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U0126, as an inhibitor of the MAPK signaling pathway, is closely related to

various biological processes, such as differentiation, cell growth, autophagy,

apoptosis, and stress responses. It makes U0126 play an essential role in

balancing cellular homeostasis. Although U0126 has been suggested to

inhibit various cancers, its complete mechanisms have not been clarified in

cancers. This review summarized the most recent and relevant research on the

many applications of U0126 and described its role and mechanisms in different

cancer cell types. Moreover, some acknowledged functions of

U0126 researched in the laboratory were listed in our review. We discussed

the probability of using U0126 to restain cancers or suppress the MAPK pathway

as a novel way of cancer treatment.
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Background

MAPK signaling pathway plays a vital role in cancer cell dissemination, proliferation,

and drug resistance (De Luca et al., 2012). MAPK pathways were composedmainly of four

families: 1) MAPK/ERK family or classical pathway; 2) Big MAP kinase-1(BMK-1); 3)

c-Jun N-terminal kinase (JNK); 4) p38 signaling families (De Luca et al., 2012; Cossa et al.,

2013) (Figure 1). In MAPK/ERK family, the carcinogenesis of ERK1/2 relates to upstream

the activation of ERK1/2, which includes overexpression of RTKs (receptor tyrosine

kinases) (Lu and Xu, 2006; Low and Zhang, 2016). Aberrant ERK1/2 activation is existed

in various malignancies, including renal cell carcinoma, hepatocellular carcinoma, and

gastric adenocarcinoma. The carcinogenesis of JNK mainly depends on the process of the

phosphorylated c-Jun and activated AP-1 induced by JNK (Cellurale et al., 2011). JNK has

two different proteins, JNK1 and JNK2, which make the JNK pathway dual role in cancer

cells. Many studies have indicated that the JNK pathway can exert pro- and anti-

oncogenic effects in different cancers and stages of cancer development (Wagner and

Nebreda, 2009). In addition, JNK and p38 collectively have upstream activators and

synergistically influence cancer cell survival (Svensson et al., 2011; Ruan et al., 2015).

Recent studies have verified that increased phosphorylated p38 has been linked to various

malignant tumors such as lung cancer, thyroid cancer, breast carcinoma, follicular
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lymphoma, and glioma. Nevertheless, the effect of p38 on cancer

is complex and controversial at this stage (Wagner and Nebreda,

2009; Low and Zhang, 2016).

Over the last few years, U0126, as a signal transduction

inhibitor of the MAPK (mitogen-activated protein kinase)

pathway, has become the focus of relevant studies because of

its impact on the development of malignancies (Ma et al., 2013).

Many reports have shown that U0126 can inhibit tumor

proliferation and enhance the anticancer effects of drugs or

gene silencing treatments (Fukazawa et al., 2002; Wiesenauer

et al., 2004; Marampon et al., 2006; Takayama et al., 2008;

Marampon et al., 2009; Ito et al., 2010). U0126 mainly targets

the RAF/MEK/ERK pathway in animal cells (Favata et al., 1998).

It inhibits the activation of ERK1/2 by blocking the activation of

the upstream MEK1/MEK2 and affecting p38 MAPK activity

(Duncia et al., 1998; Wang and Studzinski, 2001; Hotokezaka

et al., 2002). The RAF/MEK/ERK pathway and p38 pathway

belong to MAPK signal pathways involving cell survival,

FIGURE 1
The known MAPK signaling pathways downstream target cell receptor signaling, working cooperatively to regulate cell physiology.
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differentiation, proliferation, apoptosis, and stress adaptation

(Pagès et al., 1993; Matsumoto et al., 2002; Lefloch et al.,

2008; Lefloch et al., 2009; Wu et al., 2011).

In this review, we described the role of U0126 in the MAPK

signaling pathway and its biological activities, such as apoptosis,

cell survival, and autophagy. At the same time, we concluded

some new applications of this inhibitor from its molecular

mechanism. Furthermore, we describe some well-recognized

functions of U0126 stayed in the laboratory. Finally, we

discussed the role of U0126 in different types of cancers and

emphasized it as a potential ant-cancer drug that can improve the

therapeutic effect on tumors.

Structure and function of U0126

W. J. Middleton first synthesized U0126 in the late 1950s.

U0126 can keep the crystalline state stable even for decades.

There mainly include three possible isomers of U0126: Z,

Z-isomer (Figure 2A); Z, E-isomer (Figure 2B); E, E-isomer

(Figure 2C). As research progresses, Stephen et al. discovered

that U0126 exerts its effects on cells via suppressing the activation

of MEK1 (MAPK kinase 1; also known as MKK1) and not by

blocking the activity. Therefore, U0126 has been widely

researched in anti-tumor research as a MAPK inhibitor, but,

in addition, U0126 also has biological effects in other aspects.

Our review of U0126 studies found that U0126 is more than

just a MAPK inhibitor. We started from the anti-tumor aspect of

U0126. We found that U0126 can affect multiple molecular

signaling pathways, including MEK/ERK, JNK, KRAS, P44/42,

JAK/STAT, PI3K/AKT/mTOR, and Ras/Raf/ERK signaling

pathways. Moreover, U0126 can act on the following targets:

ERK 1/2, MEK 1/2, C-JNK, μPA, MMP-9, P44/42, P21, p53, P27,

and so on. The relevant results are summarized in Table 1. In the

meantime, the roles of U0126 in several biological processes are

described in detail below.

Cell growth and differentiation

Many findings have supported that chemical inhibitors

suppressing signal transduction are potent tools in exploring

signaling pathways. As a MAPK inhibitor, U0126 is widely used

in investigating what pathways are involved in cell responses,

such as growth and differentiation. It has been demonstrated that

U0126 can inhibit MEK leading to an apparent decrease of

phosphorylated ERK, accelerating the differentiation of

RAW264.7 cells into osteoclast-like cells (Hotokezaka et al.,

2002). Moreover, Xu et al. (2015) demonstrated that

U0126 could promote osteogenic differentiation of rat MSCs

model by activating the BMP/Smad pathway.

Apoptosis

Apoptosis is an important mode of cell death that is no longer

needed or is a pathologic status to the organism, including

nuclear chromatin condensation, cell shrinkage, and caspase

activation (Patel et al., 1996; Thornberry, 1998). U0126 is a

potent anti-apoptotic agent. Jo et al. found that U0126 decreases

apoptosis and the activation of caspase 3 through inhibition of

ERK1/2, suggesting pretreatment of U0126 has significant

functional and histologic protection to attenuate cisplatin-

induced renal injury (Jo et al., 2005). Interestingly, U0126 can

also induce apoptosis to inhibit the proliferation of tumors. For

example, U0126 can cause apoptosis in leukemic blast cells,

especially in the KG1a cell line (Kerr et al., 2003).

Accordingly, U0126 can potentiate or antagonize apoptosis,

depending on the drug or the target cells. It is still indistinct

whether these different regulations on apoptosis are due to a

direct effect of U0126 or whether it is the only result of the

inhibition of the MAPK pathway, or whether there exist other

pathways. Therefore, further studies are needed to explore the

existence of potential mechanisms of U0126 in the apoptosis

pathway.

FIGURE 2
The structure and chemical characteristics of three isomers
of U0126. (A) U0126, Z,Z-isomer; (B) U0126, Z,E-isomer; (C)
U0126, E,E-isomer.
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Autophagy

Autophagy is a process of self-degradation. Autophagosome

degradation removes damaged cell organelles and misfolded or

aggregated proteins (Glick et al., 2010). This pathway is

important for limiting tumor initiation because it can inhibit

genomic instability and oxidative stress (Eskelinen, 2011). Cells

can use this process to balance energy sources in response to

TABLE 1 U0126 as potential anticancer agents.

Tumor type Tumor
cell line

concentration Duration Mechanism Molecular
target

Biological
activities

References

Melanoma Human
A375

5 μM/10 μM 24 h MEK/ERK signaling
pathway, JNK signaling
pathway

↓p-ERK1/2, ↓p-
MEK1/2, ↓c-
Jnk,↓uPA,
↓MMP-9

↓ invasion, ↓
proliferation

Ge et al. (2002)

Neuroblastoma SK-N-AS
(S-type)

10 μM 24 h MEK/ERK signaling
pathway

↓p-ERK1/2 / Eppstein et al.
(2006)

BE (2)-C
(I-type)

↓ proliferation

SH-SY5Y
(N-type)

/

Pancreatic cancer Mia PaCa-2 2.5–80 μM (Mix =
20 μM)

15 min MAPK signaling
pathway

↓p-ERK, ↓p-
MEK1/2

↓ proliferation Guo et al. (2015)

KRAS signaling pathway

BxPC-3 0–30 μM (IC50 =
30 μM)

72 h MEK/ERK signaling
pathway

↓p-ERK ↓ proliferation Yip-Schneider
and Schmidt,
(2003)PANC-2 0–30 μM (IC50 =

25 μM)
↓ proliferation

Mia PaCa-2 0–30 μM (IC50 =
10 μM)

↓ proliferation

Gallbladder cancer NOZ cells 0,1, 5, 10, 50,
100 μM

48 h / / ↓ proliferation Horiuchi et al.
(2003)

Acute leukemia KG1a 50 μM 48 h p44/42 (MAPK)
signaling pathway

↓p44/42 ↓ proliferation,
↑apoptosis

James et al. (2003)

HEL

M-07e

TF1

THP-1

Lung carcinomas RAW264.7 5 mg/100 g 10–40 days JAK/STAT3 signaling
pathway, PI3K/AKT
signaling pathway

↑IFN-γ ↓ proliferation Ma et al. (2015)

EL-4

A549 1, 3, 5, 10, 20 μM 72 h PI3K/AKT/mTOR
signaling pathway, Ras/
raf/ERK signaling
pathway

p21, p53, p27,
cyclin D1,
cyclin E1

↓ proliferation,
↑apoptosis, ↓cell cycle
(G0/G1)

Zou et al. (2012)

H460

Embryonal
rhabdomyosarcoma

RD 25 or 50 μmol/kg 5 weeks MEK/ERK signaling
pathway

↓C-Myc ↓ proliferation Marampon et al.
(2009)TE671

Cervical cancer Hela 1, 2, 5, 10, 20,
30 μM

4 h ERK signaling pathway,
JAK-STAT signaling
pathway

↓p-ERK1/2 ↓ invasion, ↓
proliferation,
↑apoptosis,↓cell cycle
(G0/G1)

Ye et al. (2017)

Mix, Maximum inhibitory concentration; IC50, 50% inhibitory concentration; ↑, Promotion; ↓, Inhibition.
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nutrient stress such as serum starvation or glucose (Glick et al.,

2010). Interestingly, many studies have reported that U0126 is

involved in suppressing autophagy. Wang et al. verified that

U0126 inhibits cisplatin-induced autophagy in HEI-OC1 and

cochlear hair cells (Wang et al., 2021). Moreover, Wang et al.

found that U0126 reduces ischemia/reperfusion-induced

autophagy in the myocardium (Wang et al., 2016). However,

there is no evidence of the activation of autophagy by U0126. Due

to limited data, the effect of U0126 on autophagy needs further

research, especially in different cells.

Inflammation

Inflammation occurs when tissues respond to injury. The

various cell types’ expression and diverse mediators’ reactions

both play a role in inflammation. Significantly, The ERK 1/

2 pathway, as the most extensively occurred member of the

MAPK pathway, is related to inflammation (Mohammad et al.,

2013). U0126, a potent and selective MAPK inhibitor, can

decrease ERK 1/2 activation. According to these theories,

many studies have further verified that U0126 has anti-

inflammatory effects. For example, U0126 reduces diabetes-

induced upregulation of MMP-9 and biomarkers of

inflammation in the retina (Mohammad et al., 2013). In the

asthma mouse model, U0126 attenuates pulmonary eosinophilia,

OVA-induced Th2 cytokine production, serum IgG1, IgE

synthesis, mucus hypersecretion, and AHR to restrain allergic

airway inflammation (Duan et al., 2004).

U0126 and cancer

U0126 has been found to play an antiproliferative role in

cancers. Interestingly, there are different antitumor mechanisms

of U0126 in each tumor. To achieve clear comprehension, we

summarized existing studies and listed known antitumor

mechanisms of U0126 in the following section (Table 1).

U0126 and melanoma

Tumor cell invasiveness is a multistep process including cell

adhesion, matrix proteolysis, and cell migration. The

extracellular matrix’s degradation needs invasive proteases

secreted by the invading cells, including uPA (urokinase

plasminogen activator) and MMP (matrix metalloproteinase)

(Aguirre Ghiso et al., 1999; Jesionowska et al., 2015). In

human melanoma, U0126 not only inhibits phosphorylation

of MEK 1/2 and ERK 1/2 but also decreases the expression of

c-Jun, a significant component of the transcription factor AP-1

(Ge et al., 2002). Because the gene promoter regions of uPA and

MMP-9 contain AP-1, the decrease of c-Jun suppresses the

expression of uPA and MMP-9. Therefore, U0126 can

significantly inhibit melanoma invasion via decreasing uPA

and MMP-9 concentrations (De Petro et al., 1998; Lakka

et al., 2000).

U0126 and neuroblastoma

There are three unique cell phenotypes in neuroblastoma

cells: neuroblastic (N-type), intermediate (I-type), and

substrate-adherent (S-type) (Ross et al., 2003). Those cell

types differentiate into another type in culture, and the

proportions of each type of tumor are different (Ross and

Spengler, 2004). Because cell growth and differentiation

involve the MAPK pathway, many researchers believe in

the feasibility of MAPK-targeted therapies in tumors

(Giroux et al., 1999; Mattingly et al., 2001; Ross and

Spengler, 2004). Eppstein et al. (2006) found that all three

cell types exhibit the expression of p-ERK decreased after

processing by MEK inhibition. However, only I-type cells

exhibit significantly decreased proliferation with

U0126 treatment. Although U0126 has the promise of

targeting I-type cells, neuroblastoma treatments may need

to combine agents against N-type and S-type cells. It may be a

new point to explore tumor-targeted therapeutic strategies

further.

U0126 and pancreatic cancer

Pancreatic cancer is a common malignancy worldwide, with

a median survival time of fewer than 6 months (Hidalgo, 2010).

Several targeted therapies have been used in researching

pancreatic cancer (Vaccaro et al., 2011). Pancreatic cancer cell

growth depends on the activity of the mutated KRAS gene.

Therefore, silencing the KRAS gene can control pancreatic

cancer cell line proliferation (Réjiba et al., 2007). It makes the

components in the KRAS pathway become promising targets for

identifying novel therapies (McCubrey et al., 2007). In addition,

the ERK signaling pathway is not regulated in pancreatic

carcinoma cells despite KRAS gene expression, and the reason

is that increased MKP-2 (MAP kinase phosphatase-2) inactivates

ERK. The results showed that both KARs gene expression and the

MAPK-ERK pathways are involved in the occurrence of

pancreatic cancer. Similarly, if the MEK-ERK signaling

pathway is necessary for the growth of the pancreatic cell, it

may be a potential therapeutic target alone or with other cellular

pathways (Yip-Schneider et al., 1999; Yip-Schneider et al., 2001).

Interestingly, these hypotheses have been confirmed in

subsequent studies. For example, U0126 effectively controls

pancreatic cancer cell line proliferation via targeting the

downstream effectors of KRAS signaling in a zebrafish

xenotransplantation model (Guo et al., 2015). In addition,
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Yip-Schneider and Schmidt (2003) confirmed that

U0126 dependently inhibits the growth of three human

pancreatic carcinoma cell lines (PANC-1, BxPC-3, and MIA

PaCa-2).

U0126 and gallbladder cancer

It is challenging to diagnose gallbladder cancer in clinical

practice because the symptoms and the manifestations of

gallbladder cancer are similar to benign gallbladder disease.

Therefore, most cases of gallbladder cancer are found at an

advanced stage, accompanied by metastases to the lymph

nodes, invasion of the liver, and distant organs. Most of the

time, the tumor is unresectable despite radical surgery

(Mizuguchi et al., 1997; Levin, 1999). Oncogenic mutation of

KRAS is associated with gallbladder carcinogenesis (Watanabe

et al., 1994; Ajiki et al., 1996; Hidaka et al., 2000). Activation of

KRAS can induce the constitutive activation of the MAPK

pathway and PI3K-AKT pathway, which rapidly develops the

growth of the gallbladder epithelium (Leevers and Marshall,

1992; Thomas et al., 1992; Rubio et al., 1997). Furthermore,

point mutation of P53 is also related to gallbladder cancer

carcinogenesis (Hanada et al., 1997; Watanabe et al., 1999).

Therefore, U0126 as a MAPK inhibitor has the potential to

inhibit gallbladder cancer proliferation. Moreover, a recent

study has verified that U0126 observably prolongs the

survival duration of mice with gallbladder tumors. The

major organs such as kidneys, liver, small intestine, colon,

stomach, brain, lungs, and heart do not have apparent

histopathological abnormality after U0126 treatment in mice

bearing gallbladder cancer cells with KRAS mutation (Horiuchi

et al., 2003). However, the underlying mechanisms of

U0126 inhibiting gallbladder cancer need to be further

explored.

U0126 and acute leukemia

The control of cell proliferation, differentiation, and

apoptosis depends on the balance between a series of

signaling cascades. In acute leukemia, this delicate balance

is frequently deranged. Blockade of proliferative pathways by

inhibiting MEK is growth inhibitory or pro-apoptotic in some

acute myeloblastic leukemia (AML) cell lines and some AML

patients (Berra et al., 1998; Jarvis et al., 1998; Milella et al.,

2001; Morgan et al., 2001; Baines et al., 2002). It has been

reported that the MEK inhibitor U0126 induces significant

levels of apoptosis in three acute leukemia cell lines, KG1a,

THP-1, and M-07e (James et al., 2003). Although the

sensitivity of different cell lines is variable, U0126 seems to

offer a potential alternative to standard chemotherapeutic

agents in treating acute leukemia.

U0126 and lung carcinomas

A recent study has reported that U0126 inhibits

chemically-induced pulmonary carcinomas’ growth and

improves tumor-free survival rates in mice with inoculated

lung carcinomas. Among them, the antitumor effect of

U0126 mainly depends on the activation of IFN-γ
production (Ma et al., 2015). IFNs (Interferons) are a

family of pleiotropic cytokines including three major

groups: Type I, Type II, and Type III IFNs (Maher et al.,

2007). IFN-γ is the sole member of Type II IFN, and it has

multiple biological functions in defense and immune systems,

just like the antiviral, antimicrobial, antiproliferative, and

antitumor activity (Schroder et al., 2004; Schoenborn and

Wilson, 2007). However, more and more evidence has

shown that IFN-γ can also induce tumor progression. It

makes the role of IFN-γ in regulating antitumor immunity

appear complex and paradoxical. Related literature reports

that IFN-γ can promote lung cancer progression via the JAK/

STAT3 signaling pathway and PI3K/AKT signaling pathway

in lung carcinomas (Zhang et al., 2017). Thus it can be seen

that the relationship between U0126 and INF-γ and the effect

of INF-γ on lung cancer are skeptical. Therefore, we think that

the role of U0126 in lung cancer is unclear.

It is worth noting that if U0126 has an inhibitory effect on

lung cancer, it may be associated with inhibition of cell cycle and

proliferation. The explanation is as follows: U0126 can exert its

effects on G0-G1 arrest via up-regulating p21, p53, and p27.

Meanwhile, cyclin D1 and cyclin E1 are down-regulation (Zou

et al., 2012).

U0126 and embryonal
rhabdomyosarcoma

In childhood, RMS (malignant tumors of skeletal muscle

rhabdomyosarcoma) is the most common soft-tissue

sarcoma (Merlino and Helman, 1999). C-Myc, N-Myc, and

MYCL1 play an important role in human cancer (Adhikary

and Eilers, 2005). In conditional transgenic models on Myc

inactivation, tumors can regress (Jain et al., 2002; Shachaf

et al., 2004). Ras mutation activating MEKs and ERKs occurs

in various tumors (Kohno and Pouyssegur, 2003; Faivre et al.,

2006; Liu et al., 2007). C-Myc is targeted by ERKs that

stabilize C-Myc, whereas GSK-3β induces C-Myc

degradation (Sears et al., 2000; Yeh et al., 2004). Ras

activation can induce chronic MEK/ERK activation and

phosphatidylinositol 3-kinase/AKT-mediated GSK-3β
inactivation leading to C-Myc aberrant accumulation

(Bachireddy et al., 2005). According to the above basic

theory, Marampon et al. used the MEK/ERK inhibitor

U0126 and embryonal rhabdomyosarcoma cell line-

xenotransplanted mice to verify whether MEK//ERK
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inhibitions affect C-Myc protein level and growth of RMS

tumor. They found that U0126 significantly reduces RMS

tumor growth via disrupting C-Myc (Marampon et al., 2009).

Thus, U0126 could be used in a signal transduction-based

therapy for RMS and warrants testing in RMS trials.

U0126 and cervical cancer

Cervical cancer is a common malignant tumor in females

(Chan and So, 2015). ERK1/2 signaling pathway plays an

essential role in cervical cancer differentiation (Chang

et al., 2014). ERK 1/2 is expressed in cervical cancer tissues

in cytoplasm and nuclei (Kake et al., 2017). Moreover, ERK

can facilitate cancer cell growth via promoting cell movement

from the G1 phase to the S phase. U0126, an ERK inhibitor,

can decrease cell content in the S phase, which may restrain

breast cancer proliferation by blocking the cell cycle (Zhao

et al., 2009). In addition, U0126 can induce apoptosis to

suppress cervical cancer. The induced-apoptosis mechanism

of U0126 in cervical cancer relates to the inhibition of the ERK

signaling pathway and the suppression of the JAK-STAT

pathway (Zhao et al., 2009; Ye et al., 2017) .(de Tomaso

Portaz et al., 2015)

Limitations and prospects

Currently, the effects of U0126 are limited in treating human

cancers unless particular cancer proliferates mainly relies on the

MAPK signaling pathway. Moreover, the anticancer effects of

U0126 often depend on cytostatic rather than cytotoxic.

Although it is an effective anticancer agent in a single

treatment setting, existing research is restricted to a laboratory

experiment state.

However, many studies have confirmed that U0126 may be

more effective when combined with chemotherapies or

radiotherapies (Yacoub et al., 2003; Gao et al., 2005; Ito et al.,

2010). It means U0126 could overcome the resistance to

chemotherapeutic drugs (Shi et al., 2014). Thus, combination

therapy with either a traditional drug/physical treatment or

U0126 is also a meaningful way to improve the effectiveness

and usefulness of U0126.

As the technology develops, more and more data support

the role of molecular signaling pathways in cancer biology.

While on a single tumor, molecular “tailored” treatment is still

the most ambitious goal, but to build a new, based on the

combination mechanism, may bypass the escape mechanism,

and in patients with relatively not choose groups to overcome

the resistance of single channel inhibitors, seems to have in

our ability range, and possible treatment of substantial

progress soon. In general, MEK inhibitors are well

tolerated, with only rash edema and transient blurred

vision being common side effects. Importantly, plasma

concentrations of each compound are sufficient to inhibit

MEK in vitro tumor tissues. Although the concentration of

U0126 is relatively high in vitro, it is still an optimistic

assumption that subsequent studies can combine

U0126 with other drugs to achieve the maximum tumor

suppressive effect at the minimum concentration and apply

it in clinical practice.

Researchers and doctors sometimes have a purposely

narrow view of a particular topic. For example, cancer

researchers think that U0126 can suppress the growth of

cancer cells. Nevertheless, U0126 may also help treat

inflammatory and tissue injury with abnormal cellular

proliferation (Clemons et al., 2002; Cho et al., 2004;

Christensen et al., 2019). These research topics, such as

ischemic brain injury (Farrokhnia et al., 2008),

myocardial ischemia (Wang et al., 2016), and asthma

(Duan et al., 2004), significantly improve the potential

clinical uses of U0126.

In summary, U0126, a drug discovered a long time ago, has

been reported to have anti-tumor effects, but it may not be paid

too much attention due to force majeure reasons. With the

development of science and technology, we do not want

U0126 to be buried in history. Therefore, in this article, we

will review its functions and mechanisms again, hoping to arouse

people’s attention. If combined with the existing new technology,

U0126 can solve the previous legacy problems and become a

powerful tool not only for anti-tumor but also for treating other

diseases. We believe it will provide hope for the majority of

patients.

Conclusion

In this review, we described that U0126 is an inhibitor in the

cell proliferation of many cancers, mainly through its role in

blocking the MAPK pathway. If one tumor depends on the

MAPK pathway, it may be sensitive to U0126. In addition,

U0126 will only exhibit antitumor effects combined with

cytotoxic chemotherapeutic drugs or radiation. However,

recent studies also describe other mechanisms of U0126,

which makes U0126 more critical to research how it can

become a drug of anticancer therapies. At the same time,

U0126 may also be considered for development in treating

other diseases due to its ability to affect apoptosis, autophagy,

and inflammation.
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