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About a decade ago, the first image-based computational hemodynamic studies of cerebral aneurysms were presented. Their
potential for clinical applications was the result of a right combination of medical image processing, vascular reconstruction, and
grid generation techniques used to reconstruct personalized domains for computational fluid and solid dynamics solvers and data
analysis and visualization techniques. A considerable number of studies have captivated the attention of clinicians, neurosurgeons,
and neuroradiologists, who realized the ability of those tools to help in understanding the role played by hemodynamics in the
natural history and management of intracranial aneurysms. This paper intends to summarize the most relevant results in the field
reported during the last years.

1. Introduction

Stroke is the leading cause of long-term disability and the
third cause of death in the Western World. Subarachnoid
hemorrhage (SAH) is one of the most severe types of stroke,
which usually occurs when an intracranial aneurysm rup-
tures [1]. SAH refers to a leakage of blood into the subarach-
noid spaces, which is a continuous space between the supra-
tentorial and infratentorial compartments. A greater con-
centration of the blood products around the site of bleed is
usual.When hemorrhage extends into the adjacent parenchy-
mal structures and ventricular system, it results in a higher
morbidity and mortality rate [2]. Vasospasm, in which blood
vessels constrict to restrict blood flow, is a serious conse-
quence of SAH because it may cause ischemic brain injury
and permanent brain damage due to lack of oxygen in parts of
the brain [3]. Understanding of the underlying mechanisms
that result in injury after SAH is limited. However, a number
of studies indicate that apoptosis may play a major role in
the pathogenesis of secondary brain injury after SAH [4].
Elevated intracranial pressure is an important consequence

of aneurysmal SAH that often results in not only decreased
cerebral perfusion but also secondary clinical decline [5].

Intracranial aneurysms tend to initiate at or near arterial
bifurcations, mostly in the circle of Willis. The yearly risk
of subarachnoid hemorrhage for an unruptured intracranial
aneurysm is approximately 1% for lesions 7 to 10mm in diam-
eter. The optimal management of unruptured aneurysms is
controversial, and current decision making is mainly based
on aneurysm size and location, as derived from the Interna-
tional Study of Unruptured Intracranial Aneurysms (ISUIA)
[6]. Current guidelines suggest that, with rare exceptions,
all symptomatic unruptured aneurysms should be treated.
On the other hand, incidental aneurysms less than 5mm in
diameter should be managed conservatively in virtually all
cases, while almost all larger aneurysms should be treated.
Exceptions depend on patient age among other factors.
The microsurgical clipping rather than endovascular coiling
should be the first treatment choice in low-risk cases [7].

Cerebral arteries do not have an external elastic lamina,
have sparsemedial elastin, lack supporting perivascular tissue
and structural irregularities at the apex of their bifurcations
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[8, 9]. These factors would indicate that cerebral arteries are
susceptible to a local weakening under the persistent action
of hemodynamic loads, particularly in hypertension [10].
Although it is widely accepted that hemodynamics, partic-
ularly the wall shear stress, plays an important role in the
development, growth, and rupture of cerebral aneurysms [11],
there is still no agreement about what hemodynamic charac-
teristics trigger the biologicalmechanisms associated to those
processes in individual cases. One theory proposes that low
values of wall shear stress (WSS) produce flow stagnation
near the aneurysmdome, resulting in the accumulation of red
blood cells, platelets, and leukocytes responsible for endothe-
lium damage.This mechanism would favor the infiltration of
white blood cells and fibrin within the arterial wall causing,
weakening and rupture as could be observed in pathological
tests of cadaveric specimens of cerebral aneurysms [12].
Another theory proposes that damage to the endothelium,
whichwould be responsible for triggering the remodeling and
arterial degeneration and the consequent weakening of the
wall, can be the result of high WSS [13]. In addition, external
forces due to contact of the aneurysm with extravascular
structures can contribute to rupture [14]. Previous patient-
specific image-based computational hemodynamic studies
showed that ruptured aneurysms tended to have small
impaction zones, complex or unstable flow patterns, and high
WSS peak values [15–18], while other authors found asso-
ciations between low WSS and rupture [19, 20]. Similar
discrepant results were found when aneurysm growth was
analyzed using personalized models [21–23]. The wall shear
stress plays an important role in the development and rupture
of cerebral aneurysm. However, aneurysms rupture when
wall tension exceeds the strength limit of the wall tissue. At
this moment, the aneurysm wall mechanics is not completely
understood and requires computational simulations able to
consider the interaction between the wall and the fluid in a
personalized manner, which needs prior knowledge of quan-
tities difficult to bemeasured in vivo. Different strategies have
been recently proposed to address this problem [24].

During the last years, a considerable number of image-
based patient-specific computational fluid dynamics blood
flow simulations in domains containing endovascular devices
were presented. Computational algorithms devised for mod-
eling the deployment of endovascular devices, such as coils
or stents, have gained an increasing interest given their ability
to predict hemodynamic changes and evaluate outcome [25].
Patient outcome depends on a number of processes that may
take place on the deployment site as a result of the interaction
between the device and both the blood flow and vessel wall.

One of the major problems with coiling is the recanal-
ization, which can be caused by either coil compaction or
aneurysm growth [26–28], both associated to the hemody-
namic forces acting on coils and the aneurysm wall over time
[29, 30]. A recent study indicates that 28.6% of aneurysms
recurred within one year of coiling and that the recurrence
rate increased in time [31]. Similar finding had been previ-
ously reported by another group, where 33.6% of aneurysms
recurred within one year of coiling [32]. The most recent
published data reveals that recurrence rate is even higher:
36.5% recurrence rate at 9 months [33]. Data from the

International Subarachnoid Aneurysm Trial (ISAT) group
indicates that the higher aneurysm rate of recurrence is asso-
ciated with a higher rebleeding rate, given that the rebleed-
ing rate of coiled aneurysms was eight times higher than
that of surgically treated aneurysms [34].

An alternative option is the use of flow diverter devices,
which is an emerging neurovascular technique based on self-
expandable braided stent for treating intracranial aneurysms.
Variability in outcome has underscored a need for investi-
gating the hemodynamic effect of fully deployed stents in
patient-specific aneurysms [35, 36]. Clinical experiences with
stent-based flow diversion have been reported [37–39]. The
influence of the stent design on the intra-aneurysmal hemo-
dynamics patterns using computational simulations has been
studied for some cases [35, 40]. Recently, the results of a trial
for evaluating a pipeline embolization device (PED) for the
intracranial treatment of aneurysms were presented. A total
of thirty-one aneurysms were treated at four different centers
using a PED, and all patients underwent clinical and angio-
graphic evaluation that showed that angiographic occlusion
was observed in the majority of cases [41]. A recent report
showed cases where a stent used as a flow-diverting device
to treat cerebral aneurysm removed a proximal stenosis
resulting in an increase of the intra-aneurysmal pressure and
a consequent bleeding [35]. Although unusual, cerebral aneu-
rysms may coexist with a proximal artery stenosis. In that
small percent of patients, such coexistence poses a challenge
for interventional neuroradiologists and neurosurgeons to
make the best treatment decision. According to previous
studies, the incidence of cerebral aneurysms in patients with
internal carotid artery stenosis is not greater than 5%,
where the aneurysm is usually incidentally detected [42–44].
That percentage is less than 2% when the aneurysm was
located in the same arterial circulation [45]. Alterations in
intra-aneurysmal flows after plaque removal depend on a
number of factors [42, 46, 47]. Some CFD studies have been
performed to characterize those changes and their impact on
aneurysm mechanisms [48, 49].

The development of computationalmethods for the study
of blood flow in patient-specific domains reconstructed from
medical images has advanced the understanding of the
mechanisms of interaction between the blood flow and the
arterial wall, the initiation and development of cerebrovascu-
lar diseases, and the flow alterations generated by endovas-
cular devices, which helps elucidating the natural history of
cerebral aneurysms and evaluating treatment options. The
purpose of this review is to present results from numerical
experiments performed by prestigious research teams that
have made valuable contributions to the field during the
last decade. The paper is organized as follows. The first
section presents a series of studies where patient-specific
computational fluid dynamic models of cerebral aneurysm
were validated using both experimental and in vivo data and
analytical solutions.The aimof the second section is to review
sensitivity studies whose aim was to analyze the dependence
of the numerical solutions on assumptions and parame-
ters of computational models. The third section includes
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works where associations between hemodynamic charac-
teristics and initiation, growth, and rupture were investi-
gated. In the Following, the most relevant contributions to
study aneurysms in the anterior communicating artery from
image-based patient-specific models are discussed. That par-
ticular location is where about one-fourth of all cerebral
aneurysms form. The next section focuses on the computa-
tional modeling of endovascular devices, such as coils and
stents. One more section is devoted to present works where
associations between hemodynamic patterns and thrombus
formation were studied. Finally, a number of research papers,
where wall dynamics is taken into account, are discussed. At
the end, the author suggests some additional review articles
about related topics, such as techniques for image-based of
blood flow and vessel wall dynamics, biomechanical behavior
of the healthy and diseased cardiovascular system, and
connections between a variety of risk factors of intracranial
aneurysms.

2. Validation of Patient-Specific CFD
Aneurysm Models

Thefirst image-based patient-specificmethodology for blood
flow computational fluid dynamic simulations under realistic
flow conditions were presented in 1998 by Taylor et al. [50]
and Milner et al. [51]. A few years later, sophisticated image
processing and vascular reconstruction algorithms were
incorporated to model complex geometries like the whole
circle of Willis [52] and the posterior circulation with a giant
intracranial aneurysm [53]. Although different approaches
for each stage of the pipeline have been proposed, all those
strategies rely on high quality and resolution angiography
images, algorithms for image processing and reconstruction
of the vascular boundary from segmented images, three-
dimensional grid generation, numerical integration of the
fluid dynamics and solid dynamics partial differential equa-
tions, and data analysis and visualization tools. CFDmay sup-
plant traditional engineering flow measurement techniques
such as laser Doppler velocimeter (LDV) or particle imaging
velocimeter (PIV). However, the clinical applicability of
CFD-based methodologies required an extensive validation
[54].

Sun et al. performed a phantom based experimental val-
idation of their computational fluid dynamics methodology
for cerebral aneurysms. Virtual angiograms were generated,
and quantitative comparison to the experimentally acquired
angiograms showed a good agreement [55]. Karmonik et al.
qualitatively compared simulated intra-aneurysmal flow
distributions with values acquired using two-dimensional
phase-contrast magnetic resonance images (2dPC-MRI).
Three patients were considered in that study. Inflow into the
aneurysm was modeled on the basis of the volumetric inflow
rates measured with 2dPC-MRI. Flow patterns measured
with 2dPC-MRI showed flow characteristics that qualitatively
reproduced the CFD simulations considering a Newtonian
rheology and rigid walls, while differences in the calculated
magnitude of the velocity were found. It was reported that
2dPC-MRI was unable to resolve small secondary flow
patterns originating from the complex aneurysm geometry

that can be appreciated in the CFD simulations. Additionally,
multidirectional flow in aneurysms may introduce further
artifacts in 2dPC-MRI images [56].The same authors utilized
thatmethodology to compare the velocity distributionwithin
an anterior communicating artery aneurysmmeasured using
2dPC-MRI and computed by CFD simulations. Vascular
model was limited to the A1 and A2 segments of the left
and right anterior cerebral arteries (ACAs). Inflow condi-
tions were based on flow measurements. Although some
differences were reported, features in intra-aneurysmal cross
section of AComA aneurysms calculated with CFD using
patient-specific inflow boundary conditions were found to
be in good agreement with features measured in vivo with
2dPC-MRI [57]. Castro et al. compared CFD steady and
unsteady blood flow simulations in idealized models and
established a relationship between the error and the number
of elements in a cross-sectional area of the vessels for both
Newtonian and Casson rheologies. Those estimations are
useful for grid generation with element sizes automatically
adjusted according to the vessel diameter in patient-specific
models [58]. Cebral et al. compared hemodynamics in
normal cerebral arteries from 4D phase-contrast magnetic
resonance images (4dPC-MRI) and image-based CFD sim-
ulations. Three young normal subjects were scanned on a
3.0 Tesla scanner. Flow pattern visualizations showed that
qualitatively the major flow structures like swirling flows and
flow direction in communicating arteries observed in 4dPC-
MRI and CFD simulations coincided. However, a number of
differences were reported: (a) the velocity magnitudes tended
to be higher in the CFD models, (b) secondary flows (rota-
tional or nonaxial velocity components) were weaker in the
4dPC-MRI images, making the flow pattern more parallel
or laminar, (c) flow recirculation regions observed in the
CFD models near vessel bifurcations were not well captured
by 4dPC-MRI images, and (d) the flow fields derived from
the 4dPC-MRI images were not divergence-free, and some
streamlines stop inside the vascular domain [59].

In anotherwork, Cebral et al. presented a qualitative com-
parison between CFD simulations and cerebral angiography.
Three patients with cerebral aneurysms and different flow
types were selected for that study. Rotational angiography
images were obtained along with biplane angiography. Vas-
cular models were used for blood flow finite element simu-
lations under pulsatile flow conditions. In addition, synthetic
angiograms were produced for each patient, where the entire
flow field previously computed was used to simulate the
transport of a virtual dye by solving the transport equation.
At the inlet of the models, a time-dependent concentration
was prescribed mimicking the contrast injection used in the
actual angiograms. It was reported that CFDmodeling was in
good agreement with imaging of the intra-aneurysmal flow
structures by conventional angiography. According to the
authors, minor differences were more prominent during the
aneurysm washout, and some possible causes were rheology
and inflow waveforms [60]. van Ooij et al. utilized a real-
size aneurysm phantom to study complex flow patterns
and compare PC-MRI imaging, PIV measurements, and
CFD simulations. Good quantitative agreement was found
between them.The differences between CFD simulations and
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PC-MRI had a root mean square error between 4% and 5%,
while differences between CFD and PIV reached 12% [61].
Ford et al. compared CFD predictions against particle
image velocimeter (PIV) measurements of flow dynamics in
anatomically realistic aneurysm models. They demonstrated
that CFD not only captures the gross flow patterns but also
many of the finer flow details and their associated cycle-
to-cycle variations [62]. All those observations suggested
that CFD simulations are able to obtain more accurate flow
estimation than in vivo techniques.

3. Sensitivity of CFD Simulations

3.1. Reconstruction. The previous section showed a series
of works that claim that computer simulations exceed the
predictive ability of in vivo measurements. However, per-
sonalized blood flow simulations depend on a number of
assumptions whose impact on the results had to be carefully
analyzed before pursuing clinical applicability. The first sen-
sitivity study designed to determine the influence of compu-
tational model assumptions and parameters on a number of
intra-aneurysmal flow characteristics whose association with
biomechanical processes was investigatedwas performed and
presented by Cebral et al. in 2005 [63]. Four vascular mod-
els were reconstructed from three-dimensional rotational
angiography (3DRA) images, which is the preferredmodality
to diagnose and follow up cerebral aneurysms due to its high
resolution and contrast. Flow characteristics under study
included flow complexity, flow stability, impingement region,
impingement size, and WSS distributions. Assumptions and
parameters considered in that study included mean inflow
rate, distal flow division, blood rheology, reconstruction of
small vessels, and reconstruction method. It was found that
that all characteristics remained unchanged when variations
in model parameters were considered. However, in one
case that whose reconstruction required manual editing,
differences in the geometry resulted in changes in the flow
characterization. Geers et al. [64] investigated the differences
in hemodynamics characteristics when comparing simula-
tions using ten cerebrovascular models harboring aneurysms
reconstructed from both 3DRA- and CTA-based images.
Although relatively large differences were found for all eval-
uated quantitative hemodynamic variables among subjects,
themain flow characteristics were reproduced across imaging
modalities. It was reported that the lower spatial resolution
of CTA made it difficult for the segmentation algorithm to
distinguish vascular structures that were in close proximity to
each other. That result was later corroborated by Augsburger
et al. [65], who studied the effects of segmentation on cerebral
aneurysm’s morphological parameters and on blood flow
patterns computed using computational fluid dynamics. All
three teams concluded that geometry is critical in patient-
specific blood flow simulations and most efforts would be
directed towards automated and accurate reconstructions.

3.2. Boundary Conditions and Heart Rate. Jiang and Strother
[66] studied the influence of heart rate (60, 100, and 150 bpm)
in the intra-aneurysmal hemodynamics in two patient-
specific models with special attention to any flow disturbance

that might occur at or near the aneurysm as the heart
rate increased. The authors reported an increment in flow
complexity and WSS values at higher rates. Marzo et al. [67]
investigated the variability of certain hemodynamic param-
eters with boundary conditions. In that preliminary study-
differences were found between results obtainedwith patient-
specific and modeled boundary conditions, which were
attributed to underlying differences in the Reynolds number
of the flow approaching the aneurysms. In fact, discrepancies
were significantly reduced when considering normalized
indices, suggesting a certain degree of linearity in the results
and the important role played by geometry in intra-aneu-
rysmal hemodynamics. The results presented in that work
showed that modeled boundary conditions allow realistic
predictions of intracranial aneurysm hemodynamics and
offer a viable means for finding correlations with rupture in
large cohort studies. Different conclusions were reported by
Karmonik et al. [68] when they studied the dependence of
WSS calculations on thewaveform imposed at the inlets of the
vascularmodels. For each one of the six patient-specificmod-
els, two different blood flow simulations were performed.
The first one considered an average waveform from normal
subjects. The second one used the patient’s waveform, which
was acquired using 2D phase-contrast magnetic resonance
imaging. Large differences inWSS and oscillatory shear index
were reported. Comparability of CFD simulations when non
patient-specific wave forms are imposed to the inlets of the
vascular models requires flow rate normalization [16, 58].

3.3. Rheology. Fisher and Rossmann [69] created four ideal-
ized models with different morphological characteristics to
study the effect of blood rheology on aneurysm hemodynam-
ics. The blood’s non-Newtonian behavior was found to have
a more significant effect on the fluid forces within aneurysms
than in the parent vessels and to be more important during
diastole. It was also found that non-Newtonian behavior was
also more influential in aneurysms at bifurcations than for
sidewall aneurysms in either straight or curved vessels. Sim-
ilarly, Castro et al. [58] compared CFD steady and unsteady
blood flow simulations in idealized models and established
the maximum difference between Newtonian and Casson
profiles in unsteady blood flow simulations, which occurred
in the diastolic part of the cardiac cycle. Jou and Mawad [70]
found that Newtonian flow overestimates the impingement
size in a giant internal carotid artery aneurysm, which may
affect predictions based on that parameter. Khanafer et al. [71]
showed that non-Newtonian wall shear stress is greater dur-
ing the peak systole in a limited number of aortic aneurysm
models. Rayz et al. [72] found no significant differences
between low wall shear stress regions that may be associated
with risk of thrombus formation using Newtonian and non-
Newtonian computational fluid dynamic simulations in three
patient models. However, accounting for non-Newtonian
behavior improved the agreement with observations using
longitudinal MRI studies. Xiang et al. [73] showed that
Newtonian viscosity model could overestimate normalized
wall shear stress in three internal carotid artery saccular
aneurysms. Castro et al. [74] performed a similar study over
five patient-specific aneurysm models and found no clear
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correlation between low WSS regions and regions where any
of the rheologies predict larger WSS values. A nonnegligible
change inWSS vector orientation as large as 20∘ in regions of
lowWSS was observed.The location of those regions was not
necessarily associated with regions where large differences
in WSS occur when considering different rheologies. These
observations may indicate that the realistic geometry plays
an important role in the intra-aneurysmal hemodynamic
characteristics, resulting in low flow regions where either
the Newtonian or non-Newtonian WSS may be larger than
the other one, exhibiting also differences in the vector
orientation. Valencia et al. [75] investigated the effect of non-
Newtonian rheology on the flow pattern of typical aneurysms
at the basilar artery and found that the non-Newtonian fluid
assumption yields more stable flows than a Newtonian fluid,
for the same inlet flow rate. Effects of rheology on velocity
field and WSS were also investigated in 20 patient-specific
lateral aneurysm models. Linear correlations between the
WSS on the aneurysm fundus at peak systole for lateral
aneurysms with an area index were found [76].

3.4.WallMotion. Althoughmost previousCFD analysis con-
sidered rigid walls, that assumption may affect estimation of
hemodynamic quantities. Many of the quantitative results of
pulsation measurement reported in the literature correspond
to experiments with phantoms, simulated images, or exper-
imental models [77–80]. A Methodology to estimate wall
motion from X-ray dynamic imaging and impose the time-
dependent deformation on the vascular CFD models recon-
structed from 3DRA images was presented [81]. The blood
flow characterization obtained from numerical integration of
the Navier-Stokes equations in a rigid wall model did not
significantly differ from that in compliant models where the
deformation field was extrapolated from the bidimensional
measurements [58, 81]. An improved approach was also pre-
sented using digital subtraction angiography images (DSA)
and B-splines free form deformations to quantify aneurysm
wall motion. Statistically significant differences in pulsation
were found [82]. In a recentwork, amethodology to both esti-
mate regions of highwallmotion and reconstruct CFDvascu-
lar models from 4D computerized tomographic angiography
(CTA) data sets was presented. A connection between regions
of high pulsation amplitude and regions of high wall shear
stress was suggested [83]. Additionally, a similar strategy was
used to quantify vascular wall displacement from cardiac-
gated 4D CTA at different locations [84].That study included
nineteen aneurysms from fourteen patients. Pulsation of the
aneurysm and its surrounding vasculature during the cardiac
cycle could be assessed from ECG-gated CTA data. The
percentage of aneurysmal volume change ranged from 3% to
18%. However, the study showed that the amount of volume
change estimated by the method is not related to aneurysm
size. Other authors presented methodologies to simulate the
fluid-structure interaction between the blood and the vessel
wall [85, 86]. Those and other works are discussed under the
section “Wall Biomechanics”.

4. Associations between Hemodynamic
Features and Aneurysm Initiation, Growth,
and Rupture

Intracranial aneurysms preferentially localize close to bifur-
cations and curvatures where hemodynamics are complex.
While extensive knowledge about low WSS has been gener-
ated in the past based on its strong relevance to atherogenesis,
high WSS has emerged as a key regulator of vascular biology
and pathology as well, receiving renewed interests [86].
Chronic high WSS not only stimulates adaptive outward
remodeling but also contributes to saccular intracranial
aneurysm formation at bifurcation apices or outer curves and
atherosclerotic plaque destabilization in stenosed vessels. As
an adaptive response to chronically elevated high flow, an
artery undergoes expansive or outward remodeling to restore
WSS back to baseline levels [87–89]. On the other hand, low
values of WSS may produce flow stagnation near the dome
of the aneurysm, resulting in the accumulation of red blood
cells, platelets, and leukocytes responsible for endothelium
damage. This mechanism would favor the infiltration of
white blood cells and fibrin within the arterial wall causing,
weakening and rupture as could be observed in pathological
tests of cadaveric specimens of cerebral aneurysms [12].

4.1. Aneurysm Initiation. Alnæs et al. [90] studied the effect of
asymmetries in branch angles and differences in vessel radii
onWSS and pressure distributions in CFDmodels of the Cir-
cle ofWillis over a ten-patient population. Numerical simula-
tions showed highWSS at locations where aneurysms are fre-
quent and in anatomic variants known to be associated with
an increased risk for aneurysm development. Mantha et al.
[91] studied the hemodynamics patterns of three image-based
paraclinoid aneurysm models. Simulations revealed an area
of relatively low and rotating WSS at the location at which
each aneurysm had developed. Castro et al. [22] studied three
AComA aneurysm models and found that the aneurysm
always formed in a region of high or moderate WSS, but not
in a region under lowWSS.Normalmodelswere created from
pathological ones by applying a Laplacian filter. In another
study, Kulcsár et al. [23] presented a relationship between
rupture and coexistence of high WSS and high positive
spatial WSS gradient observed in three patients scanned
before and after aneurysm formation. Ford et al. [92] pre-
sented a novelmethodology to automatically remove saccular
aneurysms from vascular models using a Voronoi based
approach.The evaluation of the methodology was performed
over patients with aneurysms at different locations. The CFD
analysis was performed over five selected cases. From those
simulations, it was observed that the gradient oscillatory
number (GON) may be a sensitive hemodynamic marker for
aneurysm formation, since GON showed modest elevated
values near aneurysm location in four of five cases. WSS dis-
tributions demonstrated no consistent hemodynamic feature
(e.g., low shear) associated with the nominal site of aneurysm
formation.

4.2. Aneurysm Growth. Boussel et al. [93] performed a
longitudinal study over seven patients to investigate possible
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associations between regions of low WSS and regions where
the aneurysm grew. A relatively short portion of the parent
vessel was considered according to the reported data. Manual
coregistration was performed in order to achieve alignment.
Data analysis indicated that aneurysms tended to grow in
regions of low average WSS. Sugiyama et al. [94] studied two
posterior inferior cerebellar artery aneurysms. They found
different hemodynamic characteristics and growing patterns:
a proximal multilobular aneurysm was growing a bleb near
the inflow zonewith high local velocity and physiological lev-
els of WSS, whereas a distal rounded aneurysm was growing
the entire sac featuring low and unstable intra-aneurysmal
flow, with low WSS and higher OSI. Thus, the authors
concluded that growing aneurysms may have heterogeneous
hemodynamic, morphologic, and vascular characteristics
associated with different mechanistic pathways. A patient-
specific CFD study over three cerebral aneurysms that
enlarged with blister formation during a follow-up period of
about ten months showed that blister formation occurs in
lowWSS regions [21]. Another study over thirty well-defined
blebs in twenty intracranial aneurysms showed that eighty
percent of blebs originated in regions of high WSS [18].
Recently, independent works showed that aneurysms tend
to initiate in regions of moderate and elevated WSS [22]
and regions of high WSS or high WSS spatial gradient [23].
Valencia et al. [95] investigated the relationship between
WSS and aneurysm area index, which is the ratio between
the aneurysm area and the artery area at the model inlet.
They found a correlation between those quantities in a study
that included 34 patient-specific CFD models reconstructed
from rotational angiography images. Sforza et al. [96] studied
the effect of perianeurysmal environment during the growth
of a cerebral aneurysm. A selected case of a 19mm basilar
aneurysm immediately distal to the vertebrobasilar junction
and in contact with the clivus bone was considered. The
aneurysm was followed noninvasively with CTA imaging
at 1-year intervals for a total of four years. The aneurysm
was observed to grow against the bone resulting in a geo-
metric change of the proximal artery and consequently in
the aneurysm hemodynamics. A region of elevated WSS
was observed to shift locations in time. The authors con-
cluded that contact with perianeurysmal structures should
be considered and analyzed to assess whether they could
exert a significant influence on the geometric evolution and
hemodynamic patterns of the intracranial aneurysms.

4.3. Aneurysm Rupture. Xu et al. [97] studied eight mirror
aneurysms (ruptured and unruptured) located at the poste-
rior communicating artery and found a correlation between
low WSS and rupture. The wall shear stress, which had been
time-averaged, was normalized by the WSS at the parent
artery. Similar normalization had been previously used to
analyze twenty middle cerebral artery aneurysms and also
found high WSS values in the group of ruptured aneurysms
accompanied with low WSS in their domes, which would
suggest that lowWSS valuesmay be responsible for aneurysm
rupture [19]. In that study, CFD models were truncated
close to the aneurysm neck resulting in simplified flows
lacking of secondary structures. The effect of parent artery

on intra-aneurysmal hemodynamics was later studied and
higher WSS values in the aneurysm domes were found to
be systematically related to those secondary flows [98, 99]. A
different approach proposed byCastro et al. relied on the nor-
malization of flow rate curves imposed at the inflows of the
vascular models. That approach was utilized to study twenty
six anterior communicating artery aneurysms. The maxi-
mum value of the WSS at the systolic peak in a ruptured
group was in average more than twice that in the unruptured
group [16]. A similar trend was found in a cohort of forty-one
terminal aneurysms. Higher WSS values occurred close to
the neck where the inflow jet splits [17]. A recent study by
Miura et al. [100] analyzed 106 patients with aneurysms in
the middle cerebral artery. The cohort was composed by 43
ruptured aneurysms and 63 unruptured ones. The authors
could not find any significant difference in gradient oscil-
latory number and dome size between those groups, but
they reported that lower WSS was significantly associated
to aneurysm rupture. Although the authors mentioned that
typical waveforms of the internal carotid artery were used, it
is not reported whether or not those waveforms were scaled
according the arterial cross-sectional area. Normalized WSS
(NWSS) was also analyzed, and the authors reported that
lower NWSS significantly correlates with rupture, but WSS
was considered because it had the smallest 𝑃 value. Previous
patient-specific image-based computational hemodynamic
studies showed that ruptured aneurysms tended to have small
impaction zones, concentrated jets, and complex flow pat-
terns [15]. The same trend was corroborated by Cebral et al.
[18] in a study that included 210 cerebral aneurysms at
different vascular locations. Flow division and jet concen-
tration were found to be associated to high WSS values
and rupture rate [15, 16]. Patti et al. [101] studied 41 carotid
artery aneurysms and found that the pulsatility index (PI)
was significantly higher (𝑃 < 0.001) at ruptured (1.93) than
unruptured (0.59) aneurysm necks. Unruptured aneurysms
tended to exhibit PIs close to that in the parent artery
(0.61). Chien et al. [102] investigated small aneurysms in the
carotid artery-ophthalmic artery. Most ruptured aneurysms
had complicated flow patterns in the aneurysm domes, but
all of the unruptured cases showed a simple vortex. Inside
the aneurysms, the highest flow velocities were found either
at the apex or neck. Higher and more inhomogeneous WSS
distributions within ruptured aneurysms were observed in
comparison with the unruptured ones.

4.4. Low WSS—High WSS. Regarding low WSS and high
WSS as being responsible for triggering aneurysm mech-
anisms, as shown before, similar studies lead to different
results and conclusions. Cebral and Meng [103] and Meng
et al. [104] proposed that the high versus low wall shear
stress controversymay be amanifestation of the complexity of
aneurysm pathophysiology. Low WSS and high oscillatory
shear index trigger an inflammatory-cell-mediated pathway,
which could be associated with the growth and rupture of
large, atherosclerotic aneurysm phenotypes, while highWSS,
combined with a positive wall shear stress gradient, triggers a
mural-cell-mediated pathway, which could be associatedwith
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the growth and rupture of small or secondary bleb aneurysm
phenotypes [104].

5. Anterior Communicating Artery
Aneurysm Models

Theanterior communicating artery (AComA) is a recognized
site of aneurysm predilection accounting for nearly twenty-
five percent of all cerebral aneurysms in several large studies
[105, 106]. Due to the complexity and diversity of geometry
and flow conditions in the AComA, it is not surprising that
aneurysms of the AComA are considered the most complex
of the anterior circulation [107]. Aneurysms in the AComA
are more likely to have asymmetric A1 segments [108],
furthermore to have exclusive filling angiographically from
one A1 segment in up to 78% of cases [109]. Tarulli and Fox
[110] performed a radiological examination and found that
A1 dominance configuration is strongly associated with the
presence ofAComAaneurysms for 105 patientswith intracra-
nial aneurysms at that location. Hassan et al. [111] performed
a sensitivity study using idealized computational models
of the anterior communicating artery and found that
aneurysms located in the AComA with differences of 50%
or more between the two A1s areas are subjected to more
flow stresses. Experimentally, AComAaneurysms can be pro-
duced in hypertensive rats by unilateral ligation of the com-
mon carotid artery [112], further supporting a causative rela-
tionship between increased flow and aneurysm formation.
A computational study found a possible correlation between
AComA aneurysm formation, growth, and rupture with
A1 dysplasia or hypoplasia. Increased WSS was found in
the bifurcation when the diameter of the nondominant A1
segment decreased [113]. Previous in vitromodeling provided
evidence of this effect. Using a silicone replica of a lethal
anterior communicating artery aneurysm and imaging of
fluid slipstreams, it was observed that with symmetrical flow
conditions slipstreams rarely enter the aneurysm, but with
asymmetric alterations in flow complicated flow patterns
were identified within the aneurysm [114].

Three-dimensional rotational angiography (3DRA) is the
preferred modality to diagnose and support treatment of
cerebral aneurysms. However, in order to properly image the
AComA, two 3DRA images are required. From the vascular
reconstruction point of view, two independent computational
models must be generated from the images acquired during
the contrast injection at the left and right internal carotid
arteries, and a final model is reconstructed by fusion. A
methodology to overcome that limitation was designed and
utilized to investigate the hemodynamics at the AComA and
possible associations with aneurysm initiation and rupture
[115]. A first observation is that AComA aneurysm flows
dominated by only one A1 segment of the anterior cerebral
arteries (unilateral) have a flow characterization independent
of the mean flow rates imposed at the feeding arteries,
the waveform, and phase shifts between those waves. On
the other hand, those AComA aneurysm flows dominated
by both A1 segments may experiment changes in the flow
characterization. The main effect of changing the mean flow
balance between the feeding arteries is an intensification of

the flow impaction zone, resulting in increased magnitude of
theWSS for the inflow jet with increased flow.Themagnitude
of the peak in WSS depends on whether the inflow jets
interfere constructively or destructively. Constructive inter-
ference may lead to a peak WSS in excess of the base case of
balanced flow. In contrast, changing the relative phase or the
shape of the inflow waveforms has a more dramatic effect.
Those changes introduce extratemporal dependencies of the
velocity field that make the regions of elevated WSS travel
along the surface of the aneurysm during the cardiac cycle.
In the absence of aneurysms, phase or waveform shape
differences in the inflows would induce to-and-fro motions
of blood in the AComA [116]. Furthermore, Karmonik et al.
[117] showed that hemodynamic patterns changed when
flow rates at the A1 segments are altered with respect to
the baseline defined by PC-MRI flow measurements in the
same patient, but keeping the total flow rate unchanged. The
maximum change observed in the aneurysm average WSS
when increasing the right AComA flow rate to 68% was as
high as 43%. According to the data presented in that paper,
the model only included the A1 and A2 segments of the
ACA; therefore, it is not clear if those differences would be
so relevant when normalized flow rates are imposed at the
ICAs. However, it is clear that using patient-specific inflow
conditions would help in minimizing the effects of model
assumptions.

Castro et al. [16] performed a patient population study
that included twenty-six computational hemodynamics
models of AComA aneurysms, which showed interesting
associations between flow patterns and aneurysm rupture.
The cohort was composed of 16 patients with bilateral A1
segments (58%) and 11 patients with one A1 segment missing
(42%). Similar percentages were found in a previous study
where 45% of the patients with AComA aneurysms showed
a hypoplastic A1 segment [109]. In the paper mentioned
previously, it was reported that exclusive filling of theAComA
aneurysm from one of the A1 segments had been observed in
75% of the bilateral group. That was in good agreement with
78% of the cases reported in a previous study [110]. Four
different flow types were proposed based on how the main
jet split in different number of subjets when reaching the
aneurysm.The two groups accounting for the highest number
of ruptured aneurysms had a main jet entering directly the
aneurysm and impacting the dome before being redirected
towards the A2 segment of the anterior cerebral arteries (type
D) and a main jet impacting the neck of the aneurysm (type
C). In this last case, one of the subjets enters the aneurysm
while the other one redirects towards one of the A2 segments.
This configuration is responsible for the highest WSS values
at the systolic peak and the highest risk of rupture among all
groups (87%). Additionally, it was found that the peak WSS
averaged over the ruptured groups (271 dyn/cm2) doubled
that over the unruptured group (114 dyn/cm2).These findings
may indicate that high WSS was responsible for aneurysm
rupture. Another study considered three AComA aneurysm
models and investigated the hemodynamic differences bet-
ween the original model and the model before the aneurysm
initiated. Laplacian filters were applied in order to remove
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the aneurysm. It was found that the aneurysm always formed
in a region of high or moderate WSS, but not in a region
under low WSS [22]. Recently, Hodis et al. [118] performed
a CFD analysis of the hemodynamics of an AComA that
spontaneously ruptured immediately following three-dimen-
sional rotational angiography. Subsequent digital subtraction
angiography allowed for the localization of the point of
rupture within the aneurysm dome. CFD analysis demon-
strated a concentrated jet that impinged directly at the site
of rupture. The authors reported that peak systolic pressure
and WSS were both maximal near the rupture location.

6. Computational Modeling of Blood Flow
around and past Endovascular Devices

The effectiveness evaluation of methods using endovascular
devices such as stents or coils to treat cerebral aneurysms
in a patient-specific and device-specific basis has become a
major challenge for computational scientists and engineering
researchers during the last years.The success of endovascular
interventions depends on a number of processes that take
place on the deployment site as a result of the interaction
between the device, the blood flow, and the vessel wall. Coil
embolization therapy has been subject to criticism for a
consistent failure to achieve the same level of durable and
complete aneurysm exclusion that surgical aneurysm clip-
ping typically provides [41]. Regarding stents, they have
been extensively used as flow diverter devices, which is an
emerging neurovascular technique based on self-expandable
braided stent for treating intracranial aneurysms. Variability
in outcome has underscored a need for investigating the
hemodynamic effect of fully deployed stents in patient-
specific aneurysms [35, 36]. In a recent study of experimen-
tally created aneurysms in twenty-one canines, Darsaut et
al. [119] reported that flow diverters may succeed in treating
straight sidewall aneurysms, but the same device repeatedly
fails to occlude curved sidewall and end-wall bifurcation
aneurysms.

In 2004, Stuhne and Steinman presented a body-
conforming methodology to model blood flow past a flow
diverter stent in an idealized aneurysm model [120]. A
different strategy was proposed by Cebral and Löhner [121] in
2005. The approach presented there consisted in embedding
the devices within the domain instead of generating a body-
conforming grid, which is extremely difficult and tedious.
The embedded methodology presented there was reported to
be simple and fast and to fit very naturally in the context of
endovascular device simulation. The main limitation of that
methodology is the low resolution close to the device surface.
The authors showed that that problem can be minimized
by using adaptive grid refinement techniques to increase
resolution around the embedded devices. Virtual angiograms
were generated for different coil packing in a patient-specific
vascular model harboring a terminal aneurysm to evaluate
the impact of the device on the aneurysm, where the
blood flows slowly with increasing coil packing. The same
methodology was utilized for a stent as a flow diverter in both
idealized and patient-specific model of a lateral aneurysm.

One of the major problems with coiling is the recanal-
ization, which can be caused by either coil compaction or
aneurysm growth [26–28], both associated to the hemody-
namic forces acting on coils and the aneurysm wall over time
[29, 30]. Low rate of complete occlusion is mostly observed
in large and wide-neck aneurysms [32, 122]. Very large and
giant aneurysms usually require a series of retreatments [123].
The failure of endosaccular techniques to achieve a complete
and durable occlusion of aneurysms has been associated to
limitations with respect to the volumetric packing of the
aneurysm sac with coils, inherent difficulties associated with
achieving a continuous reconstruction of complex aneurysm
neck defects, and failure of the strategy to address the under-
lying diseased parent vessel [124]. Morales et al. [125] studied
the dependence of coil packing density on aneurysm hemo-
dynamics. They reconstructed three patient-specific vascular
models, and blood flow simulations were carried out before
virtual treatment after placing coils using three different coil
configurations and packing density. They reported that the
flow velocity was reduced more than 50% when packing
density was about 12%. However, a high dependence on the
coil configuration was observed. For higher densities (>30%)
they observed a damping effect that resulted in a stable
hemodynamic condition inside the aneurysm.

Preliminary clinical experiences with stent-based flow
diversion have been reported [37–39]. Recently, the results
of a trial for evaluating a pipeline embolization device (PED)
for the intracranial treatment of aneurysms were presented.
A total of thirty-one aneurysms were treated at four different
centers using a PED, and all patients underwent clinical and
angiographical evaluation one month and six months after
treatment. Complete angiographic occlusion was observed
in the majority of cases (>90%) [41]. Cebral and Löhner
presented and evaluated a novel methodology to efficiently
embed endovascular devices in patient-specific models [121]
and utilized it to analyze the impact of the conformability
characteristics of the stents on potentially occluded side
branches, which may lead to stroke [126]. In 2008, the results
of the virtual stenting challenge (VISC) were presented.
The aim of that work was to establish the reproducibility
of state- of-the-art hemodynamic simulation techniques in
patient-specific stented and unstented models of intracranial
aneurysms [36]. Six different institutions utilizing their own
methodologies participated in that study. In both stented
and unstented models, comparable results across different
techniques and teams were achieved. Although differences
in the magnitude of WSS and velocity were observed, WSS
and velocity distribution and aneurysmal flow activity were
reproducible across participant groups for both stented and
unstented simulations. Ma et al. [127] presented and tested
a finite element analysis based methodology of simulating
mechanical deployment of flow diverters on a patient-specific
and device-specific basis. The three-dimensional finite beam
element models accounting for interactions between stent
strands and between stent and other deployment components
captured the mechanical responses of braided stents includ-
ing the foreshortening effect of flow diverters. The influence
of the stent design on the intra-aneurysmal hemodynamics
patterns has been studied for some cases [40].
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Larrabide et al. [128] reconstructed twenty-three vascular
models 3DRA images of patients with ICA aneurysms to
studyWSS, velocity, residence time, turnover time, and intra-
aneurysmal pressure using patient-specific blood flow simu-
lations before and after virtual placement of a flow diverter.
They observed that all hemodynamic variables exhibited sig-
nificant reductions inside the aneurysm but the mean intra-
aneurysmal pressure value, although the maximum pressure
was decreased and the minimum pressure was increased.
However, a recent report showed three cases where a stent
used as flow-diverting devices to treat cerebral aneurysm
removed a proximal stenosis, which resulted in aneurysm
bleeding and patient death [35]. Computational simulations
showed that in all those cases endovascular interventions
resulted in an increase of the intra-aneurysmal pressure.

Although unusual, cerebral aneurysmsmay coexist with a
proximal artery stenosis. In that small percentage of patients,
such coexistence poses a challenge for interventional neuro-
radiologists and neurosurgeons to make the best treatment
decision. According to previous studies, the incidence of
cerebral aneurysms in patients with internal carotid artery
stenosis is not greater than 4.9%, where the aneurysm is
usually incidentally detected [42–44]. Another retrospective
study of 853 patients with stenosis in the carotid bifurcation
showed that 46 patients (5.4%) had a cerebral aneurysm.
That percentage was less than 2% when the aneurysm was
located in the same arterial circulation [45]. Other studies
have reported similar frequencies ranging between 1% and
3% [129–131]. A case report showed that a patient with a
stenosis in the carotid artery and an asymptomatic unrup-
tured aneurysm (5.0 × 10.0mm) in the same artery at the
posterior communicating artery bifurcation underwent a
successful endarterectomy. The aneurysm would have been
treated a few months later; however, the patient died after a
subarachnoid hemorrhage five months after the endarterec-
tomy, but before the aneurysm treatment. Autopsy revealed
that the aneurysm had grown up to 14.0 × 10.0mm before
bleeding [46]. Another case report describes the treatment
option for a patient with similar pathological characteristics.
A stenosis in the carotid artery was located proximal to an
unruptured aneurysm (14.0 × 8.0mm) at the ophthalmic
artery bifurcation in the same vascular circulation. A stent
was successfully deployed to remove the stenosis. A few
months after the intervention, no change was observed in
the aneurysm size and the aneurysm was successfully treated
with a coil embolization procedure [42]. Simultaneous inter-
ventions were also reported [47]. For low and mild stenoses,
flow alterations in the aneurysm sacs are limited when the
aneurysm is located far downstream in the same circulation.
However, for distal aneurysms close to the stenosis, intra-
aneurysmal hemodynamics may be significantly affected by
the stenosis. According to a previous study, all patients with
severe stenoses (stenosis area reduction greater than 84%)
exhibited a flow reduction greater than 30% when com-
pared to the contralateral circulation [132]. Consequently, the
intra-aneurysmal hemodynamics may significantly change
depending on how the ipsilateral flow rate increases after
intervention. The management of carotid artery stenosis is
well established for symptomatic stenosis area reduction

indices above 69%, but the optimal approach for managing
lower degrees of narrowing remains uncertain [133]. When
a low-degree carotid artery stenosis coexists with a distal
cerebral aneurysm, flow alterations in the aneurysm sacs are
limited when the aneurysm is located far downstream in
the same circulation [48]. However, it was reported that for
distal aneurysms close to a mild stenosis, intra-aneurysmal
hemodynamics may be significantly affected by the stenosis.
That computational study also showed significant differences
in blood flow and WSS depending on the distance between
the aneurysm and the stenosis and their relative position [49].

7. Blood Flow and Thrombus Formation

The formation of intraluminal thrombus is considered as one
of the most severe complications during the treatment of
cerebral aneurysms [134]. Thrombus formation in intracra-
nial aneurysm, while sometimes it stabilizes lesion growth,
can present an additional risk of thromboembolism [135].
The presence of intraluminal thrombus within the cerebral
aneurysmusuallymay lead to the distention of thewall and to
increase the occurrence of neurological symptoms [72]. Cases
of complete spontaneous thrombosis in the unruptured cere-
bral aneurysm have been discovered in recent years due to
the advancement of neuroradiology [136]. However, reports
on the correlations between the formation of intraluminal
thrombus and the flow pattern, WSS distribution of the
cerebral aneurysm as well as wall compliance are still limited.
Rayz et al. [72] used rigid wall models to predict regions
prone to thrombus formation. In a later study, Rayz et al.
[135] analyzed three patients with thrombus-free intracranial
aneurysm who proceeded to develop intraluminal thrombus
detected in follow-up MR studies. Patient-specific CFD sim-
ulations predicted either an increased residence time or a low
WSS at the locations where thrombus formed. Wang and Li
[137] studied thrombus formation in patient-specific models
using a fluid-structure interaction approach. The aneurysm
wall was considered isotropic and linear elastic. Simulation
result showed that thrombus-occupied areas were all located
in the aneurysm bulges, which were the same as the regions
where slow rotating vortices were formed. Low WSS values
were also detected at those locations. It was shown that the
maximumWSS predicted by the simulations was lower than
the previous studies where the cerebral aneurysm wall was
considered rigid. The authors explained that the flexibility of
the wall enabled the aneurysm cavity to dilate, and hence, the
direct impact coming from the pulsatile blood flow acting
on the wall was weakened, thus resulting in lower WSS. A
previous study suggested that excessively low WSS (lower
than 1.5 Pa s) may facilitate the process of endothelial cell
degeneration, while the arterial structure can maintain its
normal physiological function when the magnitude of WSS
is above 2 Pa s [138]. Xiang et al. [73] analyzed three patient-
specific models with rigid walls and found that non-Newto-
nian rheology overestimates wall shear stress in intracranial
aneurysm domes, and therefore underestimate the risk of
thrombus formation.
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8. Wall Biomechanics

The wall shear stress plays an important role in the develop-
ment and rupture of cerebral aneurysm.However, aneurysms
rupture when wall tension exceeds the wall strength. Wall
strength depends on local protease activity and rates of col-
lagen synthesis, which are controlled by cellular responses to
local hemodynamic loads. The arterial wall, which is a com-
plex composite of structural proteins (mostly elastin and fib-
rillar collagen), resident cells, and a ground substancematrix,
exhibit-viscoelastic characteristics. However, the assumption
of hyperelasticity is sufficient in most physiologic and patho-
physiologic cases [24]. At this moment, the aneurysm wall
mechanics is not completely understood. Computational
simulations that consider the fluid-structure interaction
require prior knowledge of quantities difficult to bemeasured
in vivo. In a recent experimental study, sixteen aneurysms
underwent mechanical uniaxial stress under physiological
conditions, temperature, and saline isotonic solution. A
hyperelastic model was fitted to stress-strain curves, and
each aneurysm was classified according to its biomechanical
properties and rupture status. All unruptured aneurysms
presented a more rigid tissue. However, wall thickness did
not correlate to rupture status [139]. A further fluid-structure
interaction computational study, where the aneurysm wall
was considered as isotropic and homogeneous based on ex
vivo measurements, showed significant differences between
the displacements and volume variations corresponding to
the soft and stiff tissue. Therefore, the detection of pulsation
may provide further information to determine the risk of rup-
ture [140]. In a previous study, wall tensionwas determined in
a single computational model that considered the aneurysm
wall as an isotropic nonlinear material. The authors reported
that regions where wall tension reached high values appeared
where aneurysms are more prone to rupture [141]. In
a similar study, the wall tension was computed in a patient-
specific hemodynamic model of a middle cerebral aneurysm
using a fluid structure interaction strategy [141]. The arterial
and aneurismal wall was treated as an isotropic nonlinear
hyperelastic solid, and the aneurysm wall thickness was uni-
form.Maximum displacement was observed at the aneurysm
dome at the systolic peak and was three times the aneurysm
wall thickness. The wall tension was unevenly distributed.
Other authors used Young’s modulus and wall thickness from
the literature to be imposed in the numerical simulations.
Distal vessels are stiffer and thinner than the proximal vessels.
In the aneurysmal region, the thrombus side was assigned
to have a greater Young’s modulus and thickness [142].
Balocco et al. considered the aneurysm wall as an incom-
pressible linear elastic isotropicmaterial, which does not cap-
ture the nonlinear anisotropic and layer-dependent nature of
the stress-strain curves at high strains given by some hyper-
elastic constitutive models of the arterial wall. However, in
that study the wall parameters were computed bymeans of an
inverse problem using wall motion estimation from regis-
tered images at different times [143]. The parametric biome-
chanical model, given the initial aneurysm morphology
(diastole), the patient blood flow, and an initial set of
parameters describing the regional distribution of the wall

elasticity, enabled the computation of the modeled aneurysm
morphology (systole). The distance between this modeled
morphology and the one obtained from the aneurysm pul-
sation was iteratively minimized to estimate the optimal set
of elasticity parameters. According to in silico experiments
performed in that study, the minimal spatial resolution
needed to extract wall pulsation measurements with enough
accuracy was of 0.1mm. However, current routine imaging
modalities do not have such a high spatial resolution, and
therefore, the proposed data assimilation framework cannot
currently be used on in vivo data to reliably estimate regional
properties in cerebral aneurysms. The authors reported that
the incorporation of fluid-structure interaction in a biome-
chanical model with linear and isotropic material properties
did not have a substantial influence on the final results. In a
recent study, the region of the aneurysm wall exhibiting high
pulsation amplitude estimated from high time resolution
dynamic tomographic angiography images correlated to the
region of high wall shear stress computed in a patient-specific
model using personalized inflow conditions and rigid walls
[85]. Bazilevs et al. proposed an approach to compute wall
shear stress and wall tension in four patient-specific vascular
models using varying wall thickness [144]. It was assumed
that the wall thickness at the inlet and outlet branches is 20%
of their effective radii, which is defined as the radius of the
circle that has the same area as a given inlet or outlet.Thewall
thickness for the remainder of the model was constructed by
performing a smoothLaplace operator-based extension of the
inlet and outlet thickness data into the domain interior.While
the branch vessel wall thickness was accurately represented,
the aneurysm dome thickness was overestimated. However,
the authors reported that the resultant dome and branch
vessel thickness fell well within the range of values reported
for cerebral aneurysms. Valencia et al. [145] performed a
computational solid dynamic (CSD), CFD, and FSI analysis of
a patient-specific vascular model harboring two aneurysms.
Wall thickness was assumed uniform, and a non-Newtonian
rheology was used. The FSI results showed maximum WSS
values of 8 Pa at the aneurysm domes and maximum dis-
placements of 1.4mm. with recirculation vortex in the region
of low WSS, which is in agreement with previous reports
[146]. However, vortex structure, WSS, effective stress, strain,
and displacement of the aneurysm walls showed differences,
depending on the type of modeling used. It is worth men-
tioning that accurately measuring wall thickness is still a
challenge. Overestimation of wall thickness in black blood
MRI imaging when compared to specimen-based thickness
measurements has been reported [147, 148].

A few years ago, Humphrey and Taylor [149] suggested
that a new class of coupled computational tools for studying
evolving vascular changes was needed.That new class should
not only take into account the computational fluid dynamics
and fluid-structure interaction, but also include long-term
growth and remodeling models of the evolving wall, which
were called fluid-solid growth (FSG) models. The motivation
for that new kind of model is that fluid-solid interaction
solutions are not sufficient to understand the enlargement
and rupture risk of intracranial aneurysms. It is also nec-
essary to include information about the mechanobiological
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responses by the cells to the computed hemodynamic loads.
In that kind of models, traction-free boundary conditions
at vascular model outlets are no longer realistic. Instead,
impedance outlet boundary conditions are needed to yield
physiologic pressure and flowwaves in distensiblemultivessel
models. Other modifications should also be considered to get
an efficient coupling of fluid and solid domains. The authors
propose that the coupled momentummethod for fluid struc-
ture interaction (CMM-FSI), which incorporates equations
for the vascular wall at a variational level as a boundary
condition for the fluid domain, should be used instead of
the standard arbitrary Lagrangian-Eulerian method. In that
direction, Di Achille and Humphrey [150] presented the
first approach toward large-scale computational fluid-solid-
growth models of intracranial aneurysms, which are thought
to be a reliable method to estimate evolution in time of
the biomechanical properties of the wall and the remodeled
vascular geometry. Three patient-specific models harboring
intracranial aneurysms were reconstructed from CT angiog-
raphy images, including a full Circle of Willis. Normalized
flow waveforms were imposed at the inflows of those models
for an assumed heart beat rate of 60 bpm. The Windkessel
model was utilized to impose boundary conditions at the
outlets of themodels.Material stiffness was prescribed, corre-
sponding to a uniformwall thickness of 0.36mm. Newtonian
rheology was assumed. In general, the average velocity at the
core of the aneurysms was higher at the end of the systole if
a rigid model was used. At the end of the diastole, differences
were less pronounced. In one patient, maximum WSS was
three times larger for the rigid wall model, but slightly higher
for the compliantmodel at the end diastole. In another patient
theWSS values at the end systole ranges between 25 and 30 Pa
for the rigid wall model, while for the deformable wall those
values ranged between 15 and 20 Pa.

9. Further Reading

During the last years, a number of review articles have
addressed related topics. Taylor and Steinman [151] reviewed
current techniques for image-based modeling of blood flow
and vessel wall dynamics. Some years earlier, Steinman and
Taylor [54] briefly discussed flow image and computational
methods to study hemodynamics in large arteries. Steinman
[152] also reviewed how advances in computational tech-
niques are improving the understanding of the biomechanical
behavior of the healthy and diseased cardiovascular system.
In 2012, Jeong and Rhee [153] reviewed current commercial
software and applications to cerebral aneurysm progress and
treatment. Cebral and Raschi [154] reviewed works about
suggested connections between risk factors of intracranial
aneurysms. Sforza et al. [14] reviewed recent progress on
the basic mechanisms of aneurysm formation and evolution,
with a focus on the role of hemodynamic patterns.Dolan et al.
[86] reviewed works focused on the effect of high wall shear
stress and spatial gradients in vascular pathology. Taylor
and Figueroa [155] reviewed methods to create anatomic
and physiologic models, obtain properties, assign boundary
conditions, and solve the equations governing blood flow and

vessel wall dynamics. Augsburger et al. [156] reviewed cur-
rent experimental methodologies and numerical approaches
available for estimation of flow patterns, velocities, pressure,
and their derived quantifications, such aswall shear stress and
vorticity, by direct measurements or calculated through com-
putation. Hoskins and Hardman [157] reviewed techniques
for the estimation of wall stresses in arterial disease.

10. Discussion and Conclusions

Approximately twelve million people in the United States
have cerebral aneurysms. Yearly, about 30,000 new patients
with subarachnoid hemorrhage following rupture are re-
ported. Given that only a very little portion of those lesions
rupture, prophylactic interventions should be only for those
patients who are more likely to rupture. Under this scenario,
there is an increasing need to accurately determine the risk
factors on an individual basis. The development of computa-
tional methods for the study of blood flow in patient-specific
domains reconstructed from medical imaging has advanced
the understanding of the mechanisms of interaction between
the flow and the arterial wall, the initiation and develop-
ment of cerebrovascular diseases, and the flow alterations
generated by endovascular devices, which helps in evaluating
treatment options.The validation of these methodologies has
captivated the interest of neurosurgeons and interventional
neuroradiologists who have seen a potential clinical applica-
tion. Those experiments showed that numerical simulations
performed over patient-specific domains and personalized
boundary conditions are in agreement with blood flowsmea-
sured in vivowith a variety of imagemodalities. Furthermore,
those solutions show little or no dependence on most model
assumptions and parameters. Different frameworks have
been developed and utilized by some research teams to
investigate possible associations between computed blood
flows and cerebral aneurysm initiation, growth, and rupture,
as well as intra-aneurysmal thrombus formation.Whilemany
questions remain unanswered, a large number of researchers
worldwide are devoted to designing new approaches, algo-
rithms, image modalities, and a wide variety of in vivo, ex
vivo, and in silico experiments to answer them.
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[121] J. R. Cebral and R. Löhner, “Efficient simulation of blood
flow past complex endovascular devices using an adaptive
embedding technique,” IEEE Transactions on Medical Imaging,
vol. 24, no. 4, pp. 468–476, 2005.

[122] S. P. Ferns, M. E. S. Sprengers, W. J. Van Rooij et al., “Coiling of
intracranial aneurysms: a systematic review on initial occlusion
and reopening and retreatment rates,” Stroke, vol. 40, no. 8, pp.
e523–e529, 2009.

[123] W. J. Van Rooij and M. Sluzewski, “Endovascular treatment of
large and giant aneurysms,” American Journal of Neuroradiol-
ogy, vol. 30, no. 1, pp. 12–18, 2009.

[124] D. Fiorella, P. Lylyk, I. Szikora et al., “Curative cerebrovascu-
lar reconstruction with the Pipeline embolization device: the
emergence of definitive endovascular therapy for intracranial
aneurysms,” Journal of NeuroInterventional Surgery, vol. 1, no. 1,
pp. 56–65, 2009.

[125] H. G. Morales, M. Kim, E. E. Vivas et al., “How do coil
configuration and packing density influence intra-aneurysmal
hemodynamics?” American Journal of Neuroradiology, vol. 32,
no. 10, pp. 1935–1941, 2011.

[126] S. Appanaboyina, F. Mut, R. Löhner et al., “Computational
modelling of blood flow in side arterial branches after stenting
of cerebral aneurysms,” International Journal of Computational
Fluid Dynamics, vol. 22, no. 10, pp. 669–676, 2008.

[127] D. Ma, G. F. Dargush, S. K. Natarajan, E. I. Levy, A. H. Sid-
diqui, and H. Meng, “Computer modeling of deployment and
mechanical expansion of neurovascular flowdiverter in patient-
specific intracranial aneurysms,” Journal of Biomechanics, vol.
45, pp. 2256–2263, 2012.

[128] I. Larrabide, M. L. Aguilar, H. G. Morales et al., “Intra-
aneurysmal pressure and flow changes induced by flow divert-
ers: relation to aneurysm size and shape,” American Journal of
Neuroradiology, vol. 27, pp. 1–7, 2013.
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