00000019549
SOX2 SRY-box transcription factor 2 ENSG00000181449
SOX7 SRY-Box Transcription Factor 7 ENSG00000012048
SOX9 SRY-Box Transcription Factor 9 ENSG00000125398
SP1 Sp1 Transcription Factor ENSG00000185591
SRSF1 SFRS1 Serine And Arginine Rich Splicing Factor 1 ENSG00000136450

STAT3
Signal transducer and activator of
transcription 3

ENSG00000168610

SUZ12
SUZ12 Polycomb Repressive Complex 2
Subunit

ENSG00000178691

TARDBP TDP43 TAR DNA Binding Protein ENSG00000120948
TBILA TGF-Beta Induced LncRNA ENSG00000261488
TCF7 Transcription Factor 7 ENSG00000081059
TFAP2C Transcription Factor AP-2 γ ENSG00000087510
TGFB1 TGFβ1 transforming growth factor β 1 ENSG00000105329

TIA1
TIA1 Cytotoxic Granule Associated RNA
Binding Protein

ENSG00000116001

TIAL1
TIA1 Cytotoxic Granule Associated RNA
Binding Protein Like 1

ENSG00000151923

TIMP2 TIMP Metallopeptidase Inhibitor 2 ENSG00000035862
TNF TNFα Tumor Necrosis Factor ENSG00000232810
TNRC6A TNRC6 Trinucleotide Repeat Containing Adaptor 6A ENSG00000090905
TP53 tumor protein p53 ENSG00000141510
TP63 tumor protein p63 ENSG00000073282
TP73 tumor protein p73 ENSG00000078900
U2AF2 U2AF65 U2 Small Nuclear RNA Auxiliary Factor 2 ENSG00000063244
ULK1 Unc-51 Like Autophagy Activating Kinase 1 ENSG00000177169
UPF1 UPF1 RNA Helicase And ATPase ENSG00000005007
VIM vimentin ENSG00000026025
WNT10A Wnt 10a Wnt Family Member 10A ENSG00000135925
WNT2 Wnt 2 Wnt Family Member 2 ENSG00000105989
WNT3A Wnt Family Member 3A ENSG00000154342
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WNT5A Wnt 5a Wnt Family Member 5A ENSG00000114251
WNT6 Wnt 6 Wnt Family Member 6 ENSG00000115596
YAP1 Yes associated protein 1 ENSG00000137693
ZC3H7B Zinc Finger CCCH-Type Containing 7B ENSG00000100403
ZEB1 Zinc Finger E-Box Binding Homeobox 1 ENSG00000148516
ZEB2 Zinc Finger E-Box Binding Homeobox 2 ENSG00000169554
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55. Portoso, M.; Ragazzini, R.; Brenčič, Ž.; Moiani, A.; Michaud, A.; Vassilev, I.; Wassef, M.; Servant, N.;
Sargueil, B.; Margueron, R. PRC 2 is dispensable for HOTAIR -mediated transcriptional repression. EMBO J.
2017, 36, 981–994. [CrossRef]

56. Kornienko, A.E.; Dotter, C.P.; Guenzl, P.M.; Gisslinger, H.; Gisslinger, B.; Cleary, C.; Kralovics, R.; Pauler, F.M.;
Barlow, D.P. Long non-coding RNAs display higher natural expression variation than protein-coding genes
in healthy humans. Genome Biol. 2016, 17, 1–23. [CrossRef]

57. Darbellay, F.; Necsulea, A. Comparative Transcriptomics Analyses across Species, Organs,
and Developmental Stages Reveal Functionally Constrained lncRNAs. Mol. Biol. Evol. 2020, 37, 240–259.
[CrossRef]

58. Ye, S.; Zhu, S.; Feng, L. LncRNA ANRIL/miR-125a axis exhibits potential as a biomarker for disease
exacerbation, severity, and inflammation in bronchial asthma. J. Clin. Lab. Anal. 2020, 34, e23092. [CrossRef]

http://dx.doi.org/10.1096/fj.08-119131
http://dx.doi.org/10.1165/rcmb.2018-0156OC
http://dx.doi.org/10.1084/jem.20141675
http://dx.doi.org/10.1016/j.cell.2009.02.006
http://dx.doi.org/10.3389/fgene.2014.00008
http://www.ncbi.nlm.nih.gov/pubmed/24523727
http://dx.doi.org/10.3390/ijms19010123
http://www.ncbi.nlm.nih.gov/pubmed/29301303
http://dx.doi.org/10.1093/nar/gkr1175
http://www.ncbi.nlm.nih.gov/pubmed/22135294
http://dx.doi.org/10.1038/s41388-019-1040-y
http://dx.doi.org/10.1038/nrg.2015.10
http://dx.doi.org/10.1038/nrg3606
http://dx.doi.org/10.1016/j.cell.2018.01.011
http://dx.doi.org/10.4161/psb.21299
http://dx.doi.org/10.1016/j.cell.2011.07.014
http://dx.doi.org/10.1016/j.bbrc.2018.11.059
http://dx.doi.org/10.1101/gr.180596.114
http://www.ncbi.nlm.nih.gov/pubmed/26063736
http://dx.doi.org/10.1007/978-1-4939-8618-7_4
http://www.ncbi.nlm.nih.gov/pubmed/30421400
http://dx.doi.org/10.3390/ijms18081657
http://dx.doi.org/10.1261/rna.053918.115
http://www.ncbi.nlm.nih.gov/pubmed/26574518
http://dx.doi.org/10.15252/embj.201695335
http://dx.doi.org/10.1186/s13059-016-0873-8
http://dx.doi.org/10.1093/molbev/msz212
http://dx.doi.org/10.1002/jcla.23092


Int. J. Mol. Sci. 2020, 21, 0 46 of 56

59. Qiu, Y.Y.; Wu, Y.; Lin, M.J.; Bian, T.; Xiao, Y.L.; Qin, C. LncRNA-MEG3 functions as a competing
endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/RORγt.
Biomed. Pharmacother. 2019, 111, 386–394. [CrossRef]

60. Keenan, C.R.; Schuliga, M.J.; Stewart, A.G. Pro-inflammatory mediators increase levels of the noncoding
RNA GAS5 in airway smooth muscle and epithelial cells. Can. J. Physiol. Pharmacol. 2015, 93, 203–206.
[CrossRef]

61. Zhu, Y.J.; Mao, D.; Gao, W.; Hu, H. Peripheral whole blood lncRNA expression analysis in patients with
eosinophilic asthma. Medicine 2018, 97, 1–9. [CrossRef] [PubMed]

62. Lin, J.; Feng, X.; Zhang, J.; Tong, Z. Long noncoding RNA TUG1 promotes airway smooth muscle cells
proliferation and migration via sponging miR-590-5p/FGF1 in asthma. Am. J. Transl. Res. 2019, 11, 3159–3166.
[PubMed]

63. Du, Y.; Hao, X.; Liu, X. Low expression of long noncoding RNA CDKN2B-AS1 in patients with idiopathic
pulmonary fibrosis predicts lung cancer by regulating the p53-signaling pathway. Oncol. Lett. 2018, 15, 4912–4918.
[CrossRef] [PubMed]

64. Huang, C.; Liang, Y.; Zeng, X.; Yang, X.; Xu, D. lncRNA FENDRR Exhibits Anti-Fibrotic Activity in
Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2019, 1–69. [CrossRef]

65. Wang, X.; Cheng, Z.; Dai, L.; Jiang, T.; Jia, L.; Jing, X.; An, L.; Wang, H.; Liu, M. Knockdown of Long
Noncoding RNA H19 Represses the Progress of Pulmonary Fibrosis through the Transforming Growth
Factor β/Smad3 Pathway by Regulating MicroRNA 140. Mol. Cell. Biol. 2019, 39, 1–12. [CrossRef]

66. Gokey, J.J.; Snowball, J.; Sridharan, A.; Speth, J.P.; Black, K.E.; Hariri, L.P.; Perl, A.K.T.; Xu, Y.; Whitsett, J.A.
MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight
2018, 3. [CrossRef]

67. Ge, J.; Geng, S.; Jiang, H. Long noncoding RNAs antisense noncoding RNA in the INK4 locus (ANRIL)
correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in
patients with chronic obstructive pulmonary disease. J. Clin. Lab. Anal. 2019, 33, 1–8. [CrossRef]

68. Lewis, A.; Lee, J.Y.; Donaldson, A.V.; Natanek, S.A.; Vaidyanathan, S.; Man, W.D.; Hopkinson, N.S.;
Sayer, A.A.; Patel, H.P.; Cooper, C.; et al. Increased expression of H19/miR-675 is associated with a low
fat-free mass index in patients with COPD. J. Cachexia Sarcopenia Muscle 2016, 7, 330–344. [CrossRef]

69. Xia, H.; Xue, J.; Xu, H.; Lin, M.; Shi, M.; Sun, Q.; Xiao, T.; Dai, X.; Wu, L.; Li, J.; et al. Andrographolide
antagonizes the cigarette smoke-induced epithelial-mesenchymal transition and pulmonary dysfunction
through anti-inflammatory inhibiting HOTAIR. Toxicology 2019, 422, 84–94. [CrossRef]

70. Song, B.; Ye, L.; Wu, S.; Jing, Z. Long non-coding RNA MEG3 regulates CSE-induced apoptosis and
inflammation via regulating miR-218 in 16HBE cells. Biochem. Biophys. Res. Commun. 2019, 521, 368–374.
[CrossRef]

71. Gu, W.; Yuan, Y.; Wang, L.; Yang, H.; Li, S.; Tang, Z.; Li, Q. Long non-coding RNA TUG1 promotes airway
remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD. J. Cell. Mol. Med.
2019, 23, 7200–7209. [CrossRef] [PubMed]

72. Tang, W.; Shen, Z.; Guo, J.; Sun, S. Screening of long non-coding RNA and TUG1 inhibits proliferation with
TGF-β induction in patients with COPD. Int. J. COPD 2016, 11, 2951–2964. [CrossRef] [PubMed]

73. Chen, R.; Chen, B.; Li, D.; Wang, Q.; Zhu, Y.; Li, M.; Wang, Y.; Fang, S.; Guo, L. HOTAIR contributes
to chemoresistance by activating NF-κB signaling in small-cell lung cancer. Int. J. Clin. Exp. Pathol.
2019, 12, 2997–3004. [PubMed]

74. Liu, F.; Killian, J.K.; Yang, M.; Walker, R.L.; Hong, J.A.; Zhang, M.; Davis, S.; Zhang, Y.; Hussain, M.;
Xi, S.; et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette
smoke condensate. Oncogene 2010, 29, 3650–3664. [CrossRef]

75. Liu, J.; Tian, W.; Zhang, W.; Jia, Y.; Yang, X.; Wang, Y.; Zhang, J. MicroRNA-142-3p/MALAT1 inhibits
lung cancer progression through repressing β-catenin expression. Biomed. Pharmacother. 2019, 114, 108847.
[CrossRef]

76. Chen, W.; Zhao, W.; Zhang, L.; Wang, L.; Wang, J.; Wan, Z.; Hong, Y.; Yu, L. MALAT1-miR-101-SOX9 feedback
loop modulates the chemoresistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget
2017, 8, 94317–94329. [CrossRef]

http://dx.doi.org/10.1016/j.biopha.2018.12.080
http://dx.doi.org/10.1139/cjpp-2014-0391
http://dx.doi.org/10.1097/MD.0000000000009817
http://www.ncbi.nlm.nih.gov/pubmed/29465565
http://www.ncbi.nlm.nih.gov/pubmed/31217885
http://dx.doi.org/10.3892/ol.2018.7910
http://www.ncbi.nlm.nih.gov/pubmed/29541247
http://dx.doi.org/10.1165/rcmb.2018-0293OC
http://dx.doi.org/10.1128/MCB.00143-19
http://dx.doi.org/10.1172/jci.insight.122490
http://dx.doi.org/10.1002/jcla.22678
http://dx.doi.org/10.1002/jcsm.12078
http://dx.doi.org/10.1016/j.tox.2019.05.009
http://dx.doi.org/10.1016/j.bbrc.2019.10.135
http://dx.doi.org/10.1111/jcmm.14389
http://www.ncbi.nlm.nih.gov/pubmed/31557398
http://dx.doi.org/10.2147/COPD.S109570
http://www.ncbi.nlm.nih.gov/pubmed/27932875
http://www.ncbi.nlm.nih.gov/pubmed/31934137
http://dx.doi.org/10.1038/onc.2010.129
http://dx.doi.org/10.1016/j.biopha.2019.108847
http://dx.doi.org/10.18632/oncotarget.21693


Int. J. Mol. Sci. 2020, 21, 0 47 of 56

77. Zhang, X.; He, X.; Liu, Y.; Zhang, H.; Chen, H.; Guo, S.; Liang, Y. MiR-101-3p inhibits the growth and
metastasis of non-small cell lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1.
Biomed. Pharmacother. 2017, 93, 1065–1073. [CrossRef]

78. Li, S.; Mei, Z.; Hu, H.B.; Zhang, X. The lncRNA MALAT1 contributes to non-small cell lung cancer development
via modulating miR-124/STAT3 axis. J. Cell. Physiol. 2018, 233, 6679–6688. [CrossRef]

79. Tang, Y.; Xiao, G.; Chen, Y.; Deng, Y. LncRNA MALAT1 promotes migration and invasion of non-small-cell
lung cancer by targeting miR-206 and activating Akt/mTOR signaling. Anti-Cancer Drugs 2018, 29, 725–735.
[CrossRef]

80. Liu, M.; Zhang, H.; Li, Y.; Wang, R.; Li, Y.; Zhang, H.; Ren, D.; Liu, H.; Kang, C.; Chen, J. HOTAIR, a long
noncoding RNA, is a marker of abnormal cell cycle regulation in lung cancer. Cancer Sci. 2018, 109, 2717–2733.
[CrossRef]

81. Yang, Y.; Jiang, C.; Yang, Y.; Guo, L.; Huang, J.; Liu, X.; Wu, C.; Zou, J. Silencing of LncRNA-HOTAIR decreases drug
resistance of Non-Small Cell Lung Cancer cells by inactivating autophagy via suppressing the phosphorylation of
ULK1. Biochem. Biophys. Res. Commun. 2018, 497, 1003–1010. [CrossRef] [PubMed]

82. Cao, L.; Chen, J.; Ou, B.; Liu, C.; Zou, Y.; Chen, Q. GAS5 knockdown reduces the chemo-sensitivity
of non-small cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis.
Biomed. Pharmacother. 2017, 93, 570–579. [CrossRef] [PubMed]

83. Guo, S.; Zhang, L.; Zhang, Y.; Wu, Z.; He, D.; Li, X.; Wang, Z. Long non-coding RNA TUG1 enhances
chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition.
Aging 2019, 11, 7553–7569. [CrossRef] [PubMed]

84. Hashemi, M.; Moazeni-Roodi, A.; Sarabandi, S.; Karami, S.; Ghavami, S. Association between genetic
polymorphisms of long noncoding RNA H19 and cancer risk: A meta-analysis. J. Genet. 2019, 98. [CrossRef]

85. Yang, Z.; Li, H.; Li, J.; Lv, X.; Gao, M.; Bi, Y.; Zhang, Z.; Wang, S.; Li, S.; Li, N.; et al. Association Between Long
Noncoding RNA MEG3 Polymorphisms and Lung Cancer Susceptibility in Chinese Northeast Population.
DNA Cell Biol. 2018, 37, 812–820. [CrossRef] [PubMed]

86. Liu, H.; Zhou, G.; Fu, X.; Cui, H.; Pu, G.; Xiao, Y.; Sun, W.; Dong, X.; Zhang, L.; Cao, S.; et al. Long noncoding
RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing
of BAX. Oncotarget 2017, 8, 101899–101910. [CrossRef]

87. Xu, R.; Mao, Y.; Chen, K.; He, W.; Shi, W.; Han, Y. The long noncoding RNA ANRIL acts as an oncogene
and contributes to paclitaxel resistance of lung adenocarcinoma A549 cells. Oncotarget 2017, 8, 39177–39184.
[CrossRef]

88. Tian, Z.; Wen, S.; Zhang, Y.; Shi, X.; Zhu, Y.; Xu, Y.; Lv, H.; Wang, G. Identification of dysregulated
long non-coding RNAs/microRNAs/mRNAs in TNM I stage lung adenocarcinoma. Oncotarget
2017, 8, 51703–51718. [CrossRef]

89. Luo, J.; Li, Q.; Pan, J.; Li, L.; Fang, L.; Zhang, Y. Expression level of long noncoding RNA H19 in plasma of
patients with nonsmall cell lung cancer and its clinical significance. J. Cancer Res. Ther. 2018, 14, 860._733_17.
[CrossRef]

90. Pan, J.; Bian, Y.; Cao, Z.; Lei, L.; Pan, J.; Huang, J.; Cai, X.; Lan, X.; Zheng, H. Long noncoding RNA MALAT1
as a candidate serological biomarker for the diagnosis of non-small cell lung cancer: A meta-analysis.
Thorac. Cancer 2020, 11, 329–335. [CrossRef]

91. Peng, H.; Wang, J.; Li, J.; Zhao, M.; Huang, S.K.; Gu, Y.Y.; Li, Y.; Sun, X.J.; Yang, L.; Luo, Q.; et al.
A circulating non-coding RNA panel as an early detection predictor of non-small cell lung cancer. Life Sci.
2016, 151, 235–242. [CrossRef] [PubMed]

92. Guo, F.; Yu, F.; Wang, J.; Li, Y.; Li, Y.; Li, Z.; Zhou, Q. Expression of MALAT1 in the peripheral whole blood
of patients with lung cancer. Biomed. Rep. 2015, 3, 309–312. [CrossRef] [PubMed]

93. Weber, D.G.; Johnen, G.; Casjens, S.; Bryk, O.; Pesch, B.; Jöckel, K.H.; Kollmeier, J.; Brüning, T. Evaluation of
long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell
lung cancer. BMC Res. Notes 2013, 6, 518. [CrossRef] [PubMed]

94. Lin, L.; Gu, Z.T.; Chen, W.H.; Cao, K.J. Increased expression of the long non-coding RNA ANRIL promotes
lung cancer cell metastasis and correlates with poor prognosis. Diagn. Pathol. 2015, 10, 1–7. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.biopha.2017.07.005
http://dx.doi.org/10.1002/jcp.26325
http://dx.doi.org/10.1097/CAD.0000000000000650
http://dx.doi.org/10.1111/cas.13745
http://dx.doi.org/10.1016/j.bbrc.2018.02.141
http://www.ncbi.nlm.nih.gov/pubmed/29470986
http://dx.doi.org/10.1016/j.biopha.2017.06.089
http://www.ncbi.nlm.nih.gov/pubmed/28686971
http://dx.doi.org/10.18632/aging.102271
http://www.ncbi.nlm.nih.gov/pubmed/31532756
http://dx.doi.org/10.1007/s12041-019-1126-x
http://dx.doi.org/10.1089/dna.2018.4277
http://www.ncbi.nlm.nih.gov/pubmed/30113224
http://dx.doi.org/10.18632/oncotarget.22058
http://dx.doi.org/10.18632/oncotarget.16640
http://dx.doi.org/10.18632/oncotarget.18512
http://dx.doi.org/10.4103/jcrt.JCRT_733_17
http://dx.doi.org/10.1111/1759-7714.13265
http://dx.doi.org/10.1016/j.lfs.2016.03.002
http://www.ncbi.nlm.nih.gov/pubmed/26946307
http://dx.doi.org/10.3892/br.2015.422
http://www.ncbi.nlm.nih.gov/pubmed/26137228
http://dx.doi.org/10.1186/1756-0500-6-518
http://www.ncbi.nlm.nih.gov/pubmed/24313945
http://dx.doi.org/10.1186/s13000-015-0247-7
http://www.ncbi.nlm.nih.gov/pubmed/25889788


Int. J. Mol. Sci. 2020, 21, 0 48 of 56

95. Esfandi, F.; Taheri, M.; Omrani, M.D.; Shadmehr, M.B.; Arsang-Jang, S.; Shams, R.; Ghafouri-Fard, S.
Expression of long non-coding RNAs (lncRNAs) has been dysregulated in non-small cell lung cancer tissues.
BMC Cancer 2019, 19, 1–17. [CrossRef] [PubMed]

96. Wang, Q.; Cheng, N.; Li, X.; Pan, H.; Li, C.; Ren, S.; Su, C.; Cai, W.; Zhao, C.; Zhang, L.; et al. Correlation of
long non-coding RNA H19 expression with cisplatin-resistance and clinical outcome in lung adenocarcinoma.
Oncotarget 2017, 8, 2558–2567. [CrossRef]

97. Zhou, Y.; Sheng, B.; Xia, Q.; Guan, X.; Zhang, Y. Association of long non-coding RNA H19 and microRNA-21
expression with the biological features and prognosis of non-small cell lung cancer. Cancer Gene Ther.
2017, 24, 317–324. [CrossRef]

98. Nakagawa, T.; Endo, H.; Yokoyama, M.; Abe, J.; Tamai, K.; Tanaka, N.; Sato, I.; Takahashi, S.; Kondo,
T.; Satoh, K. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated
with short disease-free survival in human non-small cell lung cancer. Biochem. Biophys. Res. Commun.
2013, 436, 319–324. [CrossRef]

99. Wang, X.; Yin, H.; Zhang, L.; Zheng, D.; Yang, Y.; Zhang, J.; Jiang, H.; Ling, X.; Xin, Y.; Liang, H.; et al.
The construction and analysis of the aberrant lncRNA-miRNA-mRNA network in non-small cell lung cancer.
J. Thorac. Dis. 2019, 11, 1772–1778. [CrossRef]

100. Sun, Y.J.; Li, J.; Chen, C.H. Effects of miR-221 on the apoptosis of non-small cell lung cancer cells by lncRNA
HOTAIR. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4226–4233._201905_17927. [CrossRef]

101. Schmidt, L.H.; Spieker, T.; Koschmieder, S.; Humberg, J.; Jungen, D.; Bulk, E.; Hascher, A.; Wittmer, D.;
Marra, A.; Hillejan, L.; et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small
cell lung cancer and induces migration and tumor growth. J. Thorac. Oncol. 2011, 6, 1984–1992. [CrossRef]
[PubMed]

102. Shen, L.; Chen, L.; Wang, Y.; Jiang, X.; Xia, H.; Zhuang, Z. Long noncoding RNA MALAT1 promotes brain
metastasis by inducing epithelial-mesenchymal transition in lung cancer. J. Neuro-Oncol. 2015, 121, 101–108.
[CrossRef] [PubMed]

103. Wang, H.; Wang, L.; Zhang, G.; Lu, C.; Chu, H.; Yang, R.; Zhao, G. MALAT1/miR-101-3p/MCL1 axis
mediates cisplatin resistance in lung cancer. Oncotarget 2018, 9, 7501–7512. [CrossRef] [PubMed]

104. Chen, W.; Zhao, W.; Chen, S.; Zhang, L.; Guo, Z.; Wang, L.; Wang, J.; Wan, Z.; Hong, Y.; Yu, L. Expression
and correlation of MALAT1 and SOX9 in non-small cell lung cancer. Clin. Respir. J. 2018, 12, 2284–2291.
[CrossRef]

105. Zhang, C.G.; Yin, D.D.; Sun, S.Y.; Han, L. The use of lncRNA analysis for stratification management of
prognostic risk in patients with NSCLC. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 115–119.

106. Zhang, Z.; Liu, T.; Wang, K.; Qu, X.; Pang, Z.; Liu, S.; Liu, Q.; Du, J. Down-regulation of long non-coding
RNA MEG3 indicates an unfavorable prognosis in non-small cell lung cancer: Evidence from the GEO
database. Gene 2017, 630, 49–58. [CrossRef] [PubMed]

107. Zhang, E.B.; Yin, D.D.; Sun, M.; Kong, R.; Liu, X.H.; You, L.H.; Han, L.; Xia, R.; Wang, K.M.; Yang, J.S.; et al.
P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer,
partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014, 5, 1–12. [CrossRef]

108. Lin, P.C.; Huang, H.D.; Chang, C.C.; Chang, Y.S.; Yen, J.C.; Lee, C.C.; Chang, W.H.; Liu, T.C.; Chang, J.G.
Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on
binding to PRC2. BMC Cancer 2016, 16, 1–10. [CrossRef]

109. Gupta, C.; Su, J.; Zhan, M.; Stass, S.A.; Jiang, F. Sputum long non-coding RNA biomarkers for diagnosis of
lung cancer. Cancer Biomark. 2019, 26, 219–227. [CrossRef]

110. Dong, S.; Qu, X.; Li, W.; Zhong, X.; Li, P.; Yang, S.; Chen, X.; Shao, M.; Zhang, L. The long non-coding
RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung
adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J. Hematol. Oncol.
2015, 8, 1–13. [CrossRef]

111. Chen, L.; Ren, P.; Zhang, Y.; Gong, B.; Yu, D.; Sun, X. Long non-coding RNA GAS5 increases the
radiosensitivity of A549 cells through interaction with the miR-21/PTEN/Akt axis. Oncol. Rep. 2020, 897–907.
[CrossRef] [PubMed]

112. Liu, Z.; Sun, M.; Lu, K.; Liu, J.; Zhang, M.; Wu, W.; De, W.; Wang, Z.; Wang, R. The Long Noncoding RNA
HOTAIR Contributes to Cisplatin Resistance of Human Lung Adenocarcinoma Cells via downregualtion of
p21WAF1/CIP1 Expression. PLoS ONE 2013, 8, e77293. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/s12885-019-5435-5
http://www.ncbi.nlm.nih.gov/pubmed/30866866
http://dx.doi.org/10.18632/oncotarget.13708
http://dx.doi.org/10.1038/cgt.2017.20
http://dx.doi.org/10.1016/j.bbrc.2013.05.101
http://dx.doi.org/10.21037/jtd.2019.05.69
http://dx.doi.org/10.26355/eurrev_201905_17927
http://dx.doi.org/10.1097/JTO.0b013e3182307eac
http://www.ncbi.nlm.nih.gov/pubmed/22088988
http://dx.doi.org/10.1007/s11060-014-1613-0
http://www.ncbi.nlm.nih.gov/pubmed/25217850
http://dx.doi.org/10.18632/oncotarget.23483
http://www.ncbi.nlm.nih.gov/pubmed/29484127
http://dx.doi.org/10.1111/crj.12906
http://dx.doi.org/10.1016/j.gene.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/28782577
http://dx.doi.org/10.1038/cddis.2014.201
http://dx.doi.org/10.1186/s12885-016-2569-6
http://dx.doi.org/10.3233/CBM-190161
http://dx.doi.org/10.1186/s13045-015-0140-6
http://dx.doi.org/10.3892/or.2020.7467
http://www.ncbi.nlm.nih.gov/pubmed/32020207
http://dx.doi.org/10.1371/journal.pone.0077293
http://www.ncbi.nlm.nih.gov/pubmed/24155936


Int. J. Mol. Sci. 2020, 21, 0 49 of 56

113. Liu, M.Y.; Li, X.Q.; Gao, T.H.; Cui, Y.; Ma, N.; Zhou, Y.; Zhang, G.J. Elevated HOTAIR expression associated
with cisplatin resistance in non-small cell lung cancer patients. J. Thorac. Dis. 2016, 8, 3314–3322. [CrossRef]
[PubMed]

114. Xiao, Q.; Zheng, F.; Tang, Q.; Wu, J.J.; Xie, J.; Huang, H.D.; Yang, X.B.; Hann, S.S. Repression of PDK1-and
LncRNA HOTAIR-Mediated EZH2 Gene Expression Contributes to the Enhancement of Atractylenolide
1 and Erlotinib in the Inhibition of Human Lung Cancer Cells. Cell. Physiol. Biochem. 2018, 49, 1615–1632.
[CrossRef]

115. Fang, S.; Gao, H.; Tong, Y.; Yang, J.; Tang, R.; Niu, Y.; Li, M.; Guo, L. Long noncoding RNA-HOTAIR
affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab. Investig.
2016, 96, 60–68. [CrossRef]

116. Xu, R.; Han, Y. Long non-coding RNA FOXF1 adjacent non-coding developmental regulatory RNA inhibits
growth and chemotherapy resistance in non-small cell lung cancer. Arch. Med. Sci. 2017, 15, 1539–1546.
[CrossRef]

117. Wang, P.; Chen, D.; Ma, H.; Li, Y. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer
by regulating miR-21-5p/SOX7 axis. OncoTargets Ther. 2017, 10, 5137–5149. [CrossRef]

118. Xia, Y.; He, Z.; Liu, B.; Wang, P.; Chen, Y. Downregulation of Meg3 enhances cisplatin resistance of lung
cancer cells through activation of the WNT/β-catenin signaling pathway. Mol. Med. Rep. 2015, 12, 4530–4537.
[CrossRef]

119. Liu, J.; Wan, L.; Lu, K.; Sun, M.; Pan, X.; Zhang, P.; Lu, B.; Liu, G.; Wang, Z. The long noncoding RNA MEG3
contributes to cisplatin resistance of human lung adenocarcinoma. PLoS ONE 2015, 10, e0114586. [CrossRef]

120. 215]Xia, H.; Qu, X.L.; Liu, L.Y.; Qian, D.H.; Jing, H.Y. LncRNA MEG3 promotes the sensitivity of vincristine
by inhibiting autophagy in lung cancer chemotherapy. Eur. Rev. Med. Pharmacol. Sci.

121. 2018, 22, 1020–1027._201802_14384. [CrossRef] Zhang, D.; Ding, L.; Li, Y.; Ren, J.; Shi, G.; Wang, Y.; Zhao,
S.; Ni, Y.; Hou, Y. Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via
up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci. Rep. 2017, 7, 16231. [CrossRef]
[PubMed]

122. Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.;
Billis, K.; Boddu, S.; et al. Ensembl 2019. Nucleic Acids Res. 2019, 47, D745–D751. [CrossRef] [PubMed]

123. Yates, B.; Braschi, B.; Gray, K.A.; Seal, R.L.; Tweedie, S.; Bruford, E.A. Genenames.org: The HGNC and
VGNC resources in 2017. Nucleic Acids Res. 2017, 45, D619–D625. [CrossRef] [PubMed]

124. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Iny Stein, T.; Nudel, R.;
Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence
analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [CrossRef]

125. Gao, Z.H.; Suppola, S.; Liu, J.; Heikkilä, P.; Jänne, J.; Voutilainen, R. Association of H19 promoter
methylation with the expression of H19 and IGF-II genes in adrenocortical tumors. J. Clin. Endocrinol. Metab.
2002, 87, 1170–1176. [CrossRef]

126. Lu, Q.; Guo, Z.; Xie, W.; Jin, W.; Zhu, D.; Chen, S.; Ren, T. The lncRNA H19 Mediates Pulmonary Fibrosis by
Regulating the miR-196a/COL1A1 Axis. Inflammation 2018, 41, 896–903. [CrossRef]

127. Austin, P.J.; Tsitsiou, E.; Boardman, C.; Jones, S.W.; Lindsay, M.A.; Adcock, I.M.; Chung, K.F.; Perry, M.M.
Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation ( PVT1 ) as
a novel regulator of the asthmatic phenotype in human airway smooth muscle. J. Allergy Clin. Immunol.
2017, 139, 780–789. [CrossRef]

128. Qian, B.; Wang, D.M.; Gu, X.S.; Zhou, K.; Wu, J.; Zhang, C.Y.; He, X.Y. LncRNA H19 serves as a ceRNA
and participates in non-small cell lung cancer development by regulating microRNA-107. Eur. Rev. Med.
Pharmacol. Sci. 2018, 22, 5946–5953._201809_15925. [CrossRef]

129. Huang, T.; Wen, Y.; Peng, B.; Ding, G.; Yang, L.; Wang, Z. Upregulated lncRNA H19 promotes non-small cell
lung cancer cell proliferation through miR-138/PDK1 axis. Int. J. Clin. Exp. Pathol. 2017, 10, 9012–9020.

130. Zhao, Y.; Feng, C.; Li, Y.; Ma, Y.; Cai, R. LncRNA H19 promotes lung cancer proliferation and metastasis by
inhibiting miR-200a function. Mol. Cell. Biochem. 2019, 460, 1–8. [CrossRef]

131. Liu, L.; Liu, L.; Lu, S. LncRNA H19 promotes viability and epithelial-mesenchymal transition of lung
adenocarcinoma cells by targeting miR-29b-3p and modifying STAT3. Int. J. Oncol. 2019, 54, 929–941.
[CrossRef] [PubMed]

http://dx.doi.org/10.21037/jtd.2016.11.75
http://www.ncbi.nlm.nih.gov/pubmed/28066612
http://dx.doi.org/10.1159/000493497
http://dx.doi.org/10.1038/labinvest.2015.123
http://dx.doi.org/10.5114/aoms.2019.86707
http://dx.doi.org/10.2147/OTT.S146423
http://dx.doi.org/10.3892/mmr.2015.3897
http://dx.doi.org/10.1371/journal.pone.0114586
http://dx.doi.org/10.26355/eurrev_201802_14384
http://dx.doi.org/10.1038/s41598-017-13431-y
http://www.ncbi.nlm.nih.gov/pubmed/29176691
http://dx.doi.org/10.1093/nar/gky1113
http://www.ncbi.nlm.nih.gov/pubmed/30407521
http://dx.doi.org/10.1093/nar/gkw1033
http://www.ncbi.nlm.nih.gov/pubmed/27799471
http://dx.doi.org/10.1002/cpbi.5
http://dx.doi.org/10.1210/jcem.87.3.8331
http://dx.doi.org/10.1007/s10753-018-0744-4
http://dx.doi.org/10.1016/j.jaci.2016.06.014
http://dx.doi.org/10.26355/eurrev_201809_15925
http://dx.doi.org/10.1007/s11010-019-03564-1
http://dx.doi.org/10.3892/ijo.2019.4695
http://www.ncbi.nlm.nih.gov/pubmed/30747209


Int. J. Mol. Sci. 2020, 21, 0 50 of 56

132. Huang, Z.; Lei, W.; Hu, H.B.; Zhang, H.; Zhu, Y. H19 promotes non-small-cell lung cancer (NSCLC)
development through STAT3 signaling via sponging miR-17. J. Cell. Physiol. 2018, 233, 6768–6776. [CrossRef]
[PubMed]

133. Zhang, Q.; Li, X.; Li, X.; Li, X.; Chen, Z. LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by
targeting miR-484 in human lung cancer cells. J. Cell. Biochem. 2018, 119, 4447–4457. [CrossRef] [PubMed]

134. Liao, S.; Yu, C.; Liu, H.; Zhang, C.; Li, Y.; Zhong, X. Long non-coding RNA H19 promotes the proliferation
and invasion of lung cancer cells and regulates the expression of E-cadherin, N-cadherin, and vimentin.
OncoTargets Ther. 2019, 12, 4099–4107. [CrossRef]

135. Xu, J.L.; Hua, T.; Ding, J.; Fan, Y.; Liu, Z.J.; Lian, J.W. FOXF2 aggravates the progression of non-small
cell lung cancer through targeting lncRNA H19 to downregulate PTEN. Eur. Rev. Med. Pharmacol. Sci.
2019, 23, 10796–10802._201912_19782. [CrossRef]

136. Zhang, E.; Li, W.; Yin, D.; De, W.; Zhu, L.; Sun, S.; Han, L. c-Myc-regulated long non-coding RNA
H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumor Biol.
2016, 37, 4007–4015. [CrossRef]

137. Barsyte-Lovejoy, D.; Lau, S.K.; Boutros, P.C.; Khosravi, F.; Jurisica, I.; Andrulis, I.L.; Tsao, M.S.; Penn, L.Z.
The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate
tumorigenesis. Cancer Res. 2006, 66, 5330–5337. [CrossRef]

138. Shahdoust, M.; Hajizadeh, E.; Mozdarani, H.; Chehrei, A. Finding genes discriminating smokers from
non-smokers by applying a growing self-organizing clustering method to large airway epithelium cell
microarray data. Asian Pac. J. Cancer Prev. 2013, 14, 111–116. [CrossRef]

139. Chen, B.; Yu, M.; Chang, Q.; Lu, Y.; Thakur, C.; Ma, D.; Yi, Z.; Chen, F. Mdig de-represses H19 large
intergenic non-coding RNA (lincRNA) by down-regulating H3K9me3 and heterochromatin. Oncotarget
2013, 4, 1427–1437. [CrossRef]

140. Gao, L.M.; Xu, S.F.; Zheng, Y.; Wang, P.; Zhang, L.; Shi, S.S.; Wu, T.; Li, Y.; Zhao, J.; Tian, Q.; et al. Long non-coding
RNA H19 is responsible for the progression of lung adenocarcinoma by mediating methylation-dependent
repression of CDH1 promoter. J. Cell. Mol. Med. 2019, 23, 6411–6428. [CrossRef]

141. Wang, L.; Sun, Y.; Yi, J.; Wang, X.; Liang, J.; Pan, Z.; Li, L.; Jiang, G. Targeting H19 by lentivirus-mediated
RNA interference increases A549 cell migration and invasion. Exp. Lung Res. 2016, 42, 346–353. [CrossRef]
[PubMed]

142. Ren, J.; Fu, J.; Ma, T.; Yan, B.; Gao, R.; An, Z.; Wang, D. LncRNA H19-elevated LIN28B promotes lung cancer
progression through sequestering miR-196b. Cell Cycle 2018, 17, 1372–1380. [CrossRef] [PubMed]

143. Ge, X.J.; Zheng, L.M.; Feng, Z.X.; Li, M.Y.; Liu, L.; Zhao, Y.J.; Jiang, J.Y. H19 contributes to poor clinical features
in NSCLC patients and leads to enhanced invasion in A549 cells through regulating miRNA-203-mediated
epithelial-mesenchymal transition. Oncol. Lett. 2018, 16, 4480–4488. [CrossRef] [PubMed]

144. Zheng, Z.H.; Wu, D.M.; Fan, S.H.; Zhang, Z.F.; Chen, G.Q.; Lu, J. Upregulation of miR-675-5p induced by
lncRNA H19 was associated with tumor progression and development by targeting tumor suppressor p53
in non–small cell lung cancer. J. Cell. Biochem. 2019, 120, 18724–18735. [CrossRef]

145. Kondo, M.; Suzuki, H.; Ueda, R.; Osada, H.; Takagi, K.; Takahashi, T.; Takahashi, T. Frequent loss of
imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene
1995. [CrossRef]

146. Booton, R.; Lindsay, M.A. Emerging role of microRNAs and long noncoding RNAs in respiratory disease.
Chest 2014, 146, 193–204. [CrossRef]

147. Xu, Y.Z.; Lin, J.; Jin, Y.Y.; Chen, M.; Zheng, H.H.; Feng, J.X. The miRNA hsa-miR-6515-3p potentially
contributes to lncRNA H19-mediated-lung cancer metastasis. J. Cell. Biochem. 2019, 120, 17413–17421.
[CrossRef]

148. Lei, Y.; Guo, W.; Chen, B.; Chen, L.; Gong, J.; Li, W. Tumor-released lncRNA H19 promotes gefitinib resistance
via packaging into exosomes in non-small cell lung cancer. Oncol. Rep. 2018, 40, 3438–3446. [CrossRef]

149. Lu, K.-H.; Li, W.; Liu, X.H.; Sun, M.; Zhang, M.-L.; Wu, W.-Q.; Xie, W.P.; Hou, Y.Y. Long non-coding RNA
MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer
2013, 13. [CrossRef]

150. Molina-Pinelo, S.; Salinas, A.; Moreno-Mata, N.; Ferrer, I.; Suarez, R.; Andrés-León, E.; Rodríguez-Paredes, M.;
Gutekunst, J.; Jantus-Lewintre, E.; Camps, C.; et al. Impact of DLK1-DIO3 imprinted cluster hypomethylation in
smoker patients with lung cancer. Oncotarget 2018, 9, 4395–4410. [CrossRef]

http://dx.doi.org/10.1002/jcp.26530
http://www.ncbi.nlm.nih.gov/pubmed/29693721
http://dx.doi.org/10.1002/jcb.26537
http://www.ncbi.nlm.nih.gov/pubmed/29219208
http://dx.doi.org/10.2147/OTT.S185156
http://dx.doi.org/10.26355/eurrev_201912_19782
http://dx.doi.org/10.1007/s13277-015-4185-5
http://dx.doi.org/10.1158/0008-5472.CAN-06-0037
http://dx.doi.org/10.7314/APJCP.2013.14.1.111
http://dx.doi.org/10.18632/oncotarget.1155
http://dx.doi.org/10.1111/jcmm.14533
http://dx.doi.org/10.1080/01902148.2016.1223229
http://www.ncbi.nlm.nih.gov/pubmed/27607135
http://dx.doi.org/10.1080/15384101.2018.1482137
http://www.ncbi.nlm.nih.gov/pubmed/29950144
http://dx.doi.org/10.3892/ol.2018.9187
http://www.ncbi.nlm.nih.gov/pubmed/30214583
http://dx.doi.org/10.1002/jcb.29182
http://dx.doi.org/10.1016/0169-5002(95)90556-1
http://dx.doi.org/10.1378/chest.13-2736
http://dx.doi.org/10.1002/jcb.29006
http://dx.doi.org/10.3892/or.2018.6762
http://dx.doi.org/10.1186/1471-2407-13-461
http://dx.doi.org/10.18632/oncotarget.10611


Int. J. Mol. Sci. 2020, 21, 0 51 of 56

151. Zhao, J.; Zhang, X.; Zhou, Y.; Ansell, P.J.; Klibanski, A. Cyclic AMP stimulates MEG3 gene expression in cells
through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int. J. Biochem. Cell Biol.
2006, 38, 1808–1820. [CrossRef] [PubMed]

152. Kagami, M.; O’Sullivan, M.J.; Green, A.J.; Watabe, Y.; Arisaka, O.; Masawa, N.; Matsuoka, K.; Fukami, M.;
Matsubara, K.; Kato, F.; et al. The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: Hierarchical
interaction and distinct functional properties as imprinting control centers. PLoS Genet. 2010, 6, e1000992.
[CrossRef] [PubMed]

153. Su, L.; Han, D.; Wu, J.; Huo, X. Skp2 regulates non-small cell lung cancer cell growth by Meg3 and miR-3163.
Tumor Biol. 2016, 37, 3925–3931. [CrossRef] [PubMed]

154. Al-Rugeebah, A.; Alanazi, M.; Parine, N.R. MEG3: An Oncogenic Long Non-coding RNA in Different
Cancers. Pathol. Oncol. Res. 2019, 25, 859–874. [CrossRef] [PubMed]

155. Kruer, T.L.; Dougherty, S.M.; Reynolds, L.; Long, E.; De Silva, T.; Lockwood, W.W.; Clem, B.F. Expression of
the lncRNA maternally expressed gene 3 (MEG3) contributes to the control of lung cancer cell proliferation
by the Rb pathway. PLoS ONE 2016, 11, e0166363. [CrossRef]

156. Wu, J.L.; Meng, F.M.; Li, H.J. High expression of lncRNA MEG3 participates in non-small cell lung cancer by
regulating microRNA-7-5p. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5938–5945._201809_15923. [CrossRef]

157. Li, X.; Zheng, M.; Pu, J.; Zhou, Y.; Hong, W.; Fu, X.; Peng, Y.; Zhou, W.; Pan, H.; Li, B.; et al. Identification
of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci. Rep.
2018, 38, 1–14. [CrossRef]

158. Terashima, M.; Tange, S.; Ishimura, A.; Suzuki, T. MEG3 long noncoding RNA contributes to the epigenetic
regulation of epithelial-mesenchymal transition in lung cancer cell lines. J. Biol. Chem. 2017, 292, 82–99.
[CrossRef]

159. Zhao, Y.; Zhu, Z.; Shi, S.; Wang, J.; Li, N. Long non-coding RNA MEG3 regulates migration and invasion of
lung cancer stem cells via miR-650/SLC34A2 axis. Biomed. Pharmacother. 2019, 120, 109457. [CrossRef]

160. Wang, P.; Chen, D.; Ma, H.; Li, Y. Long non-coding RNA MEG3 regulates proliferation and apoptosis in
non-small cell lung cancer: Via the miR-205-5p/LRP1 pathway. RSC Adv. 2017, 7, 49710–49719. [CrossRef]

161. Li, D.S.; Ainiwaer, J.L.; Sheyhiding, I.; Zhang, Z.; Zhang, L.W. Identification of key long non-coding RNAs
as competing endogenous RNAs for miRNA-mRNA in lung adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci.
2016, 20, 2285–2295. [PubMed]

162. Xu, J.; Su, C.; Zhao, F.; Tao, J.; Hu, D.; Shi, A.; Pan, J.; Zhang, Y. Paclitaxel promotes lung cancer cell apoptosis
via MEG3-P53 pathway activation. Biochem. Biophys. Res. Commun. 2018, 504, 123–128. [CrossRef] [PubMed]

163. Filippov-Levy, N.; Cohen-Schussheim, H.; Tropé, C.G.; Hetland Falkenthal, T.E.; Smith, Y.; Davidson, B.;
Reich, R. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol. Oncol.
2018, 148, 559–566. [CrossRef] [PubMed]

164. Zhang, J.; Liu, S.C.; Luo, X.H.; Tao, G.X.; Guan, M.; Yuan, H.; Hu, D.K. Exosomal Long Noncoding RNAs are
Differentially Expressed in the Cervicovaginal Lavage Samples of Cervical Cancer Patients. J. Clin. Lab. Anal.
2016, 30, 1116–1121. [CrossRef] [PubMed]

165. Liu, F.; Chen, Y.; Liu, R.; Chen, B.; Liu, C.; Xing, J. Long noncoding RNA (MEG3) in urinal exosomes
functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J. Cell. Biochem.
2020, 121, 1227–1237. [CrossRef] [PubMed]

166. He, R.Z.; Luo, D.X.; Mo, Y.Y. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer.
Genes Dis. 2019, 6, 6–15. [CrossRef]

167. Parker, M.M.; Chase, R.P.; Lamb, A.; Reyes, A.; Saferali, A.; Yun, J.H.; Himes, B.E.; Silverman, E.K.;
Hersh, C.P.; Castaldi, P.J. RNA sequencing identifies novel non-coding RNA and exon-specific effects
associated with cigarette smoking. BMC Med. Genom. 2017, 10, 58. [CrossRef]

168. Gutschner, T.; Hämmerle, M.; Eißmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.;
Groß, M.; et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung
cancer cells. Cancer Res. 2013, 73, 1180–1189. [CrossRef]

169. Guo, F.; Jiao, F.; Song, Z.; Li, S.; Liu, B.; Yang, H.; Zhou, Q.; Li, Z. Regulation of MALAT1 expression by
TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro. Biochem. Biophys.
Res. Commun. 2015, 465, 293–298. [CrossRef]

http://dx.doi.org/10.1016/j.biocel.2006.05.004
http://www.ncbi.nlm.nih.gov/pubmed/16793321
http://dx.doi.org/10.1371/journal.pgen.1000992
http://www.ncbi.nlm.nih.gov/pubmed/20585555
http://dx.doi.org/10.1007/s13277-015-4151-2
http://www.ncbi.nlm.nih.gov/pubmed/26482610
http://dx.doi.org/10.1007/s12253-019-00614-3
http://www.ncbi.nlm.nih.gov/pubmed/30793226
http://dx.doi.org/10.1371/journal.pone.0166363
http://dx.doi.org/10.26355/eurrev_201809_15923
http://dx.doi.org/10.1042/BSR20171577
http://dx.doi.org/10.1074/jbc.M116.750950
http://dx.doi.org/10.1016/j.biopha.2019.109457
http://dx.doi.org/10.1039/C7RA08057C
http://www.ncbi.nlm.nih.gov/pubmed/27338053
http://dx.doi.org/10.1016/j.bbrc.2018.08.142
http://www.ncbi.nlm.nih.gov/pubmed/30173893
http://dx.doi.org/10.1016/j.ygyno.2018.01.004
http://www.ncbi.nlm.nih.gov/pubmed/29310950
http://dx.doi.org/10.1002/jcla.21990
http://www.ncbi.nlm.nih.gov/pubmed/27184657
http://dx.doi.org/10.1002/jcb.29356
http://www.ncbi.nlm.nih.gov/pubmed/31595563
http://dx.doi.org/10.1016/j.gendis.2019.01.003
http://dx.doi.org/10.1186/s12920-017-0295-9
http://dx.doi.org/10.1158/0008-5472.CAN-12-2850
http://dx.doi.org/10.1016/j.bbrc.2015.08.027


Int. J. Mol. Sci. 2020, 21, 0 52 of 56

170. Tano, K.; Onoguchi-Mizutani, R.; Yeasmin, F.; Uchiumi, F.; Suzuki, Y.; Yada, T.; Akimitsu, N. Identification of
minimal p53 promoter region regulated by MALAT1 in human lung adenocarcinoma cells. Front. Genet.
2018, 9, 208. [CrossRef]

171. Yang, Q.; Chen, W.; Xu, Y.; Lv, X.; Zhang, M.; Jiang, H. Polyphyllin I modulates MALAT1/STAT3 signaling
to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol. Appl. Pharmacol. 2018, 356, 1–7.
[CrossRef] [PubMed]

172. Yu, W.; Ding, J.; He, M.; Chen, Y.; Wang, R.; Han, Z.; Xing, E.Z.; Zhang, C.; Yeh, S. Estrogen receptor β promotes
the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals
in lung cancer. Oncogene 2018, 38, 1225–1238. [CrossRef] [PubMed]

173. Ma, J.; Wu, K.; Liu, K.; Miao, R. Effects of MALAT1 on proliferation and apoptosis of human non-small
cell lung cancer A549 cells in vitro and tumor xenograft growth in vivo by modulating autophagy.
Cancer Biomarkers 2018, 22, 63–72. [CrossRef] [PubMed]

174. Zhang, R.; Xia, Y.; Wang, Z.; Zheng, J.; Chen, Y.; Li, X.; Wang, Y.; Ming, H. Serum long non coding RNA
MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small
cell lung cancer. Biochem. Biophys. Res. Commun. 2017, 490, 406–414. [CrossRef]

175. Lin, L.; Li, H.; Zhu, Y.; He, S.; Ge, H. Expression of metastasis-associated lung adenocarcinoma transcript 1
long non-coding RNA in vitro and in patients with non-small cell lung cancer. Oncol. Lett. 2018, 15, 9443–9449.
[CrossRef]

176. Guo, F.; Guo, L.; Li, Y.; Zhou, Q.; Li, Z. MALAT1 is an oncogenic long non-coding RNA associated with
tumor invasion in non-small cell lung cancer regulated by DNA methylation. Int. J. Clin. Exp. Pathol.
2015, 8, 15903–15910.

177. Liu, M.; Sun, W.; Liu, Y.; Dong, X. The role of lncRNA MALAT1 in bone metastasis in patients with non-small
cell lung cancer. Oncol. Rep. 2016, 36, 1679–1685. [CrossRef]

178. Jen, J.; Tang, Y.A.; Lu, Y.H.; Lin, C.C.; Lai, W.W.; Wang, Y.C. Oct4 transcriptionally regulates the expression of
long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Mol. Cancer 2017, 16, 1–12.
[CrossRef]

179. Ghafouri-Fard, S.; Ashrafi Hafez, A.; Taheri, M. Metastasis Associated Lung Adenocarcinoma Transcript
1: An update on expression pattern and functions in carcinogenesis. Exp. Mol. Pathol. 2020, 112, 104330.
[CrossRef]

180. Li, S.; Wang, Q.; Qiang, Q.; Shan, H.; Shi, M.; Chen, B.; Zhao, S.; Yuan, L. Sp1-mediated transcriptional
regulation of MALAT1 plays a critical role in tumor. J. Cancer Res. Clin. Oncol. 2015, 141, 1909–1920.
[CrossRef]

181. Chen, J.; Liu, X.; Xu, Y.; Zhang, K.; Huang, J.; Pan, B.; Chen, D.; Cui, S.; Song, H.; Wang, R.; et al.
TFAP2C-Activated MALAT1 Modulates the Chemoresistance of Docetaxel-Resistant Lung Adenocarcinoma
Cells. Mol. Ther. Nucleic Acids 2019, 14, 567–582. [CrossRef] [PubMed]

182. Fang, Z.; Chen, W.; Yuan, Z.; Liu, X.; Jiang, H. LncRNA-MALAT1 contributes to the cisplatin-resistance of
lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed. Pharmacother. 2018, 101, 536–542.
[CrossRef] [PubMed]

183. Liu, C.; Li, H.; Jia, J.; Ruan, X.; Liu, Y.; Zhang, X. High metastasis-associated lung adenocarcinoma transcript
1 (MALAT1) expression promotes proliferation, migration, and invasion of non-small cell lung cancer via
ERK/mitogen-activated protein kinase (MAPK) signaling pathway. Med. Sci. Monit. 2019, 25, 5143–5149.
[CrossRef] [PubMed]

184. Cui, Y.; Li, G.; Zhang, X.; Dai, F.; Zhang, R. Increased MALAT1 expression contributes to cisplatin resistance
in non-small cell lung cancer. Oncol. Lett. 2018, 16, 4821–4828. [CrossRef]

185. Li, J.; Wang, J.; Chen, Y.; Li, S.; Jin, M.; Wang, H.; Chen, Z.; Yu, W. LncRNA MALAT1 exerts oncogenic
functions in lung adenocarcinoma by targeting miR-204. Am. J. Cancer Res. 2016, 6, 1099–1107.

186. Wei, S.; Wang, K.; Huang, X.; Zhao, Z.; Zhao, Z. LncRNA malat1 contributes to non-small cell lung cancer
progression via modulating mir-200a-3p/programmed death-ligand 1 axis. Int. J. Immunopathol. Pharmacol.
2019, 33. [CrossRef] [PubMed]

187. Xiao, H.; Zhu, Q.; Zhou, J. Long non-coding RNA MALAT1 interaction with miR-429 regulates the proliferation
and EMT of lung adenocarcinoma cells through RhoA. Int. J. Clin. Exp. Pathol. 2019, 12, 419–430.

http://dx.doi.org/10.3389/fgene.2017.00208
http://dx.doi.org/10.1016/j.taap.2018.07.031
http://www.ncbi.nlm.nih.gov/pubmed/30076870
http://dx.doi.org/10.1038/s41388-018-0463-1
http://www.ncbi.nlm.nih.gov/pubmed/30250297
http://dx.doi.org/10.3233/CBM-170917
http://www.ncbi.nlm.nih.gov/pubmed/29439314
http://dx.doi.org/10.1016/j.bbrc.2017.06.055
http://dx.doi.org/10.3892/ol.2018.8531
http://dx.doi.org/10.3892/or.2016.4909
http://dx.doi.org/10.1186/s12943-017-0674-z
http://dx.doi.org/10.1016/j.yexmp.2019.104330
http://dx.doi.org/10.1007/s00432-015-1951-0
http://dx.doi.org/10.1016/j.omtn.2019.01.005
http://www.ncbi.nlm.nih.gov/pubmed/30771618
http://dx.doi.org/10.1016/j.biopha.2018.02.130
http://www.ncbi.nlm.nih.gov/pubmed/29505924
http://dx.doi.org/10.12659/MSM.913308
http://www.ncbi.nlm.nih.gov/pubmed/31293277
http://dx.doi.org/10.3892/ol.2018.9293
http://dx.doi.org/10.1177/2058738419859699
http://www.ncbi.nlm.nih.gov/pubmed/31240979


Int. J. Mol. Sci. 2020, 21, 0 53 of 56

188. Yang, T.; Li, H.; Chen, T.; Ren, H.; Shi, P.; Chen, M. LncRNA MALAT1 depressed chemo-sensitivity of
NSCLC cells through directly functioning on miR-197-3p/p120 catenin axis. Mol. Cells 2019, 42, 270–283.
[CrossRef]

189. Zhang, M.Y.; Zhang, Z.L.; Cui, H.X.; Wang, R.K.; Fu, L. Long non-coding RNA FENDRR inhibits NSCLC
cell growth and aggressiveness by sponging miR-761. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8324–8332.
[CrossRef]

190. Ding, X.; Zhang, S.; Li, X.; Feng, C.; Huang, Q.; Wang, S.; Wang, S.; Xia, W.; Yang, F.; Yin, R.; et al. Profiling
expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal
RNA-depleted RNA sequencing. FEBS Open Bio 2018, 8, 544–555. [CrossRef]

191. Chen, W.J.; Tang, R.X.; He, R.Q.; Li, D.Y.; Liang, L.; Zeng, J.H.; Hu, X.H.; Ma, J.; Li, S.K.; Chen, G. Clinical roles
of the aberrantly expressed lncRNAs in lung squamous cell carcinoma: A study based on RNA sequencing
and microarray data mining. Oncotarget 2017, 8, 61282–61304. [CrossRef] [PubMed]

192. Zhang, L.; Li, S.; Choi, Y.L.; Lee, J.; Gong, Z.; Liu, X.; Pei, Y.; Jiang, A.; Ye, M.; Mao, M.; et al. Systematic
identification of cancer-related long noncoding RNAs and aberrant alternative splicing of quintuple-negative
lung adenocarcinoma through RNA-Seq. Lung Cancer 2017, 109, 21–27. [CrossRef] [PubMed]

193. Acha-Sagredo, A.; Uko, B.; Pantazi, P.; Bediaga, N.; Moschandrea, C.; Rainbow, L.; Marcus, M.; Davies,
M.; Field, J.; Liloglou, T. Long non-coding RNA dysregulation is a frequent event in non-small cell lung
carcinoma pathogenesis. Br. J. Cancer 2020, 122, 1050–1058. [CrossRef] [PubMed]

194. Miao, L.; Huang, Z.; Zengli, Z.; Li, H.; Chen, Q.; Yao, C.; Cai, H.; Xiao, Y.; Xia, H.; Wang, Y. Loss of
long noncoding RNA FOXF1-AS1 regulates epithelialmesenchymal transition, stemness and metastasis of
non-small cell lung cancer cells. Oncotarget 2016, 7, 68339–68349. [CrossRef]

195. Gong, F.; Dong, D.; Zhang, T.; Xu, W. Long non-coding RNA FENDRR attenuates the stemness of non-small
cell lung cancer cells via decreasing multidrug resistance gene 1 (MDR1) expression through competitively
binding with RNA binding protein HuR. Eur. J. Pharmacol. 2019, 853, 345–352. [CrossRef]

196. Zhang, G.; Wang, Q.; Zhang, X.; Ding, Z.; Liu, R. LncRNA FENDRR suppresses the progression of NSCLC
via regulating miR-761/TIMP2 axis. Biomed. Pharmacother. 2019, 118, 109309. [CrossRef]

197. Liu, Y.; Xie, D.; He, Z.; Zheng, L. Integrated analysis reveals five potential ceRNA biomarkers in human
lung adenocarcinoma. PeerJ 2019, 2019. [CrossRef]

198. Ghaforui-Fard, S.; Vafaee, R.; Taheri, M. Taurine-upregulated gene 1: A functional long noncoding RNA in
tumorigenesis. J. Cell. Physiol. 2019, 234, 17100–17112. [CrossRef]

199. Ma, P.J.; Guan, Q.K.; Meng, L.; Qin, N.; Zhao, J.; Jin, B.Z. Long non-coding RNA TUG1 as a potential prognostic
biomarker in human cancers: A meta-analysis. Oncotarget 2017, 8, 62454–62462. [CrossRef]

200. Niu, Y.; Ma, F.; Huang, W.; Fang, S.; Li, M.; Wei, T.; Guo, L. Long non-coding RNA TUG1 is involved in
cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2. Mol. Cancer
2017, 16, 1–13. [CrossRef]

201. Gezer, U.; Özgür, E.; Cetinkaya, M.; Isin, M.; Dalay, N. Long non-coding RNAs with low expression levels in
cells are enriched in secreted exosomes. Cell Biol. Int. 2014, 38, 1076–1079. [CrossRef] [PubMed]

202. Barbagallo, C.; Brex, D.; Caponnetto, A.; Cirnigliaro, M.; Scalia, M.; Magnano, A.; Caltabiano, R.; Barbagallo,
D.; Biondi, A.; Cappellani, A.; et al. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated
in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. Mol. Ther. Nucleic Acids
2018, 12, 229–241. [CrossRef] [PubMed]

203. Burd, C.E.; Jeck, W.R.; Liu, Y.; Sanoff, H.K.; Wang, Z.; Sharpless, N.E. Expression of linear and novel
circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet.
2010, 6, e1001165. [CrossRef] [PubMed]

204. Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.M.
Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb
CBX7 in Transcriptional Silencing of INK4a. Mol. Cell 2010, 38, 662–674. [CrossRef] [PubMed]

205. Kotake, Y.; Nakagawa, T.; Kitagawa, K.; Suzuki, S.; Liu, N.; Kitagawa, M.; Xiong, Y. Long non-coding RNA
ANRIL is required for the PRC2 recruitment to and silencing of p15 INK4B tumor suppressor gene. Oncogene
2011, 30, 1956–1962. [CrossRef] [PubMed]

206. Busch, S.E.; Moser, R.D.; Gurley, K.E.; Kelly-Spratt, K.S.; Liggitt, H.D.; Kemp, C.J. ARF inhibits the growth
and malignant progression of non-small-cell lung carcinoma. Oncogene 2014, 33, 2665–2673. [CrossRef]

http://dx.doi.org/10.14348/molcells.2019.2364
http://dx.doi.org/10.26355/eurrev_201812_16530
http://dx.doi.org/10.1002/2211-5463.12397
http://dx.doi.org/10.18632/oncotarget.18058
http://www.ncbi.nlm.nih.gov/pubmed/28977863
http://dx.doi.org/10.1016/j.lungcan.2017.04.009
http://www.ncbi.nlm.nih.gov/pubmed/28577945
http://dx.doi.org/10.1038/s41416-020-0742-9
http://www.ncbi.nlm.nih.gov/pubmed/32020063
http://dx.doi.org/10.18632/oncotarget.11630
http://dx.doi.org/10.1016/j.ejphar.2019.04.022
http://dx.doi.org/10.1016/j.biopha.2019.109309
http://dx.doi.org/10.7717/peerj.6694
http://dx.doi.org/10.1002/jcp.28464
http://dx.doi.org/10.18632/oncotarget.19099
http://dx.doi.org/10.1186/s12943-016-0575-6
http://dx.doi.org/10.1002/cbin.10301
http://www.ncbi.nlm.nih.gov/pubmed/24798520
http://dx.doi.org/10.1016/j.omtn.2018.05.009
http://www.ncbi.nlm.nih.gov/pubmed/30195762
http://dx.doi.org/10.1371/journal.pgen.1001233
http://www.ncbi.nlm.nih.gov/pubmed/21151960
http://dx.doi.org/10.1016/j.molcel.2010.03.021
http://www.ncbi.nlm.nih.gov/pubmed/20541999
http://dx.doi.org/10.1038/onc.2010.568
http://www.ncbi.nlm.nih.gov/pubmed/21151178
http://dx.doi.org/10.1038/onc.2013.208


Int. J. Mol. Sci. 2020, 21, 0 54 of 56

207. Alsibai, K.D.; Vacher, S.; Meseure, D.; Nicolas, A.; Lae, M.; Schnitzler, A.; Chemlali, W.; Cros, J.; Longchampt, E.;
Cacheux, W.; et al. High positive correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF
gene cluster overexpression in multi-tumor types suggest deregulated activation of an ANRIL-ARF bidirectional
promoter. Non-Coding RNA 2019, 5, 44. [CrossRef]

208. Lu, Y.; Zhou, X.H.; Xu, L.; Rong, C.H.; Shen, C.; Bian, W. Long noncoding RNA ANRIL could be
transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. OncoTargets Ther.
2016, 9, 3077–3084. [CrossRef]

209. Nie, F.Q.; Sun, M.; Yang, J.S.; Xie, M.; Xu, T.P.; Xia, R.; Liu, Y.W.; Liu, X.H.; Zhang, E.B.; Lu, K.H.; et al. Long
noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by
silencing KLF2 and P21 expression. Mol. Cancer Ther. 2015, 14, 268–277. [CrossRef]

210. Fehringer, G.; Kraft, P.; Pharoah, P.D.; Eeles, R.A.; Chatterjee, N.; Schumacher, F.R.; Schildkraut, J.M.;
Lindström, S.; Brennan, P.; Bickeböller, H.; et al. Cross-cancer genome-wide analysis of lung, ovary, breast,
prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res. 2016, 76, 5103–5114.
[CrossRef]

211. Timmers, P.R.; Mounier, N.; Lall, K.; Fischer, K.; Ning, Z.; Feng, X.; Bretherick, A.D.; Clark, D.W.; Agbessi, M.;
Ahsan, H.; et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases
and distinguishes survival chances. eLife 2019, 8, 1–40. [CrossRef] [PubMed]

212. Li, W.Q.; Pfeiffer, R.M.; Hyland, P.L.; Shi, J.; Gu, F.; Wang, Z.; Bhattacharjee, S.; Luo, J.; Xiong, X.;
Yeager, M.; et al. Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers.
Carcinogenesis 2014, 35, 2698–2705. [CrossRef] [PubMed]

213. Timofeeva, M.N.; Hung, R.J.; Rafnar, T.; Christiani, D.C.; Field, J.K.; Bickeböller, H.; Risch, A.; Mckay, J.D.;
Wang, Y.; Dai, J.; et al. Influence of common genetic variation on lung cancer risk: Meta-analysis of 14 900
cases and 29 485 controls. Hum. Mol. Genet. 2012, 21, 4980–4995. [CrossRef] [PubMed]

214. Lv, X.; Cui, Z.; Li, H.; Li, J.; Yang, Z.; Bi, Y.; Gao, M.; Zhang, Z.; Wang, S.; Zhou, B.; et al. Association
between polymorphism in CDKN2B-AS1 gene and its interaction with smoking on the risk of lung cancer in
a Chinese population. Hum. Genom. 2019, 13, 1–10. [CrossRef] [PubMed]

215. Abbastabar, M.; Sarfi, M.; Golestani, A.; Karimi, A.; Pourmand, G.; Khalili, E. Tumor-derived urinary
exosomal long non-coding RNAs as diagnostic biomarkers for bladder cancer. EXCLI J. 2020, 19, 301–310.
[CrossRef]

216. Zhou, C.; Ye, L.; Jiang, C.; Bai, J.; Chi, Y.; Zhang, H. Long noncoding RNA HOTAIR, a hypoxia-inducible
factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion
in non-small cell lung cancer. Tumor Biol. 2015, 36, 9179–9188. [CrossRef]

217. Liu, Y.; Luo, F.; Xu, Y.; Wang, B.; Zhao, Y.; Xu, W.; Shi, L.; Lu, X.; Liu, Q. Epithelial-mesenchymal transition
and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant
transformation induced by cigarette smoke extract. Toxicol. Appl. Pharmacol. 2015, 282, 9–19. [CrossRef]

218. Li, L.; Wang, Y.; Song, G.; Zhang, X.; Gao, S.; Liu, H. HOX cluster-embedded antisense long non-coding
RNAs in lung cancer. Cancer Lett. 2019, 450, 14–21. [CrossRef]

219. Liu, W.; Yin, N.C.; Liu, H.; Nan, K.J. Cav-1 promote lung cancer cell proliferation and invasion through
lncRNA HOTAIR. Gene 2018, 641, 335–340. [CrossRef]

220. Zhai, N.; Xia, Y.; Yin, R.; Liu, J.; Gao, F. A negative regulation loop of long noncoding RNA HOTAIR and p53
in non-small-cell lung cancer. OncoTargets Ther. 2016, 9, 5713–5720. [CrossRef]

221. Zhao, Y.; Tang, X.; Huang, Y.; Tang, Q.; Ma, C.; Zheng, F.; Wu, W.; Hann, S.S. Interaction of C-Jun and
HOTAIR- increased expression of p21 converge in Polyphyllin I-inhibited growth of human lung cancer
cells. OncoTargets Ther. 2019, 12, 10115–10127. [CrossRef] [PubMed]

222. Wang, R.; Yan, B.; Li, Z.; Jiang, Y.; Mao, C.; Wang, X.; Zhou, X. Long non-coding RNA HOX
transcript antisense RNA promotes expression of 14-3-3σ in non-small cell lung cancer. Exp. Ther. Med.
2017, 14, 4503–4508. [CrossRef] [PubMed]

223. Guo, F.; Cao, Z.; Guo, H.; Li, S. The action mechanism of lncRNA-HOTAIR on the drug resistance of
non-small cell lung cancer by regulating Wnt signaling pathway. Exp. Ther. Med. 2018, 15, 4885–4889.
[CrossRef] [PubMed]

224. Wang, R.; Shi, Y.; Chen, L.; Jiang, Y.; Mao, C.; Yan, B.; Liu, S.; Shan, B.; Tao, Y.; Wang, X. The ratio of FoxA1 to
FoxA2 in lung adenocarcinoma is regulated by LncRNA HOTAIR and chromatin remodeling factor LSH.
Sci. Rep. 2015, 5, 17826. [CrossRef]

http://dx.doi.org/10.3390/ncrna5030044
http://dx.doi.org/10.2147/OTT.S102658
http://dx.doi.org/10.1158/1535-7163.MCT-14-0492
http://dx.doi.org/10.1158/0008-5472.CAN-15-2980
http://dx.doi.org/10.7554/eLife.39856
http://www.ncbi.nlm.nih.gov/pubmed/30642433
http://dx.doi.org/10.1093/carcin/bgu203
http://www.ncbi.nlm.nih.gov/pubmed/25239644
http://dx.doi.org/10.1093/hmg/dds334
http://www.ncbi.nlm.nih.gov/pubmed/22899653
http://dx.doi.org/10.1186/s40246-019-0240-4
http://www.ncbi.nlm.nih.gov/pubmed/31775885
http://dx.doi.org/10.17179/excli2019-1683
http://dx.doi.org/10.1007/s13277-015-3453-8
http://dx.doi.org/10.1016/j.taap.2014.10.022
http://dx.doi.org/10.1016/j.canlet.2019.02.036
http://dx.doi.org/10.1016/j.gene.2017.10.070
http://dx.doi.org/10.2147/OTT.S110219
http://dx.doi.org/10.2147/OTT.S226830
http://www.ncbi.nlm.nih.gov/pubmed/31819506
http://dx.doi.org/10.3892/etm.2017.5041
http://www.ncbi.nlm.nih.gov/pubmed/29067125
http://dx.doi.org/10.3892/etm.2018.6052
http://www.ncbi.nlm.nih.gov/pubmed/29805510
http://dx.doi.org/10.1038/srep17826


Int. J. Mol. Sci. 2020, 21, 0 55 of 56

225. Fang, S.; Shen, Y.; Chen, B.; Wu, Y.; Jia, L.; Li, Y.; Zhu, Y.; Yan, Y.; Li, M.; Chen, R.; et al. H3K27me3 induces
multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the
lncRNA HOTAIR. Ann. Transl. Med. 2018, 6, 440. [CrossRef]

226. Tang, Q.; Zheng, F.; Liu, Z.; Wu, J.J.; Chai, X.S.; He, C.X.; Li, L.; Hann, S.S. Novel reciprocal interaction of
lncRNA HOTAIR and miR-214-3p contribute to the solamargine-inhibited PDPK1 gene expression in human
lung cancer. J. Cell. Mol. Med. 2019, 23, 7749–7761. [CrossRef]

227. Chen, S.S.; Peng, M.; Zhou, G.Z.; Pu, Y.C.; Yi, M.C.; Zhu, Y.; Jiang, B. Long non-coding RNA HOTAIR
regulates the development of non-small cell lung cancer through miR-217/DACH1 signaling pathway.
Eur. Rev. Med Pharmacol. Sci. 2019, 23, 670–678._201901_16905. [CrossRef]

228. Li, J.; Li, S.; Chen, Z.; Wang, J.; Chen, Y.; Xu, Z.; Jin, M.; Yu, W. miR-326 reverses chemoresistance in human
lung adenocarcinoma cells by targeting specificity protein 1. Tumor Biol. 2016, 37, 13287–13294. [CrossRef]

229. Wang, R.; Chen, X.; Xu, T.; Xia, R.; Han, L.; Chen, W.; De, W.; Shu, Y. MiR-326 regulates cell proliferation and
migration in lung cancer by targeting phox2a and is regulated by HOTAIR. Am. J. Cancer Res. 2016, 6, 173–186.

230. Jiang, C.; Yang, Y.; Yang, Y.; Guo, L.; Huang, J.; Liu, X.; Wu, C.; Zou, J. Long noncoding RNA (lncRNA)
HOTAIR affects tumorigenesis and metastasis of non-small cell lung cancer by upregulating miR-613.
Oncol. Res. 2018, 26, 725–734. [CrossRef]

231. Sassenberg, M.; Droop, J.; Schulz, W.A.; Dietrich, D.; Loick, S.M.; Wiek, C.; Scheckenbach, K.; Gaisa, N.T.;
Hoffmann, M.J. Upregulation of the long non-coding RNA CASC9 as a biomarker for squamous cell
carcinoma. BMC Cancer 2019, 19, 1–14. [CrossRef] [PubMed]

232. Wu, F.; Yin, Z.; Yang, L.; Fan, J.; Xu, J.; Jin, Y.; Yu, J.; Zhang, D.; Yang, G. Smoking induced extracellular
vesicles release and their distinct properties in non-small cell lung cancer. J. Cancer 2019, 10, 3435–3443.
[CrossRef] [PubMed]

233. Zhang, C.; Xu, L.; Deng, G.; Ding, Y.; Bi, K.; Jin, H.; Shu, J.; Yang, J.; Deng, H.; Wang, Z.; et al. Exosomal
HOTAIR promotes proliferation, migration and invasion of lung cancer by sponging miR-203. Sci. China
Life Sci. 2020, 1–4. [CrossRef] [PubMed]

234. Dasgupta, P.; Kulkarni, P.; Majid, S.; Shahryari, V.; Hashimoto, Y.; Bhat, N.S.; Shiina, M.; Deng, G.;
Saini, S.; Laura Tabatabai, Z.; et al. MicroRNA-203 inhibits long noncoding RNA hotair and regulates
tumorigenesis through epithelial-to-mesenchymal transition pathway in renal cell carcinoma. Mol. Cancer
Ther. 2018, 17, 1061–1069. [CrossRef] [PubMed]

235. Dong, L.; Li, G.; Li, Y.; Zhu, Z. Upregulation of long noncoding RNA GAS5 inhibits lung cancer cell
proliferation and metastasis via miR-205/PTEN axis. Med. Sci. Monit. 2019, 25, 2311–2319. [CrossRef]
[PubMed]

236. Xue, Y.; Ni, T.; Jiang, Y.; Li, Y. Long noncoding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity
by suppressing miR-135b expression in non-small cell lung cancer. Oncol. Res. 2017, 25, 1305–1316. [CrossRef]

237. Mei, Y.; Si, J.; Wang, Y.; Huang, Z.; Zhu, H.; Feng, S.; Wu, X.; Wu, L. Long noncoding RNA GAS5 suppresses
tumorigenesis by inhibiting miR-23a expression in non-small cell lung cancer. Oncol. Res. 2017, 25, 1027–1037.
[CrossRef]

238. Cheng, Y.; Dai, X.; Yang, T.; Zhang, N.; Liu, Z.; Jiang, Y. Low Long Noncoding RNA Growth Arrest-Specific
Transcript 5 Expression in the Exosomes of Lung Cancer Cells Promotes Tumor Angiogenesis. J. Oncol.
2019, 2019. [CrossRef]

239. Li, C.; Lv, Y.; Shao, C.; Chen, C.; Zhang, T.; Wei, Y.; Fan, H.; Lv, T.; Liu, H.; Song, Y. Tumor-derived
exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J. Cell. Physiol.
2019, 234, 20721–20727. [CrossRef]

240. Qian, Y.; Mao, Z.D.; Shi, Y.J.; Liu, Z.G.; Cao, Q.; Zhang, Q. Comprehensive Analysis of miRNA-mRNA-lncRNA
Networks in Non-Smoking and Smoking Patients with Chronic Obstructive Pulmonary Disease. Cell. Physiol.
Biochem. 2018, 50, 1154–1163. [CrossRef]

241. Chen, Y.; Mao, Z.D.; Shi, Y.J.; Qian, Y.; Liu, Z.G.; Yin, X.W.; Zhang, Q. Comprehensive analysis of
miRNA–mRNA–lncRNA networks in severe asthma. Epigenomics 2019, 11, 115–131. [CrossRef] [PubMed]

242. Qu, X.; Dang, X.; Wang, W.; Li, Y.; Xu, D.; Shang, D.; Chang, Y. Long Noncoding RNAs and mRNA
Regulation in Peripheral Blood Mononuclear Cells of Patients with Chronic Obstructive Pulmonary Disease.
Mediat. Inflamm. 2018, 2018, 1–14. [CrossRef] [PubMed]

http://dx.doi.org/10.21037/atm.2018.10.21
http://dx.doi.org/10.1111/jcmm.14649
http://dx.doi.org/10.26355/eurrev_201901_16905
http://dx.doi.org/10.1007/s13277-016-5244-2
http://dx.doi.org/10.3727/096504017X15119467381615
http://dx.doi.org/10.1186/s12885-019-6021-6
http://www.ncbi.nlm.nih.gov/pubmed/31412811
http://dx.doi.org/10.7150/jca.30425
http://www.ncbi.nlm.nih.gov/pubmed/31293647
http://dx.doi.org/10.1007/s11427-019-1579-x
http://www.ncbi.nlm.nih.gov/pubmed/31925755
http://dx.doi.org/10.1158/1535-7163.MCT-17-0925
http://www.ncbi.nlm.nih.gov/pubmed/29440295
http://dx.doi.org/10.12659/MSM.912581
http://www.ncbi.nlm.nih.gov/pubmed/30926767
http://dx.doi.org/10.3727/096504017X14850182723737
http://dx.doi.org/10.3727/096504016X14822800040451
http://dx.doi.org/10.1155/2019/2476175
http://dx.doi.org/10.1002/jcp.28678
http://dx.doi.org/10.1159/000494541
http://dx.doi.org/10.2217/epi-2018-0132
http://www.ncbi.nlm.nih.gov/pubmed/30426778
http://dx.doi.org/10.1155/2018/7501851
http://www.ncbi.nlm.nih.gov/pubmed/29725270


Int. J. Mol. Sci. 2020, 21, 0 56 of 56

243. Chen, X.; Wang, Z.; Tong, F.; Dong, X.; Wu, G.; Zhang, R. lncRNA UCA1 Promotes Gefitinib Resistance as
a ceRNA to Target FOSL2 by Sponging miR-143 in Non-small Cell Lung Cancer. Mol. Ther. Nucleic Acids
2020, 19, 643–653. [CrossRef] [PubMed]

244. Kwok, H.H.; Ning, Z.; Chong, P.W.C.; Wan, T.S.K.; Ng, M.H.L.; Ho, G.Y.; Ip, M.S.M.; Lam, D.C.L. Transfer of
extracellular vesicle-associated-RNAs induces drug resistance in ALK-translocated lung adenocarcinoma.
Cancers 2019, 11, 104. [CrossRef]

245. Wu, D.-M.; Deng, S.-H.; Liu, T.; Han, R.; Zhang, T.; Xu, Y. TGF-β-mediated exosomal lnc-MMP2-2 regulates
migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Med.
2018, 7, 5118–5129. [CrossRef]

246. Zhang, W.; Cai, X.; Yu, J.; Lu, X.; Qian, Q.; Qian, W. Exosome-mediated transfer of lncRNA RP11-838N2.4 promotes
erlotinib resistance in non-small cell lung cancer. Int. J. Oncol. 2018, 53, 527–538. [CrossRef]

247. Tao, Y.; Tang, Y.; Yang, Z.; Wu, F.; Wang, L.; Yang, L.; Lei, L.; Jing, Y.; Jiang, X.; Jin, H.; et al. Exploration of
Serum Exosomal LncRNA TBILA and AGAP2-AS1 as Promising Biomarkers for Diagnosis of Non-Small
Cell Lung Cancer. Int. J. Biol. Sci. 2020, 16, 471–482. [CrossRef]

248. Teng, Y.; Kang, H.; Chu, Y. Identification of an Exosomal Long Noncoding RNA SOX2-OT in Plasma as a
Promising Biomarker for Lung Squamous Cell Carcinoma. Genet. Test. Mol. Biomarkers 2019, 23, 235–240.
[CrossRef]

249. Hajjari, M.; Salavaty, A. HOTAIR: An oncogenic long non-coding RNA in different cancers. Cancer Biol. Med.
2015, 12, 1–9. [CrossRef]

250. Yu, X.; Li, Z. Long non-coding RNA HOTAIR: A novel oncogene (Review). Mol. Med. Rep. 2015, 12, 5611–5618.
[CrossRef]

251. Raveh, E.; Matouk, I.J.; Gilon, M.; Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression
and metastasis—A proposed unifying theory. Mol. Cancer 2015, 14, 1–14. [CrossRef] [PubMed]

252. Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol.
2012, 48, 45–53. [CrossRef] [PubMed]

253. Ghafouri-Fard, S.; Taheri, M. Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding
RNA. Biomed. Pharmacother. 2019, 118, 109129. [CrossRef] [PubMed]

254. Ma, C.; Shi, X.; Zhu, Q.; Li, Q.; Liu, Y.; Yao, Y.; Song, Y. The growth arrest-specific transcript 5 (GAS5):
A pivotal tumor suppressor long noncoding RNA in human cancers. Tumor Biol. 2016, 37, 1437–1444.
[CrossRef]

255. Yu, Y.; Hann, S.S. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer.
OncoTargets Ther. 2019, 12, 8421–8436. [CrossRef] [PubMed]

256. Li, Z.; Shen, J.; Chan, M.T.; Wu, W.K.K. TUG1: A pivotal oncogenic long non-coding RNA of human cancers.
Cell Prolif. 2016, 49, 471–475. [CrossRef]

257. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
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